
Collectively encoding protein properties 
enriches protein language models
Jingmin An1,2 and Xiaogang Weng1* 

Introduction
Natural language is inherently context-dependent. This fact becomes particularly 
prominent when two strongly-related words are far separated. From a linguistics per-
spective, context plays a significant role in deciphering the actual meaning of a word 
[1]. Likewise, correctly encoding contextual information is essential for natural lan-
guage processing (NLP). Much prior research employed deep learning methods, such 
as convolutional neural network (CNN) [2], Recurrent Neural Network (RNN) [3] and 
word embedding [4], to acquire such inter-word dependencies. Recent advanced atten-
tion-based models possess equally powerful representation abilities to capture these 
contextual relationships through the self-attention mechanism [5]. Similar to natural 
language, protein sequences also hold strong contextual information, implicitly denot-
ing structural, evolutionary or functional characteristics [5]. Appropriately capturing 
these inter-residue relationships from the sequence is of great interest to computational 
biologists. Considering the co-existing contextual relevance between natural and protein 
language, a sophisticated NLP model can likewise learn contexts in protein language. 
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Many researchers have studied this aspect, and BERT [6] is one of the most popular NLP 
architectures. These studies can be classified into two types, depending on whether they 
introduce protein knowledge in the pre-training stage. The first type aims to construct 
a protein language model by pre-training on a large protein corpus [5, 7–11]. The other 
type directly transfers knowledge in human words to decode protein language [12–14], 
demonstrating slightly poor performance compared to that of the models pre-trained on 
protein language. Indeed, the pre-training stage is imperative for improving results on 
downstream tasks [8]. However, it is still unclear whether the performance of costly pre-
training on a large in-domain corpus certainly will outperform that when transferring 
learned knowledge from natural language into domain-specific tasks. In addition, most 
second-type research simply transfers natural language embeddings to learn protein rep-
resentations by fine-tuning specific tasks without following protein in-domain re-train-
ing. Admittedly, the abundant contextual representations encoded by human language 
models can naturally be used to capture such context in proteins. Most importantly, 
delicately enriching protein knowledge by in-domain protein tasks is greatly helpful for 
deciphering useful protein properties. Therefore, with the help of BERT pre-trained on 
large natural language corpus, together with encoding protein properties from closely-
related protein tasks, such protein language models is expected to get promising down-
stream results.

Multi-task learning (MTL), which is able to leverage useful information of related tasks 
to achieve simultaneous strong performance on multiple associated tasks [15], has led to 
great success in many machine learning applications like NLP [15, 16]. As for the protein 
sequence domain, MTL has been widely applied for functional studies, like protein–pro-
tein interaction and protein targets [17–20]. A notable work [21] fused self-supervised 
language modeling and four supervised tasks in a model, realizing an end-to-end MTL 
architecture. Specifically, they employed two residue-level (secondary structure predic-
tion in 3- and 8-states) and two protein-level (subcellular localization prediction and the 
classification membrane-vs-soluble proteins) tasks, which enables the model to jointly 
decipher protein properties and transfer knowledge between these different tasks. How-
ever, the multiple supervised tasks they adopted are not highly dependent, and they did 
not test the model performance on downstream tasks either. There are many correlated 
tasks in the protein domain, such as structural similarity and contact prediction, con-
tact prediction and remote homology detection. However, little research focused on the 
interrelated protein tasks to facilitate the survey of protein structure or evolution. It is 
worth mentioning that Charuvaka et al. [22] employed every hierarchical category from 
the Structural Classification of Proteins (SCOP) [23] and CATH [24] databases as a sin-
gle classification task to predict the structural type of protein sequences. SCOP [25] is 
a popular protein database that hierarchically classifies protein domains into four cat-
egories, listed from the bottom to the top: family (the proteins that share the exact evo-
lutionary origin), superfamily (the proteins that evolved from the same ancestor but are 
distantly related), fold (the proteins that hold the same global structural features), class 
(the proteins gathered from fold and superfamily that have specific secondary structural 
content). To be precise, family explicitly denotes the evolutionary relations between pro-
teins while superfamily gathers proteins with similar structure but less sequence similar-
ity. Fold groups superfamilies based on the global structural features shared by most of 
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their members and the constituted families can evolve distinct structures. Accordingly, 
we can clearly realize the intrinsically-related evolutionary and structural properties 
among family, superfamily and fold categories. Villegas-Morcillo et al. [26] adopted pair-
wise fold recognition (PFR) and direct fold recognition (DFC) tasks to identify protein 
fold category. However, they only focused on the classification performance toward fold 
label without collectively employing abundant information behind these three labels. 
Comprehensively considering the information behind the three categories is expected 
to encode important evolutionary and structure in prior knowledge, which could further 
be transferred to related downstream tasks. In this paper, therefore, based on the three 
closely-related classification tasks, we designed a MTL architecture to capture such 
structural and evolutionary relationships.

Transfer learning means transferring the knowledge from a related task that has 
already been learned to a new task [27]. Rives et al. [9] pointed out that learning intrin-
sic biological properties directly from protein sequences can further be transferred to 
prediction and generation. Likewise, Bepler et al. [5] showed that transfer learning could 
potentially improve downstream applications in certain scenarios. Through learning two 
supervised structural tasks, they found that the performance of their protein language 
model on two function tasks had been improved. It is worth noticing that these learn-
ing procedures are based entirely on protein sequences. Different from their work, we 
both introduced in prior knowledge of the natural language and protein sequences in 
the pre-training and multi-task learning stages, respectively. Another noteworthy work 
[28] used three types of fine-tuning protein tasks, including sequence classification, 
sequence-pair classification and token-level classification, ultimately improving several 
downstream performances and demonstrating the effectiveness of transfer learning 
for protein in-domain tasks. Tasks assessing protein embeddings (TAPE) [8] provides 
standardized benchmarks to evaluate the performance of learned protein embeddings. 
It contains five biologically-relevant tasks with regard to structure prediction, evolution-
ary understanding and protein engineering domains. Among these benchmark tests, we 
chose secondary structure prediction, contact prediction and remote homology detec-
tion as the downstream tasks to verify the transfer ability of our MTL models.

In this work, to sum up, we proposed a multi-task learning framework using three 
BERT-based backbones, which employed abundant contextual representations obtained 
in natural language and jointly learned knowledge on interrelated protein tasks. Three 
structural- or evolutionary-relevant downstream tasks, well-defined in TAPE, were used 
to evaluate whether our MTL architectures properly capture the structural and evolu-
tional relationships. The overall workflow is shown in Fig. 1.

Materials and methods
Overall, we elaborately designed three MTL backbones with different intrinsic architec-
tures, namely MT-BERT, MT-BCNN, and MT-BLSTM. To jointly learn protein structure 
and evolution properties, we assigned these models a multi-task classification pipe-
line with respect to protein family, superfamily and fold categories. Finally, the learned 
knowledge was transferred to decode fine-grained applications well-defined in TAPE. 
Specifically, we adopted three structural- or evolutionary-related downstream tasks, 
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including secondary structure prediction, contact prediction, and remote homology 
detection, to evaluate the transfer learning performance of our proposed MTL models.

MTL models

MTL datasets

The training and test datasets we used for the MTL pipeline are all derived from SCOP 2 
[25], a widely-applied database that aims to encode structural and evolutionary relation-
ships between proteins. We first extracted the label information directly downloaded 
from this database, and then located the corresponding sequence as per the superfam-
ily-level domain identification. Until May 1st 2022, the SCOP 2 dataset provides 36,534 
well-labeled amino acid sequences. Moreover, to avoid information leakage in the MTL 
training stage and downstream test phase, we eliminated 367 overlapped sequences 
between TAPE remote homology detection test set and our whole MTL dataset. After 
that, we split the cleaned dataset (a total number of 36,167 sequences) into training and 
test sets on a scale of 7:3. The statistics [25] of our reconstructed dataset for these labels 
are in Table 1, and we can see that a great many types are included in each label. Addi-
tionally, the number of protein sequences for each type is quite unbalanced (e.g., only 
several proteins are classified into a specific type). Therefore, we ensured that every type 
in each label includes at least one training sequence to avoid a test protein belonging to 
an unknown type.

MTL backbones

For all NLP models, pre-training on a large natural language corpus is essential for learn-
ing universal language representations [32]. As a pioneering and representative work, 

Fig. 1  Workflow of our method. The colored rectangles represent three interrelated protein labels defined 
in SCOP 2 [25]. The predicted secondary structure sequence, contact map and 3D structure are illustrated by 
PSIPRED [29], ProteinTools [30] and Swiss-model [31], respectively (PDBid: 3H8D)

Table 1  Statistics of family, superfamily and fold categories in our MTL dataset

Statistics Family Superfamily Fold

Number 5842 2750 1577
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BERT [6], a variance of Transformer [33], demonstrates powerful transfer learning abil-
ity with pre-training bidirectional representations from amounts of unlabeled natural 
language data. It has been shown that the prior natural language knowledge encoded 
in NLP models can be well transferred to handle biological sequences [12–14]. Addi-
tionally, BERT attention captures the folding structure of proteins, targets binding sites 
and focuses on progressively more complex biophysical properties with increasing layer 
depth [34]. Accordingly, we employed BERT [35] pre-trained on 3300 M human words 
as part of our MTL backbones, and the one that did not follow any other sequence anal-
ysis networks acts as our MT-BERT architecture.

The powerful feature extraction ability of BERT with substantial parameters may over-
fit the classification task, especially with limited training data [36]. CNN has demon-
strated its great potential in the application of image data [37]. Besides, it has achieved 
equally strong performance on text classification [2] and natural language modeling 
[38], even though it is not as frequently used as in images. In such a structure, neu-
rons between different layers are partially connected, which can well reduce intrin-
sic noises in protein sequences  that hinder language models from deciphering protein 
properties.  Therefore, introducing CNN to BERT can avoid overfitting to a certain 
extent.  Additionally, Long Short-Term Memory (LSTM) [39], a variant of RNN, first 
came out to address the difficulty of storing long-range sequence information. The fact 
of linearly encoding of input sequence enables LSTM to retain relative intra-sequence 
dependencies better. Accordingly, LSTM is especially suitable for encoding distantly-
related and order-depended structural and evolutionary relevance in protein sequences. 
Therefore, based on the above considerations, we respectively added CNN and  LSTM 
layers to the final BERT encoder, becoming the backbones of the so-called MT-BCNN 
and MT-BLSTM.

Compared to single-task learning, which learns only one specific representation for 
once, multi-task learning enables the knowledge learned in one task to benefit other 
tasks [40]. As mentioned in “Introduction” section, there is a strong correlation among 
the pre-labeled protein family, superfamily and fold categories. Hence, we adopted three 
classification tasks for these labels to enable our MTL models to encode implicit evolu-
tionary and structural information.

Details of MTL architecture

Deep learning, which is inherently specialized in learning complex non-linear feature 
representations [41, 42], has been widely applied in MTL domains. Zhang et  al. [42] 
classified deep MTL models into two main types: learning common feature mappings 
by sharing the first several layers or introducing adversarial learning; learning different 
feature mappings with a cross-stitch network. They also pointed out that only sharing 
hidden layers is quite powerful when all the tasks are correlated. Since we defined three 
closely-related classification tasks of the protein family, superfamily and fold, our MTL 
models also share previous layers to learn common structural and evolutionary repre-
sentations. Inspired by Liu et al. [40], we proposed an improved deep MTL architecture 
specially designed for modeling protein language (see Fig. 2).

Every input protein sequence would first be tokenized into separate amino acids rep-
resented by specific alphabets, then embedded in a maximum of 8096 vector spaces 
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according to the length of the sequence. Note that the [CLS] token is used for sequence-
level classification tasks. After that, these embeddings would all go through BERT Trans-
former Encoder layers for extracting contextual information. The difference between our 
three MTL models lies in the shared layers. MT-BCNN and MT-BLSTM concat the con-
text embeddings from the last BERT Encoder with six CNN layers and two bidirectional 
LSTM layers, respectively. The output representations of the shared layers would finally 
feed into three task-specific fully connected layers for classifying protein family, superfam-
ily and fold.

Generally, an MTL model can be trained by linearly combining loss functions from dif-
ferent tasks into a single total loss function [15]. In this way, the model can learn a shared 
representation for all tasks by stochastic gradient descent (SGD) with back-propagation 
[15, 43]. Ordinarily, assuming that there are M tasks in all, the global loss function can be 
defined as

where Li represents task-specific loss function, and wi denotes weights assigned for each 
Li.

It is worth noticing that the performance of MTL models strongly depends on the relative 
weighting between the loss of each task [44]. It has been reported that many researchers set 
these weights according to experience or through costly grid search [15]. Following the pre-
vious work of Kendall et al. [44], we adopted homoscedastic tasks uncertainty to optimize 
the loss weights wi . Moreover, we used cross-entropy loss function for each classification 
task:

(1)Ltotal =
M

i

wiLi

Fig. 2  The detailed structure of the proposed MTL framework with three kinds of backbones
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where X denotes the input protein sequence, Id(X , c) is a binary identification (0 or 1) 
indicating whether the label c is the correct category of X , and p(X |c) represents the pre-
dicted probability that X is classified to label c.

Here we demonstrate how to train our MTL models in Algorithm 1. The same MTL 
dataset, derived from SCOP 2, was used to jointly learn how to classify proteins into 
family, superfamily and fold. We set a batch size of 32, a dropout rate of 0.1 for BERT 
and 0.4 for LSTM. We defined a larger learning rate of 1e-2 for CNN and LSTM con-
nected after BERT, while the pre-trained BERT held a relatively small learning rate of 
1e-5. All the above hyperparameters were fine-tuned through Bayesian Optimization 
[45]. We also employed SGD to update model parameters step by step. The training pro-
cedure was implemented with PyTorch [46] on NVIDIA Quadro 

GP100.

Dealing with long protein sequences

Among the three proposed MTL models, the protein sequences are always first fed into 
BERT Encoder (see Figs. 1, 2). The maximum input of the pre-trained BERT model on 
natural language is set to 512, while the length of amino acid sequences can sometimes 
exceed it. Sun et al. [32] proposed three ways to deal with long natural language articles: 
head-only, tail-only and head–tail. However, these novel solutions cannot readily handle 
protein sequences since every residue may represent unique structural and evolution-
ary information. Thus, instead of cutting up residues, we must keep the whole sequence 
as the input for the following embedding  process. We first re-initialized the length of 
the max positional embedding dictionary to 8096, the same size as that in TAPE [8]. 
Then we replaced the randomly initialized first 512 tokens in the whole 8096 tokens with 
the previously-encoded position embeddings in pre-trained BERT. In doing so, we not 
only retain the encoded representations obtained in natural language pre-training, but 
can further embed the rest 7584 vectors in the following MTL and downstream protein 
tasks.

(2)Li = −
∑

c
Id(X , c) log p(X |c)
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MTL model evaluation metrics

The performance of our models in the MTL stage can not only partly influence that on 
downstream scenarios, but also validate whether abundant natural language knowledge 
is well transferred to encode protein properties. Therefore, we report four evaluation 
metrics to estimate the sequence-level classification performance: Precision (Pre), Accu-
racy (Acc), Recall (Rec) and F1-score (F1). These indexes are frequently used to assess 
the generalization of machine learning models from distinct perspectives. The detailed 
definitions can be seen below.

Downstream tasks

MTL aims to help improve the generalization of all tasks [42]. In this study, however, we 
want to investigate how the jointly-learned protein knowledge could facilitate relevant 
downstream tasks. In other words, we would like to see whether the encoded structural 
and evolutionary information can transfer to decode more fine-grained assignments. 
To test the transfer ability of our MTL models, we therefore employ two structure pre-
diction and one evolutionary understanding tasks in TAPE [8]. Furthermore, all data-
sets and metrics used to evaluate our models are identical to those in TAPE to ensure 
comparability.

Secondary structure prediction

Secondary structure prediction (SS prediction) is a sequence-to-sequence classification 
assignment. Assuming that there is a protein sequence, this task is dedicated to label-
ling every input amino acid with a secondary structure position (see Fig. 3). The labels 
can further be categorized into 3-state secondary structure (i.e., alpha-helix (H), beta-
strand (E) and coil region (C)) and 8-state secondary structure (i.e., helix (G), α-helix 
(H), π-helix (I), β-stand (E), bridge (B), turn (T), bend (S), and others (C)) [47–49]. We 
often evaluate the performance of SS prediction by Q3 or Q8 accuracy, which meas-
ures how many residues for which 3-state or 8-state secondary structure is correctly pre-
dicted [50]. Accurate SS prediction facilitates the study of protein structure and function 
[47], including fold-recognition, homology modeling, ab initio and constraint-based ter-
tiary structure prediction, as well as identification of functional domains [51].

As in TAPE, the training and validation datasets for secondary structure prediction are 
from [53], and Q3 accuracy is reported on the test set CB513 [54].

(3)Precision = TP
TP+FP

(4)Accuracy = TP
TP+TN+FP+FN

(5)Recall = TP
TP+FN

(6)F1− score = 2∗Precision∗Recall
Precision+Recall
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Contact prediction

Contact prediction is a pairwise classification assignment. Given a protein sequence, the 
goal of this task is to predict whether each pair of residues from this sequence are “in 
contact” (typically, it is defined as the distance in folded structure < 8 Å [8, 49]) or not 
(see Fig. 4). The contacts can be subdivided into short-, medium- and long- ranges cor-
responding to the sequence separation equal to 6–11, 12–24 and > 24 respectively [55]. 
Correctly-predicted contacts capture powerful global structural and folding information 
[8, 56], facilitating 3D structure modeling, especially de novo protein structure predic-
tion [57].

As in TAPE, the dataset for contact prediction is from ProteinNet [58]. The precision 
of the L/5 most likely contacts for medium- and long-range contacts, where L is the 
length of protein sequence, are reported on the ProteinNet CASP 12 test set [59].

Remote homology detection

Remote homology detection is a conventional sequence-level classification assign-
ment. Since distantly related proteins may share similar structures and functions [60], 
this task targets to predict which fold structure the input protein sequence belongs 
to (see Fig. 5). This fold structure is the exact fold label clearly defined in SCOP [25]. 
Protein remote homology is critical for studying protein structures and functions 
[55] and drug design [61]. It identifies proteins from different families and therefore 

Fig. 3  Illustration of secondary structure prediction, where the 3D structure is established by Alphafold [52] 
(PDB id: 1J1Q)

Fig. 4  Illustration of contact prediction, where the 3D structure is established by Alphafold [52] (PDB id: 
1J1Q)
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is suitable for predicting the structure and functions of specific proteins [62]. Note 
that this assignment is similar to the fold classification task implemented in the MTL 
stage, and significantly improved performance is reported compared to other SOTA 
work in  “Result” section.

As in TAPE, the dataset of remote homology detection comes from [63], which 
originates from SCOP 1.75 database and Protein Data Bank [64, 65]. The overall clas-
sification accuracy is reported on the fold-level heldout test set from [63]. It is worth 
mentioning that the dataset we used in the MTL stage derives from SCOP 2 (a succes-
sor to SCOP 1.75); thus, the test set in TAPE may contaminate our training set. There-
fore, we screened the overlapped proteins in our constructed MTL dataset for accuracy 
concerns.

Results
MTL model evaluation

Using the four evaluation metrics reported in  “MTL model evaluation metrics” section, 
we first estimated the model performance on family, superfamily and fold classification 
tasks in the MTL phase. The reported results are averaged over the three classifications 
based on tenfold cross-validation (see Table 2).

These results validate that the knowledge in natural language can indeed transfer to 
handle sequence-level protein classifications. Furthermore, compared to MT-BERT 
solely employed BERT, the introduced CNN and LSTM layers in MT-BCNN and MT-
BLSTM have improved the overall classification performance. Specifically, we can see 
that MT-BLSTM gets the best results among all the three MTL models.

Fig. 5  Illustration of remote homology detection, where the 3D structure is established by Alphafold [52] 
(PDB id: 1J1Q)

Table 2  Averaged results of the tenfold cross-validation on our MTL training set

Model Pre Acc Rec F1

MT-BERT 0.636 0.643 0.705 0.662

MT-BCNN 0.705 0.767 0.742 0.723

MT-BLSTM 0.731 0.771 0.756 0.743
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The effectiveness of MTL

As mentioned above, we considered three of the four protein categories, namely family, 
superfamily and fold, and the information behind the class label has not been employed. 
Class category gathers folds and intrinsically-unstructured proteins from superfamily, 
which indicates a solid structural concept and the correlation with evolution. For this 
time, this label can be used to verify the effectiveness of our MTL models. We compared 
the learned features between the original pre-trained BERT and our MTL models to 
check whether these multiple tasks encode useful structural and evolutionary informa-
tion. Generally, an MTL model would encode a given sequence into high-dimensional 
vector embeddings. However, it is possible to map the whole semantic space by pooling 
them into fixed-size embeddings by reduction [5]. Moreover, introducing clustering and 
manifold embedding to visualize large protein datasets can reveal structural and evolu-
tionary relationships between sequences [5]. Thus, we compared the embedding results 
of pre-trained BERT without the MTL process with those of our MTL models. Figure 6 
shows the visualized proteins in our whole MTL dataset after embedding and dimen-
sionality reduction by Multidimensional Scaling [66–68]. The pre-trained BERT on nat-
ural language, without MTL protein-domain tasks, demonstrates inadequate structural 
classification ability, and the embedding spaces are significantly sparse and mixed. Three 
jointly-learned interrelated protein tasks are allocated, making the boundaries between 
distinct class labels clearer. Overall, it can be noticed from those embedded proteins that 
the MTL process improves the clustering performance. Furthermore, to statistically ana-
lyze the embedding differences of different models in Fig. 6, we evaluate the classification 

Fig. 6  Comparison of manifold embedding of MTL dataset proteins. Different colours represent distinct 
labels in the Class Category
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performance toward the class label on our whole MTL dataset. Table 3 reports detailed 
results using the same classification metrics as Table 2.

We can see from Table 3 that the classification performance of our MTL models signif-
icantly outperforms the original BERT model that did not implement the MTL process, 
which is consistent with the manifold embeddings in Fig. 6.

Overall, such abstract clustering representations and statistical results proved that our 
MTL models captured useful structural and evolutionary information that could further 
facilitate related downstream tasks.

MTL model performance on downstream tasks

We evaluated the MTL model performance on three downstream applications: sec-
ondary structure (SS) prediction, contact prediction and remote homology detection. 
Depending on the task, we reported the accuracy or precision described in  “Down-
stream tasks” section as done in TAPE [8]. Each metric has a maximum value of 1.0, and 
higher represents the better. Note that the evaluation metrics remain the same in the 
following experiments.

Table 4 compares our three MTL models with the TAPE BERT [8], ProteinBERT [7], 
BERT medium [69], String2Seq [28] and ProtBert [11]. Except the secondary structure 
prediction dataset used in the BERT medium was from [70], all the results in Table 4 are 
reported on the same datasets described in “Downstream tasks” section. We can notice 
that MT-BLSTM and MT-BCNN obtained the best results under these three structural 
or evolutionary tasks. Notably, the performance of remote homology detection had been 
significantly improved compared with other SOTA models. This phenomenon can partly 
be attributed to the close relationship between fold label classification in the MTL stage 

Table 3  Class label classification performance on our whole MTL dataset

Model Pre Acc Rec F1

BERT 0.232 0.186 0.219 0.225

MT-BERT 0.565 0.557 0.593 0.579

MT-BCNN 0.716 0.736 0.667 0.691

MT-BLSTM 0.745 0.726 0.717 0.731

Table 4  Comparison of TAPE benchmark results on three structure- or evolution-related tasks

Model Structure Evolution

SS Prediction Contact
Prediction

Remote
Homology

TAPE BERT 0.73 0.36 0.21

Protein-
BERT

0.74 – 0.22

BERT medium 0.74 – –

String2Seq – – 0.25

ProtBert 0.80 – –

MT-BERT 0.75 0.39 0.32

MT-BCNN 0.82 0.43 0.39

MT-BLSTM 0.77 0.45 0.42
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and the essence of remote homology detection, both of which view fold category as a 
classification task. In conclusion, our MTL models effectively deciphered underlying 
protein properties and obtained well downstream performance.

Comparison of pre‑training on natural language and protein language

Compared to other Transformer-based models that acquire in prior knowledge of pro-
teins, we can see that the BERT pre-trained on natural language in our MTL models can 
get good transfer learning performance. Furthermore, these results can verify the impor-
tance of introducing in-domain knowledge to natural language pre-training models. 
In other words, appropriately encoding protein property information can significantly 
boost the performance of downstream applications. More than that, it is essential to val-
idate if pre-training on protein sequences outperforms pre-training on natural language 
corpus. To do this, we employed two BERT-based models TAPE BERT [8] and Protein-
BERT [7], pre-trained on 31 M protein domains from Pfam [71] and ~ 106 M proteins 
from UniProtKB/UniRef90 [72] respectively. Moreover, the structure and parameters of 
TAPE BERT are almost identical to our MT-BERT, and the major difference between 
them lies in the pre-training corpus. Therefore, the performance of TAPE BERT can 
approximately reflect that of our MT-BERT if it is pre-trained on protein sequences. The 
ProteinBERT and TAPE BERT underwent the same MTL process as we did on our MTL 
models. Table 5 reports the downstream results on the same TAPE benchmarks.

Compared to our basic model MT-BERT, we can see that pre-training on protein 
data significantly improves transferred performance. However, the best results are 
comparable with our MT-BCNN and MT-BLSTM models that rely on human words 
pre-training in Table 4. Furthermore, the increased results compared with the origi-
nal TAPE BERT and ProteinBERT (see Tables 4 and 5) demonstrate the necessity of 
our MTL process for downstream tasks. In general, as Sun et al. [32] said, within-task 
and in-domain pre-training can largely boost the performance of BERT. However, the 
delicately-designed MTL models like MT-BCNN and MT-BLSTM can largely narrow 
the gap. In other words, pre-training on in-domain protein language deserves to per-
form better, but this is not the main point to be focused on. The MTL process indeed 
enriches protein properties, and the most predominant increase exists in remote 
homology detection. Therefore, the most important thing is how to subtly bring in 
strong biological priors, such as structure- or evolution-related information.

Table 5  Comparison of TAPE benchmark results of protein sequences and natural language pre-
training models after the MTL process

TAPE BERT(MT) and ProteinBERT(MT) are used to distinguish the original ones that did not implement the MTL process

Model Structure Evolution

SS prediction Contact prediction Remote homology

TAPE BERT(MT) 0.79 0.42 0.32
Protein-BERT(MT) 0.77 0.34 0.30

MT-BERT 0.75 0.39 0.32
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Ablation study employing two classification tasks

Moreover, exploring which two of the three tasks provide relative critical informa-
tion is equally meaningful. Since the former three supervised tasks are closely related, 
we thereby tested how these well-designed MTL models perform if one of the tasks is 
missed (see Tables 6, 7, 8).

After removing one specific task, we can see an overall degraded performance with 
varying degrees. The combination of superfamily and fold tasks gets the best overall out-
come in the ablation study. As described in SCOP 2 [25], the family and fold label explic-
itly denote the ancestor and space structure of proteins respectively, while the proteins 
in the superfamily usually share a similar structure. The results of this ablation study are 
basically consistent with the characteristics of proteins in different categories.

Overall, the learned representations by two related tasks can still be well transferred 
to downstream scenarios. However, the best results in these applications occur when all 
three highly-dependent classification tasks are considered.

Ablation study employing single classification task

Finally, to validate if the reduced complexity of single-task learning could influence the 
model performance, we solely adopt one of the three classification tasks to enrich our 
models. Note that ST-BERT, ST-BCNN and ST-BLSTM denote a single-task learn-
ing version compared with three MTL models, in which the whole model architectures 
remain the same.

Table 6  Comparison of TAPE benchmark results based solely on family and superfamily 
classification task

Model Structure Evolution

SS prediction Contact prediction Remote homology

MT-BERT 0.71 0.34 0.21

MT-BCNN 0.75 0.35 0.23

MT-BLSTM 0.72 0.38 0.25

Table 7  Comparison of TAPE benchmark results based solely on family and fold classification task

Model Structure Evolution

SS prediction Contact prediction Remote homology

MT-BERT 0.73 0.33 0.28

MT-BCNN 0.77 0.37 0.32

MT-BLSTM 0.75 0.37 0.35

Table 8  Comparison of TAPE benchmark results based solely on fold and superfamily classification 
task

Model Structure Evolution

SS prediction Contact prediction Remote homology

MT-BERT 0.73 0.35 0.29

MT-BCNN 0.74 0.39 0.34

MT-BLSTM 0.75 0.41 0.37
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Table  9 shows the model performance based on single-task learning. Overall, these 
results are not competitive enough compared to those of MTL models when multiple 
tasks are involved. Notably, the single fold classification task significantly improved the 
performance of remote homology detection. Moreover, this task also enabled the ST-
BCNN model to obtain the best contact prediction result. Additionally, the superfamily 
category information may better specialize in predicting secondary structure.

Discussion
The advanced NLP models, pre-trained on abundant natural language corpus, can be 
well transferred to decode biological sequences. Combined with the supervised train-
ing on multiple interrelated in-domain tasks, we demonstrate that these powerful NLP 
models can even outperform those fully modeling on protein language. Additionally, our 
approach further validates that transfer learning indeed improves downstream applica-
tions [5]. Furthermore, it enlightens us that costly pre-training on in-domain language 
corpus may not be indispensable, since our MTL  models transferred knowledge from 
natural language and obtained competitive results in protein tasks (see “Comparison of 
pre-training on natural language and protein language” section). Conversely, the most 
fundamental part lies in how the in-domain knowledge can be subtly introduced. On the 
one hand, pre-training on a large natural language corpus enriches advanced NLP mod-
els abundant in prior knowledge, which can be well utilized to transfer to other domains. 
On the other hand, the way of in-domain re-training plays a leading role in improving 
model performance. It is generally accepted that jointly learning interrelated tasks can 
leverage important information, thus outperforming sing-task learning. [15]. Consid-
ering the many interrelated tasks in the protein domain, we can then comprehensively 
employ these tasks together. In this study, we adopted three classification tasks towards 
family, superfamily and fold categories hierarchically classified in SCOP 2, in order to 
encode implicit structural and evolutionary information from protein sequences.

Furthermore, we elaborately designed an MTL architecture. It contains three kinds 
of backbones: MT-BERT, MT-BCNN and MT-BLSTM. MT-BERT simply employs pre-
trained BERT, while MT-BCNN and MT-BLSTM added CNN or LSTM layers to the top 
of BERT, aiming to avoid overfitting or better capture sequential invariance. Adequate 
experiments show that these models capture proper structural and evolutionary rela-
tionships by collectively learning  from three  correlated  sequence-level classifications. 
Besides, the most critical part depends on the transfer learning ability. Among three 
challenging structure- or evolution-related tasks, the performance on remote homology 
detection has been significantly improved compared to other SOTA Transformer-based 

Table 9  Comparison of TAPE benchmark results based solely on one classification task

SS, Contact and Remote denote SS prediction, contact prediction and remote homology detection, respectively

Model Task: family Task: superfamily Task: fold

SS Contact Remote SS Contact Remote SS Contact Remote

ST-BERT 0.68 0.30 0.15 0.71 0.29 0.14 0.69 0.28 0.20

ST-BCNN 0.72 0.32 0.17 0.73 0.29 0.18 0.70 0.33 0.23

ST-BLSTM 0.70 0.31 0.18 0.71 0.28 0.20 0.72 0.30 0.26
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Models. Moreover, we can see the effectiveness of added CNN and LSTM layers in MT-
BCNN and MT-BLSTM, which obtained better performance than MT-BERT.

Overall, we believe that our proposed methodology can facilitate the study of how 
to draw on sophisticated tools in natural language to learn protein language, as well as 
the way to encode strong biological priors into protein language models [5]. Further 
research can be focused on the MTL architecture itself. Since protein sequences differ 
from human sentences in structure and grammar, the most powerful MTL approach in 
NLP may not be the best protein language encoder. Moreover, employing other strongly-
correlated tasks involving more fine-grained protein properties is expected to obtain 
promising downstream results as well.
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