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Abstract 

Background:  The Basic Local Alignment Search Tool (BLAST) is a suite of commonly 
used algorithms for identifying matches between biological sequences. The user sup‑
plies a database file and query file of sequences for BLAST to find identical sequences 
between the two. The typical millions of database and query sequences make 
BLAST computationally challenging but also well suited for parallelization on high-
performance computing clusters. The efficacy of parallelization depends on the data 
partitioning, where the optimal data partitioning relies on an accurate performance 
model. In previous studies, a BLAST job was sped up by 27 times by partitioning the 
database and query among thousands of processor nodes. However, the optimality of 
the partitioning method was not studied. Unlike BLAST performance models proposed 
in the literature that usually have problem size and hardware configuration as the 
only variables, the execution time of a BLAST job is a function of database size, query 
size, and hardware capability. In this work, the nucleotide BLAST application BLASTN 
was profiled using three methods: shell-level profiling with the Unix “time” command, 
code-level profiling with the built-in “profiler” module, and system-level profiling 
with the Unix “gprof” program. The runtimes were measured for six node types, using 
six different database files and 15 query files, on a heterogeneous HPC cluster with 
500+ nodes. The empirical measurement data were fitted with quadratic functions 
to develop performance models that were used to guide the data parallelization for 
BLASTN jobs.

Results:  Profiling results showed that BLASTN contains more than 34,500 different 
functions, but a single function, RunMTBySplitDB, takes 99.12% of the total runtime. 
Among its 53 child functions, five core functions were identified to make up 92.12% 
of the overall BLASTN runtime. Based on the performance models, static load balanc‑
ing algorithms can be applied to the BLASTN input data to minimize the runtime of 
the longest job on an HPC cluster. Four test cases being run on homogeneous and 
heterogeneous clusters were tested. Experiment results showed that the runtime can 
be reduced by 81% on a homogeneous cluster and by 20% on a heterogeneous cluster 
by re-distributing the workload.

Discussion:  Optimal data partitioning can improve BLASTN’s overall runtime 5.4-
fold in comparison with dividing the database and query into the same number of 
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fragments. The proposed methodology can be used in the other applications in the 
BLAST+ suite or any other application as long as source code is available.

Keywords:  BLAST, High performance computing (HPC), Load balancing, 
Parallelization, Performance model, Profiling

Background
The Basic Local Alignment Search Tool (BLAST) is a computer algorithm developed 
and maintained by the National Institutes of Health, National Center for Biotechnology 
Information (NIH/NCBI) for identifying regions of identity and statistical importance 
between biological sequences such as nucleotides or proteins. BLAST is used in differ-
ent areas of bioinformatics including nucleotide sequence mapping, genomic research, 
species identification, etc. Since its development in 1990, BLAST has become one of the 
most widely used bioinformatics applications, with the original publication cited more 
than 94 thousand times [1].

BLAST takes two user-input files, database and query, that usually consist of millions 
of biological sequences. A biological sequence is a single, continuous molecule: either 
a nucleic acid composed of nucleotides or a peptide composed of amino acids. BLAST 
can compare these biological sequences to the existing database and calculate the sta-
tistical significance of the matches. A match between two sequences is found when two 
sub-sequences are identical, or similar when some unmatched characters or gaps are 
omitted.

The NIH/NCBI command-line BLAST package “BLAST+” includes database manip-
ulation tools, core BLAST search programs, specialized protein search programs, etc. 
[2]. The five core BLAST search programs each specializes in a different type of search: 
BLASTN (comparison of nucleotide database and nucleotide query), BLASTP (com-
parison of peptide database and peptide query), BLASTX (comparison of nucleotide 
database and translated nucleotide query), TBLASTN (comparison of translated nucle-
otide database with nucleotide query), and TBLASTP (comparison of translated pep-
tide database with peptide query). The BLAST+ package is distributed in C++ source 
code as well as installable executables for the Linux, Windows, and MacOS platforms 
with detailed documentation [3]. The basic BLAST process is summarized in Fig. 1 and 
described further in the Results section.

Besides NIH/NCBI, researchers have developed various parallel implementations 
of the BLAST algorithm. For example, mpiBLAST is an open-source implementa-
tion of BLAST which uses Message Passing Interface (MPI) to split a BLAST database 
such that each node processes only a portion of the database. Database segmentation 
reduces disk Input/Output (I/O) by containing smaller data in the memory, resulting in 
near linear speedup in most cases [4]. ScalaBLAST can parallelize BLAST across more 
than 16,000 processors by dynamically scheduling BLAST calculations across processor 
pairs for fault-resilient speed-up [5]. miBLAST locates, then expands, word hits between 
the database and query to process batch workloads efficiently [6]. Divide and Conquer 
BLAST (DCBLAST) is an HPC computing wrapper that automatically divides BLAST 
queries among processors for speed-up [7].

Non-general purpose processors are also used in BLAST applications. A cus-
tomized Field-Programmable Gate Array (FPGA) was designed to accommodate 



Page 3 of 25Cheng et al. BMC Bioinformatics          (2022) 23:544 	

BLAST algorithm with programmable circuits [8]. Graphics processing unit (GPU)-
accelerated versions of BLAST, such as CUDA-BLASTP [9], GPU-BLAST [10], and 
G-BLASTN [11], have also been developed to swarm smaller execution units to GPUs 
to process the smaller tasks simultaneously.

In contrast, parallelization using data partitioning provides a simple way to imme-
diately utilize the available resources on an HPC cluster to speed up the latest version 
of the original BLAST+ without modifying the algorithm. For example, the “dual seg-
mentation” method [12] divides the database and query into m and n subsets, respec-
tively, on a cluster with m× n nodes. The m× n pairs of database-query subsets are 
then processed in parallel using m× n nodes. The only required modification to the 
source code is a global variable defined by the option “-dbseqnum” which specifies 
the effective number of sequences in the database. This value is important for calcu-
lating the expect value, or E-value, which is a measure of the statistical significance 
of the matches found. Experiment results showed reduction in runtime from 27 days 
to less than one day on a homogeneous HPC cluster with 500+ nodes [12]. However, 
selection of the optimal m and n values was not explored.

When a BLAST job is processed concurrently on multiple nodes on an HPC clus-
ter, the turnaround time is determined by the longest sub-job among all nodes. The 
runtime required by each sub-job may differ because of the asymmetry of the com-
puting nodes. For example, the computing nodes on a heterogeneous HPC cluster 
may not have the same hardware components. Even on a homogeneous HPC cluster, 
different computing nodes may perform differently because of the dynamic work-
load imposed by other jobs. Therefore, if a BLAST job is partitioned evenly among 

Fig. 1  Outline of the BLAST process [3]
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nodes without considering their performance differences, the nodes with more 
workload or less computing power will finish the sub-job late and prolong the turna-
round time of the whole job.

The optimal load balancing configuration can be calculated by minimizing the fol-
lowing cost function [13]:

where ei is the runtime of a sub-job i and the overall runtime is determined by the slow-
est sub-job. It should be noted that BLAST runtime can vary based on sequence con-
tent [18]. Therefore, the runtime for a sub-job will vary based on the given database and 
query inputs. The runtime of each sub-job is estimated by performance models, and the 
objective is to minimize the runtime of the slowest sub-job. The constant performance 
model (CPM) [14] assumes that the speed, the amount of processed data per unit time, 
of each processor is a constant si so the execution time for problem size Di is

The functional performance model (FPM) [13] [15] [16] can be used when the processor 
speed is a function of the problem size:

Both CPM and FPM assume the problem size to be one-dimensional, which is not suit-
able for BLAST applications that take two input files. For example, the scalability of 
BLASTP was investigated separately by splitting database vs. splitting query [17]. In this 
study, the database is divided into m pieces, each of size Di , where 1 ≤ i ≤ m and the 
query is divided into n pieces, each of size Qj , where 1 ≤ j ≤ n . Therefore, the BLAST 
data size for each sub-job is represented by (Di,Qj) . Since each unique pair of Di and Qj 
needs to be computed, there are m× n sub-jobs in total. The runtime for each sub-job 
on node type k can thus be denoted as

where T is the estimated runtime for sub-job of size (Di,Qj) , i.e., the performance model. 
The cost function for a BLAST application becomes

The solution to the load balancing problem is the database and query partitioning (i, j) 
which will minimize overall runtime.

In this study, the BLASTN application was profiled with various database sizes, 
query sizes, and node types to obtain the performance models. The goal was to 
improve BLASTN performance by load-balancing a heterogeneous HPC cluster.

(1)max
i

{ei}

(2)ei =
Di

si
.

(3)ei =
Di

si(Di)
.

(4)ei,j = Tk(Di,Qj),

(5)max
i,j

{ei,j}.
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Methods
Source code

The subject application of this study was BLASTN version 2.12.0. Two versions of 
BLASTN executables were built: the default configuration and the “with-profiling” 
configuration. The dbseqnum variable was added to the source code before compilation 
[12]. Multithreading was controlled by specifying “-num_threads=1.”

Input data – database and query

A 2.4 GB test “nt” (nucleotide) database of 523,449 sequences downloaded from NCBI 
on June 16, 2017 was used in this study following the experiment set-up used in [12]. The 
database was truncated to generate six smaller databases as listed in Eq. 6 (units in num-
ber of sequences). The database sizes will be referenced as 8k, 16k, 32k, 64k, 130k, and 
260k in the remainder of the paper. These database subsets ranged from 12 MB to 493 
MB in file size. Some database sequences were greater than 10,000 base pairs in length.

In order to test the reproducibility of our method with different datasets and study the 
impact of query content on BLASTN performance, two queries were prepared. Query 
A was a 15 GB query of 73,102,023 metagenomic short-read sequences from bacteria, 
which was selected following the experiment set-up used in [12]. Query B was a 20.7 GB 
query of 332,046,784 metagenomic short-read sequences originating from a published 
spiking study, with the viruses spiked into human HeLa cell background [19].

Both queries were truncated to generate 15 smaller queries each as listed in Eq.  7 
(units in number of sequences). The query sizes will be referenced as 18k, 36k, 54k, 72k, 
90k, 110k, 120k, 140k, 290k, 380k, 480k, 570k, 700k, 820k, and 1100k in the remain-
der of the paper. Query A subsets ranged from 3 MB to 233 MB in size, and the query 
sequences ranged from 90 to 150 base pairs in length. Query B subsets ranged from 3 
MB to 198 MB in size, while the sequences were all 101 base pairs in length.

HPC environment

Experiments in this study were run on a U.S. Food and Drug Administration (FDA) 
Center for Devices and Radiological Health (CDRH) High Performance Computing 
(HPC) cluster, which consists of 500+ computing nodes in different hardware configu-
rations, allowing for massive parallelization across thousands of cores. The cluster sup-
ports interconnection among nodes by 1 Gbps Ethernet, 10 Gbps Ethernet, and 100 
Gbps Infiniband networks. Six different node types were tested in the experiments. Stor-
age to the nodes is provided via DataDirect Networks storage cluster using IBM Spec-
trum Scale file system via 56 Gbps Infiniband connection. Table 1 lists the key hardware 
specifications. BLASTN was run with one, two, four, and eight threads to understand 
how multithreading impacts hardware-level parallelization performance.

(6)Di ∈ {8179, 16358, 32716, 65432, 130862, 261725}

(7)
Qj ∈ {17848, 35695, 53555, 71389, 89258, 107188, 124961, 142778,

285555, 393022, 480935, 571110, 696210, 821372, 1142220}
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Profiling

Three profiling techniques at different levels were used to study the factors that 
impact the BLASTN performance.

Unix time (shell‑level)

The Unix “time (1)” is a shell command for measuring the time used by an applica-
tion. It provides three different measures of execution time – real, user, and system. 
The “real” time is the total wall clock time, from the start to the end of an application. 
The “user” and “sys” times are the time spent in the user and kernel modes, respec-
tively. Intuitively, the sum of the “user” and “sys” times should equal to the “real” 
time. However, “real” time will be greater than the sum of “user” and “sys” if 
the application is delayed by workloads from other processes, and vice versa if the 
application is accelerated by multithreading. The time command does not require 
the application source code. However, it only provides overall timing without a finer 
breakdown at the function level.

BLAST_PROF (code‑level)

BLAST+ includes a built-in profiling module implemented in rtprofile.cpp. This 
module provides stopwatches for programmers to measure the “real” time spent by 
a section of code. A programmer can define a stopwatch and add start/stop points 
in any of the C++ programs in BLAST, then recompile the package. Each run gen-
erates a unique text file named after its process identification number (PID). Profil-
ing can be switched on or off by the end user through the environmental variable 
“BLASTAPI_PROFILE_LOG” without recompiling the source code. Although this 
profiling method does not cost extra execution time running in the operating system 
kernel mode like “gprof” does, it does require the source code, recompilation, and 
knowledge of the BLAST algorithms.

Unix gprof (system‑level)

The “gprof” program is a standard profiling tool provided by Unix [20]. To use 
this feature, the source code must be compiled with the profiling option “-pg” such 
that extra profiling code for each function is inserted into the executable. Running 
the profile-version executable will generate a trace file as “gmon.out” that includes 
the timing information of all function calls. The binary file “gmon.out” can then 
be translated by the “gprof” program to generate a human-readable text file. The 
“gmon.out” output contains two parts: a flat list of all functions sorted by execution 
time and a call graph showing the caller/callee relationships of all functions.

In BLAST+, the gprof profiling option can be enabled by the “–with-profil-
ing” option in the configuration stage before compilation.

Since BLASTN contains more than 34,500 functions, which equate to the number 
of nodes in the call graph, two additional tools were used to visualize the colossal call 
graph. The “gprof2dot” program was used to convert the call graph into a math-
ematical graph in the “dot” file format. Then the “graphviz” program was used to 
render the mathematical graph into an image in the SVG file format. While “gprof” 
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can collect very fine timing information, the stages of compilation, execution, and 
analysis are time-consuming. Running the profile-version BLASTN executable takes 
approximately five times longer than the original, and running “gprof” can add more 
than 45 additional minutes.

Performance modeling

The measured runtime data were fit with bivariate quadratic functions to develop mod-
els for predicting runtime given input dataset and node type. Quadratic functions were 
chosen as an appropriate polynomial model because a linear function was too simple 
to fit the data, while a cubic model did not improve performance enough to offset the 
added complexity. Initial profiling results showed that the measurement data depend on 
three variables: database size, query size, and node type. The node type variable k, which 
does not change the execution flow, is fixed to model the remaining two-dimensional 
data with a bivariate polynomial defined in Eq. 8, where Di represents database size and 
Qj represents query size. The coefficient for each term is represented by cn , where n is an 
integer between 1 and 6 corresponding with the six term numbers.

Load balancing

Performance models can be used to determine the optimal data partitioning of a BLAST 
job to be processed by multiple nodes on an HPC cluster. Consider a static, centralized, 
and predicting-the-future load balancing strategy [15]; two cases are discussed in this 
section.

Homogeneous HPC cluster

A homogeneous HPC cluster consists of identical nodes which have the same hardware 
specifications and are expected to deliver similar performance. Consider a BLAST job 
of (D, Q), where D and Q are two integers representing the total number of sequences 
for the database and query, respectively, that are concurrently processed by P nodes. 
The database and query can be divided into m and n fragments, respectively, such 
that P = m× n . Each node processes a BLAST sub-job of fixed size (Di,Qj) , where 
Di = D/m , 1 ≤ i ≤ m , and Qj = Q/n , 1 ≤ j ≤ n.

The optimal solution on a homogeneous node type k cluster is the (m, n) pair which 
yields the minimum time Tk(D/m,Q/n) . The pseudo-code is described below. 

Algorithm 1:

Input: BLAST problem with database size D and query size Q, to be executed by P number of Type k nodes, 
whose performance model is given by T

Output: the optimal (m, n) that yields the minimum time Tk(D/m,Q/n)

   1    Factorize P to determine all non-zero integer pairs (m, n) for which P = m× n.

   2    Evaluate the runtime Tk(D/m,Q/n) for all (m, n).

   3    Return (m, n) that minimizes Tk(D/m,Q/n).

(8)Tk(Di,Qj) = c1Di
2 + c2DiQj + c3Qj

2 + c4Di + c5Qj + c6
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Heterogeneous HPC cluster

A heterogeneous HPC cluster consists of non-identical nodes which have different hard-
ware specifications and are expected to deliver different performance. In this case, nodes 
should process data based on their computing power. Load balancing on a heterogene-
ous cluster can be solved heuristically with Algorithm  2. The accumulated computing 
power of each node type is calculated, and the query is divided into sub-parts propor-
tional to the computing power. Since a divide-and-conquer approach is being used, we 
choose only one dimension to divide–either database or query. Our findings show that 
dividing the query is more effective, so we decided to divide the query in this algorithm. 
The identical nodes are then treated as a homogeneous cluster and processed using 
Algorithm 1. 

Algorithm 2:

Input: BLAST problem with database size D and query size Q, to be executed by Pk number of Type k nodes, 
whose performance model is given by Tk . The performance factor of each node type is given as sk.

Output: (mk , nk) for each node type k

   1   For each node type, calculate the accumulated computing power Wk = sk × Pk.

   2   Divide Q into Q1 , Q2,..., Qk such that Q1

W1
= Q2

W2
, ... = Qk

Wk
.

   3   For Pk nodes of Type k, where Pk is an integer, solve the problem (D,Qk) as a homogeneous cluster as 
follows:

   4   Given the total number of database sequences D, the number of query sequences Qk , and number of 
nodes Pk of Type k, determine all integer pairs (mk , nk) for which Pk = mk × nk.

   5   Evaluate the runtime Tk(D/mk ,Qk/nk) for each (mk , nk) by using the performance models for node type 
k.

   6   Return (mk , nk) for the minimum Tk(D/mk ,Qk/nk).

   7   Repeat steps 4-6 for each node type until the optimal partitioning for each node type has been deter‑
mined.

Results
Initial profiling results

The BLAST+ 2.12.0 package contains more than 3,800 source code files written in C++ 
(e.g., *.cpp and *.hpp). According to the preliminary results from gprof, we found that a 
specific function, RunMTBySplitDB, in “blastn_app.cpp,” called 53 different func-
tions and constituted more than 99% of the overall execution time and thus needed to be 
studied in depth.

After analyzing the source code and original comments, we found that the RunMT-
BySplitDB function can be divided into the following five stages. The inner three 
stages forms the main loop iterating through all queries. The five most time-consuming 
functions are annotated in their corresponding stages and are labeled a to e from great-
est to smallest percent overall runtime. 

1	 Pre-loop

•	 Get user-specified options (database, query, formatting)
•	 Initialize database after checking sequence
•	 Process input (set batch size and target hits)
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2	 Prepare data
•	 Prepare data (Function d, GetNextSeqBatch)

3	 BLAST algorithm

•	 Create objects (Function b, CLocalBlast::CLocalBlast)
•	 Run BLAST (Function c, CLocalBlast::Run)

4	 Formatting output

•	 Prefetch sequence data (Function e, PreFetchSequenceData)
•	 Format and output results (Function a, PrintOneResultSet)

5	 Post-loop

•	 Print epilogue and dump debug text
•	 Format and log BLAST search information

Table 2 shows the shell-, code-, and system-level profiling results against the code struc-
ture of the BLASTN application for a 16k database and a 54k query on Type II nodes with 
Query A. By shell-level profiling, the BLASTN runtime was measured as 135.72 s. By code-
level profiling, 99.92% of the BLASTN runtime was found to be due to the function Run-
MTBySplitDB. After inserting five stopwatches to divide RunMTBySplitDB into five 
stages, the inner three stages were found to occupy 97.11% of the total BLASTN runtime. 
Finally, using system-level time profiling with gprof, the top five functions called by Run-
MTBySplitDB were identified. These five functions make up 92.12% of the total BLASTN 
runtime. The call counts of the five core functions are also listed in the table. Function a’s 
call count was the same as the query size, while the other four functions were all called four 
times each. We noted that a significant portion of the runtime was attributed to I/O opera-
tions, such as formatting the output which takes up one-third to one-half of the time spent 
in RunMTBySplitDB. Because BLAST dumps all results into a single output file, runtime of 
such serial output operations heavily depends on the storage device configuration (e.g., hard 
disk drive, solid state drive, RAM disk, and memory caching), and cannot be improved by 
re-distributing the input datasets without modifying the original BLAST workflow.

Table 2  Profiling results for a BLASTN job of (16k, 54k)

Unix time (s) BLAST PROF (s) BLAST PROF (%) Unix gprof (%, # calls)

BLASTN
135.72

RunMTBySplitDB
135.60

#1 Pre-loop 0.02%

#2 Prepare data 10.91% d) GetNextSeqBatch 9.72% 4

#3 BLAST algorithm 38.04% b) CLocalBlast 29.28% 4

c) CLocalBlast::Run 17.00% 4

#4 Formatting output 48.13% e) PreFetchSequenceData 5.46% 4

a) PrintOneResultSet 30.66% 53555

#5 Post-loop 0.01%

100% 99.12% 97.11% 92.12%
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Profiling data analysis

Overall Runtime vs Database Size, Query A Size, and Node Type

The overall runtimes of BLASTN collected by shell-level profiling on Type IV nodes, 
TIV (Di,Qj) , are shown in Fig. 2. The blue mesh of the 90 datapoints angles downwards 
with the lowest point near (0,0). As expected, runtimes decrease monotonically as query 
size and database size decrease. However, this surface descends faster in the query 
dimension, indicating that reducing the query size is more performance-effective than 
reducing the database size. Figure 3a shows the runtimes of six different node types as 
heatmaps.

The same experiments were repeated using Query B. The runtimes of the six different 
node types are shown in Fig. 3b. Again, runtimes decrease monotonically with decreas-
ing query size and database size. The absolute runtimes of the Query B are around twice 
as large as those of the Query A. However, the shape of the surface, and thus the rela-
tionship between runtime and database/query size, is still quite similar across the two 
different queries investigated in this study.

Overall runtime vs. multithreading

The overall BLASTN runtimes with multithreading enabled were collected by shell-level 
profiling on the six node types. The 90 combinations of database and query were run 
with two, four, and eight threads for each of three trials, using both queries. Figure  4 
shows the average runtime collected for Query A as heatmaps. The columns represent 
the number of threads and the rows represent node type. As expected, all runtimes 
decrease as more threads are used to simultaneously process the data. However, the 
shape of each surface remains the same, indicating that the relationship between data-
base size, query size, and runtime does not change with different numbers of threads. 
While not shown in Fig. 4, the same tests were conducted with Query B, with runtimes 
across different numbers of threads showing similar trends.

Fig. 2  Overall BLASTN runtime vs. database size and Query A size on Type IV nodes, collected by shell-level 
profiling
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Multithreading with two, four, and eight threads resulted in improvements in 
runtime for both Query A and Query B. Table  3 shows the speed-up for different 
multithreading configurations with Query A and Query B. Each column represents 
a different number of threads. Runtimes were averaged across the 90 database-query 
combinations and the six node types for each multithreading configuration. Speed-
up was calculated relative to single-threading BLAST runtime.

For both datasets, using two threads instead of one resulted in the biggest improve-
ment, compared to going from two to four or four to eight threads. Multithreading 
improved the runtime of Query B more than for Query A, for all configurations of 
multithreading.

Multithreading speed-up seemed to slow down as the number of threads was 
increased from four to eight. Because additional threads did not reduce runtime effi-
ciently, it seems BLASTN may not be a CPU-bound but an I/O-bound application. 
This observation is also supported by our system-level profiling data as shown in 
Initial Profiling Results. A majority of BLASTN runtime is spent fetching input data 
and writing results into the output file (e.g., function a).

Fig. 3  Runtimes (in seconds) of six different node types for different database and query size combinations

Table 3  Normalized speed-up of multithreading, relative to runtime of single-threading

Query Thread number

1 2 4 8

A 1.00 1.12 1.20 1.24

B 1.00 1.25 1.40 1.53
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Function runtime vs. database size, query size, and node type

Runtimes of the five core functions were collected by system-level profiling. These over-
all runtimes sum the runtimes of all calls to the same function. Figure  5a shows the 
distribution of function runtimes for nine database-query combinations run on Type I 
nodes with Query A. It is observed that the distribution of function runtime stays rela-
tively constant with changing query size. However, as database size changes, function 
runtime changes as well. With the 8k database, function a takes the largest proportion of 
time. However, as database size increases to 130k sequences, function c takes the most 
time, with a runtime greater than the other four functions combined.

System-level profiling was also conducted to evaluate the runtime distribution of 
Query B. Even with different sequence content, similar patterns were observed. Fig-
ure  5b shows the distribution of function runtimes for nine database-query com-
binations run on Type I nodes, using Query B. With both queries, functions b and d 

Fig. 4  Scalability of multithreading. Runtimes (in seconds) of six different node types for different numbers of 
threads, using Query A. MT, or multithreading, represents the number of threads used. Each row represents a 
node type
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decreases in runtime as database size increased. Additionally, the runtime of function 
c increases with increasing database size in both queries. One difference is that as data-
base size increases to 130k sequences, function a takes the most time for Query B, with 
a runtime greater than the other four functions combined. For Query A, the runtime of 
function a seems to stay relatively constant with changing database size.

Normalized function runtime vs. query size

Runtimes of the five core functions were measured for 15 different query sizes on Type I 
nodes using Query A. The database size was fixed at 130k sequences. The runtimes were 
normalized with respect to the mean and plotted in Fig. 6. The results suggest that query 
size had little impact on normalized function runtime.

Fig. 5  Distributions of function runtimes measured by system-level profiling on Type I nodes for nine 
database-query combinations. Each group of bars represents one query size (Q) while the three bars within 
each group represent three different database sizes (D). The height of each bar represents percentage

Fig. 6  Normalized function runtimes with respect to the mean vs. Query A size. The 15 colors represent 
different query sizes with database size fixed at 160k sequences. The means were calculated by averaging the 
five function runtimes for each of the 15 query sizes
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Normalized function runtime vs. database size

Runtimes of the five core functions were measured for six different database sizes on 
Type I nodes, with Query A size fixed at 72k sequences. The runtimes were normalized 
with respect to the mean and plotted in Fig. 7. The results show no identifiable trend 
between normalized function runtime and database size.

Function runtime vs. node type

Runtimes of the five core functions were measured for the six different node types using 
Query A and plotted in Fig.  8. The database size and query size were fixed at 8k and 
18k sequences, respectively. The x-axis represents functions a, b, c, d, and e, and the 
y-axis represents the runtime in seconds. The six different lines correspond to six dif-
ferent node types, showing that different node types delivered different performance 
– Type I the fastest and Type III the slowest. The performance can be sorted in the fol-
lowing order: I> VI> V> IV> II> III, except for two datapoints on function c. Among 
the six node types, the runtime ratio between the five functions has a similar trend but 
no definitive pattern was observed. Based on the concept of abstract processor [16], the 
normalized function runtimes with respect to node type are listed in Table 4 and Fig. 9 
provides a more intuitive view of the relative performance of the six node types.

Performance modeling

Modeling function runtime

The function runtimes were plotted as 3D surfaces in Fig. 10. Functions a and e have a 
similar, domed shape. Functions b and d resemble planes which are proportional to the 
query size. Function c can also be modeled by a plane, which is proportional to both 
query size and database size.

Fig. 7  Normalized function runtimes with respect to the mean vs. database size. The six colors represent 
different database sizes with Query A size fixed at 72k sequences. The runtimes of the five functions were 
averaged for each database size
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Multiple linear regression using MATLAB software (The MathWorks Inc., Natick, 
Massachusetts) was conducted to find the best fit for the profiling data collected with 
Query A. Table 5 lists the fitting results as the coefficients of Eq. 8. Dm is the number 
of database sequences in millions and Qm is the number of query sequences in millions. 
The zero entries in Table 5 imply that functions b, c, and d are fitted by a plane rather 
than the domed surface. Additionally, the high ratio of c5 to c4 in functions a, b, d, and e 
shows the greater influence of query size. Figure 11 shows the fitting of one dataset.

After testing different fits, log(Dm) was selected as the input for functions a and e to 
achieve the best fit. Since functions b, c, and d are dominated by the query and resemble 
planes, using log did not improve the fit much. For simplicity, log(Dm) was not used as 
input for those functions.

Modeling node performance

Different node types take varying amounts of time to run the same function. However, 
the relationship between function runtime and database/query size is similar across all 
nodes types as shown in Table 4. In this study, these relative runtimes are used as the 
scaling factors to estimate the runtimes between different node types.

Table 4  Normalized function runtimes of six node types relative to Type V nodes.

Based on this table, we decide to use the Constant Performance Model. The si of each node type can be determined

Function Node type

I II III IV V VI

a 0.7301 1.4077 1.5865 1.0775 1 1.0018

b 0.7941 1.3814 1.4713 1.0833 1 1.0912

c 0.8018 1.4704 1.5186 1.0689 1 1.1191

d 0.6942 1.4758 1.6585 1.0806 1 0.9484

e 0.7163 1.4249 1.5763 1.0743 1 0.9910

Fig. 8  Function runtimes of six different node types
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Load balancing experiments

Four use cases were tested for a BLASTN job (D,Q) = (523449, 73102023) . The exper-
iments were conducted on an FDA HPC cluster with 2,048 and 4,096 nodes. Two 
node types (II and V) were used to configure homogeneous vs. heterogeneous HPC 
clusters. The Son of Grid Engine (SGE) system was used to submit the BLAST sub-
jobs. The runtimes of the first sub-job are reported and compared in this section.

Fig. 9  Normalized performance of six node types with respect to Type V nodes for the five core functions

Fig. 10  Runtimes of the five core functions vs. database size and query size. Runtimes of five core functions 
vs. database size (x-axis) and query size (y-axis) on Type V nodes using Query A. The surfaces of functions a 
and e are slightly domed, while those for functions b, c, and d are planes. Notice that for functions a, b, d, and 
e, the surface descends faster in the query dimension, indicating that reducing query size has a greater effect 
on runtime
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Table 6 lists the candidate database-query splits (m, n) and their corresponding sub-
job sizes (Di,Qj) = (D/m,Q/n) . Each (Di,Qj) can be represented as a point located 
on a two-dimensional hyperbolic curve on the x-y plane, as seen by the red curves 
in Fig.  12. This two-dimensional hyperbolic curve can be projected onto the three-
dimensional surface, constructed by the runtime estimate for Type V nodes (blue 
meshes in Fig. 12), to define our solution space.

Test Case 1: The BLASTN job was distributed on a homogeneous clus-
ter of 4096 = m× n Type V nodes, where m and n were chosen to be close as 
m = n =

√
P =

√
4096 = 64 based on the approach used in [12]. Each node ran a 

sub-job (Di,Qj) , where Di = D/m = 8179 sequences and Qj = Q/n = 1, 142, 220 
sequences, represented by the point (8179, 1142220), indicated by the orange arrow 
on the red hyperbolic curve in Fig. 12a. The predicted runtime was 242.74 s, and the 
actual runtime of the first sub-job was 204.15 s.

Fig. 11  Fitting function c with a two-variable linear equation. The 3D mesh represents the fitted equation 
while the points represent the collected reference data

Table 5  Results of using quadratic polynomial Eq.  8 to fit the surfaces in Fig.  10 for Dm database 
sequences and Qm query sequences on Type V nodes.

Functions a and e are saddle-like, but functions b, c and d degenerated to planes due to the zero coefficients

Function Input Coefficients

x y c1 c2 c3 c4 c5 c6

(x2) (xy) (y2) (x) (y) (1)

a log(Dm) Qm −3.0722 143.6097 3.7202 22.4770 881.6166 30.0805

b Dm Qm 0 92.8758 0 0.1523 244.7267 0.4292

c Dm Qm 0 4,429.4587 0 57.7969 94.9201 0.1854

d Dm Qm 0 19.2608 0 −2.6282 90.1090 0.2345

e log(Dm) Qm −2.0973 33.3526 2.0294 12.8749 181.6523 18.8566
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Test Case 2: The BLASTN job was distributed on a homogeneous cluster of 
4096 = m× n Type V nodes, where m and n were chosen using Algorithm  1 as 
(m, n) = (2, 2048) , which recommends minimizing the query size rather than the data-
base size. This minimum TV (Di,Qj) is the lowest point on the red hyperbolic curve in 
Fig. 12a, representing the optimal solution with the shortest runtime. Each node ran a 
sub-job of (D/m,Q/n) = (261725, 25695) , indicated by the black arrow in Figure  12a. 
The actual runtime of the first sub-job was 37.79 s, which was 5.4 times faster than Test 
Case 1. In comparison, the predicted runtime was 49.82  s, which was 4.9 times faster 
than Test Case 1.

Test Case 3: The BLASTN job was distributed on a heterogeneous cluster of 2048 
nodes of Type II and 2048 nodes of Type V. The job was partitioned using the same 
method as in Test Case 2, i.e., (m, n) = (2, 2048) , without considering the performance 
differences between nodes. Each node, regardless Type II or Type V, ran a sub-job of 
(261725, 25695). The actual runtime of the first sub-job was 58.52 s on Type II nodes, 
but only 37.79 s on Type V nodes. In comparison, the predicted runtime was 64.61 s on 
Type II nodes, and 49.82 s on Type V nodes.

Test Case 4: The BLASTN job was distributed on a heterogeneous cluster of 2048 
nodes of Type II and 2048 nodes of Type V. The job was partitioned into two parts to 

Table 6  Different combinations of D/m and Q/n for D=523, 449, Q=73, 102, 023, and P=4, 096

m n m× n Di = D/m Qj = Q/n

1 4,096 4096 523,449 17,848

2 2,048 4096 261,725 35,695

3 1,365 4095 174,483 53,555

4 1,024 4096 130,862 71,389

5 819 4095 104,690 89,258

6 682 4092 87,242 107,188

7 585 4095 74,779 124,961

8 512 4096 65,432 142,778

16 256 4096 32,716 285,555

32 128 4096 16,358 571,110

64 64 4096 8,179 1,142,220

Fig. 12  BLASTN runtime vs. database and query size for different queries. BLASTN runtime on Type V nodes 
(z-axis) vs. database size (x-axis) and query size (y-axis). The blue mesh represents the measured runtime. The 
red hyperbolic curve represents the possible runtimes of an HPC system with 4096 Type V nodes. The orange 
and black arrows represent the results from Test Cases 1 and 2, respectively
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balance the load between two node types. By using Algorithm 2, the recommended 
partitioning was QII=26,  624,  000 and QV=46,  479,  360. Type V nodes processed a 
greater portion of data, 63.58%, as opposed to 50% as in Test Case 3. When PII=2, 048 
and PV=2,  048, the Type II nodes processed a query subset of QII/PII = 13, 000 
sequences while the Type V nodes processed a query subset of QV /PV = 22, 695 
sequences. The actual runtime of the first sub-job was 46.89 for Type II nodes and 
46.97 s for Type V nodes, resulting in 19.94% less runtime than test case 3. In com-
parison, the predicted runtime was 80.72  s for Type II nodes and 77.93 for Type V 
nodes, resulting in 19.96% less runtime than Test Case 3.

The results from the four test cases are summarized in Table 7.

Query dependency

Test Cases 1 and 2 were run with Query B. Using the same HPC set-up and data parti-
tioning as Test Case 1, each node again ran a sub-job of (8179, 1142220), indicated by 
the orange arrow on the red hyperbolic curve in Figure 12b. The runtime of the first 
sub-job was 405.23 s.

Following the steps outlined in Algorithm  1, m and n were chosen as 
(m, n) = (4, 1024) . Each node ran a sub-job of (D/m,Q/n) = (130862, 71389) , indi-
cated by the black arrow in Figure  12b. The actual runtime of the first sub-job was 
156.29 s, which was 2.6 times faster than Test Case 1.

Multithreading

Test Cases 1 and 2 were also repeated with multithreading enabled. Figure 14 shows 
the points that are in the solution space of an HPC system with 4,096 nodes. Each 
line represents a different number of threads. Using an increasing number of threads 
resulted in decreasing absolute runtimes, but the relative runtime remained the same. 
As a result, the recommended partitioning remains the same even with varying num-
bers of threads.

Table 7  Runtimes on homogeneous and heterogeneous HPC clusters

Test case Node type II Node type V

(D/m,Q/n) Time (s) (D/m,Q/n) Time (s)

× # nodes × # nodes

1 – – (8179,1142220) 204.15

× 4,096

2 –  – (261725,35695) 37.79

× 4,096

3 (261725,35695) 58.52 (261725,35695) 37.79

× 2,048 × 2,048

4 (523449,13000) 46.89 (523449,22695) 46.97

× 2,048 × 2,048
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Node number dependency

The algorithms were tested in a solution space of a homogeneous HPC cluster with 2,048 
Type III nodes, using Query A. Table 8 lists database-query splits (m, n) and their cor-
responding sub-job sizes (Di,Qj) = (D/m,Q/n) , when m× n = 2, 048.

The (Di,Qj) combinations are represented as points located on the red hyperbolic 
curve in Figure 13. The recommended partitioning was found to be (m, n) = (1, 2048) , 
where each nodes runs a sub-job of (D/m,Q/n) = (523449, 35695) . The runtime for the 
first sub-job was 48.62 s, indicated by the black arrow in Figure 13. Compared to a more-
balanced partitioning of (m, n) = (32, 64) , which results in a runtime of 298.8 s for the 
first job, the recommended partitioning is more than six times faster.

Discussion
In this study, only BLASTN was examined; however, the same principles of profiling, 
modeling, and optimizing can be applied to other programs and HPC systems. The pro-
posed methodology can be used in the other applications in the BLAST+ suite or any 

Fig. 13  BLASTN runtime with Query A vs. database and query size for an HPC cluster of 2,048 Type III 
nodes run with a single thread. The blue mesh represents the measured runtime, and the red hyperbolic 
curve represents the possible runtimes of an HPC system with 2,048 nodes. The black arrow represents the 
recommended partitioning

Table 8  Different combinations of D/m and Q/n for D=523, 449, Q=73, 102, 023, and P=2, 048

m n m× n Di = D/m Qj = Q/n

1 2,048 2,048 523,449 35,695

2 1,024 2,048 261,725 71,389

3 682 2,046 174,483 107,188

4 512 2,048 130,862 142,778

8 256 2,048 65,432 285,555

16 128 2,048 32,716 571,110

32 64 2,048 16,358 1,142,220
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other application as long as source code is provided, as well as with different input files 
and hardware.

The system-level profiler “gprof” used to identify core functions is powerful but 
time-consuming to generate and analyze, despite only needing to be done once to create 
the performance model. Additionally, the measured runtime may be distorted because 
of the profiling overhead. The model accuracy may depend on other factors such as 
runtime workload, cache mechanism for the file system, job schedulers, etc. in the HPC 
cluster.

In this study, BLASTN’s measured runtime was decomposed into five components that 
were well-fitted by bi-variate quadratic functions. Other applications may not exhibit the 
same property. The models can guide parallelization of BLAST jobs by recommending 
the optimal data partitioning on an HPC cluster. In our BLAST problem, users should 
generally focus on allocating a smaller query to each node rather than a smaller data-
base, as results show that reducing query size is more effective than reducing database 
size when looking to reduce runtime. Experiment data show that the optimal data parti-
tioning improves overall runtime 5.4-fold in comparison with dividing the database and 
query into the same number of fragments.

Limitations

Study design

Our method is limited to static load balancing only, in consideration of the actual 
BLAST use cases where the end user has no real-time control after the input datasets 
are partitioned and dispatched for execution through the HPC scheduler. Dynamic load 
balancing requires real-time performance monitoring and data migration controlled by 
synchronization points. The former is considered a general HPC problem that is beyond 

Fig. 14  BLASTN runtime vs. multithreading for 4,096 nodes. BLASTN runtime on Type I nodes (z-axis) vs. 
database size (x-axis) and Query A size (y-axis). The four lines represent the runtimes with multithreading 
using one, two, four, and eight threads. Each line shows the possible runtimes of an HPC system with 4,096 
Type I nodes
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the scope of our study. The latter will be addressed by extending our proposed algo-
rithms for future work.

Scalability

The scalability of BLAST with respect to number of nodes was not included in the pre-
sent study, because our research problem was formulated as an optimization problem to 
utilize all available nodes provided by the user. The user can use our performance model 
to predict the runtime when a certain number of nodes are available, and determine how 
many nodes to allocate.

Sequence length

The proposed algorithms partition the databases based on their sequence counts only 
but not their sequence lengths. Although the sequence length is another factor that 
influences runtime, retrieving and processing this information is time-consuming and 
may offset the benefits gained from a better partitioning in practice. Retrieving the 
sequence length requires parsing the file format, in our case the FASTA file format, to 
count characters in a sequence that may span multiple lines after identifying the delim-
iter and optional comments. The quantity of collected sequence lengths (e.g., 73 million 
for Query A and 520 thousand for the database in our study) would become consider-
able additional workload. Therefore, in the study, we assume that the user has no a priori 
knowledge about the input databases except for the sequence counts.

Sequence content

We found that BLAST runtimes also depend on the sequence content, as previous stud-
ies have shown [18]. Sequences of the same length can be processed with a time differ-
ence, ranging from a couple of seconds to thousands of seconds, with the results from 
our study showing a more than 5x difference in time between the two queries evaluated. 
Based on these observations, it seems that BLAST runtime depends not just on database 
length, query length, and hardware, but also the underlying content of the database and 
query.

Modeling

Profiling data was collected in the modeling stage and tests in the prediction stage were 
conducted at different times, where our HPC cluster experienced different workload 
ordered by the other users. As a result, the performance models have limited accu-
racy. We can mathematically model the profiling data accurately in the modeling stage. 
However, the model may not predict the BLAST runtime accurately because the system 
workload has changed. This is a common problem when the training data deviates from 
the test data. The solution would be to fix the system workload by grounding all unre-
lated jobs, which unfortunately is infeasible in our facilities.

Conclusion
BLAST is one of the most commonly used applications in the bioinformatics field. Due 
to its computation- and data-intensive nature, BLAST analysis can benefit from paral-
lelization on HPC clusters. However, the optimal data partitioning method for BLAST 
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has not been well-established in the literature. The goal of this study is to develop guide-
lines for BLAST users to improve performance by partitioning input data optimally. 
We used three profiling methods to obtain the overall, stage, and function runtimes 
at shell-, code-, and system-level for the BLASTN application, respectively. Shell- and 
system-level profiling can be used together to provide valuable runtime information for 
different use and purposes. Time-consuming system-level profiling can be used for one-
time identification of time-consuming functions, while shell-level profiling can be easily 
utilized to measure BLAST overall runtime for multiple cases. We found that five core 
functions occupied 92.12% of the execution time and needed to be modeled accurately. 
Based on the profiling data, unlike the uni-variable performance models proposed in the 
literature, we modeled the BLASTN runtimes as a three-dimensional function of data-
base size, query size, and node type. We used one database and two queries to dem-
onstrate the utility of our method with four test cases of homogeneous/heterogeneous 
clusters with different multithreading settings and node numbers. Experiment results 
show that the runtime can be reduced by 81% on a homogeneous cluster and by 20% on 
a heterogeneous cluster with node performance differences of 50%.
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