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Background
Human characteristics are different for various reasons; classified into nature (genetics 
and heritability) and nurture (Environment and food consumption). The physical char-
acteristic or the presence of a particular disease is known as a phenotype. For example, 
eye color is a phenotype, and blue, green, brown, and black eye colors are the four pos-
sibilities of this particular phenotype. Genetic data (genotype, DNA) plays a vital role in 
determining some characteristics or diseases. Researchers inferred that the variations or 
mutations in the DNA result in the variation in the phenotype. Mutations at a particular 
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location in the DNA that can be used to find this phenotype-genotype relationship are 
SNPs, known as Single-nucleotide polymorphism. SNPs associated with an increased 
risk of developing a particular disease or trait are called risk SNPs.

Following is a list of acronyms used in this manuscript:

•	 PhenotypeSimulator = PS
•	 Utah Residents with Northern and Western European ancestry = CEU
•	 Yoruba in Ibadan, Nigera = YRI
•	 Single-nucleotide polymorphism = SNPs
•	 Genome-wide association studies = GWAS
•	 Artificial neural network = ANN
•	 Recurrent neural network= RNN
•	 Gated recurrent unit = GRU​
•	 Long short-term memory = LSTM
•	 Bidirectional LSTM = BILSTM

In genetics, case/control studies for humans, animals, and different species [1–7] are of 
great importance for the diagnosis of a particular disease in organisms. Genotype data 
available for genetic analysis can significantly improve the final results [8]. Although 
next-generation sequencing [9, 10] and imputation algorithms [11, 12] have increased 
the genetic data available for analysis, genomics is failing on diversity [13]. There are still 
some small understudied populations [14, 15] for which data is not enough for genetic 
analysis or case/control classification. We refer to a population as small, if the available 
genotype data for analysis is insufficient for reliable conclusions [16], i.e., a statistical 
power analysis would deem the dataset to contain too few samples to achieve statisti-
cal significance. To mitigate this issue, we can use knowledge extracted from a large 
population (for which data is in abundance), to make predictions about the small popu-
lation with a fine-tuned model [17]. Indeed, transfer learning is currently an increas-
ing research sub-field of machine learning. It is used in computer vision [18], natural 
language processing tasks like sentiment analysis [19], and to improve the clustering of 
single-cell RNA-Seq data [20]. Furthermore, it is often used in conjunction with deep 
neural networks [21], which require a lot of data and computing power.

Pio et al.  [22] used transfer learning to improve the human gene regulatory network 
reconstruction accuracy using gene-related metabolic features (generated through gene 
expression data) from human and mouse. The task at hand is to identify regulatory links 
between genes in a network. This approach is similar to what we present in this work, 
but instead of using it for gene network reconstruction, we use it for classification of 
genotype-phenotype prediction tasks.

Mignone et  al.  [23] also uses a specific variant of transfer learning in which the 
number of negative examples or the labels for particular class instances are missing 
(negative samples), but positive samples are known. In that case, positive interactions 
between genes are known, but negative interaction are not. They derived the informa-
tion from the common genes between humans and mouse, and used those features 
to train the machine learning model, and used that model to identify the negative 
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interactions. Similarly, this article [24] used the sample approach to the prediction of 
virus-human protein-protein interactions.

Transfer learning is also used for genetic data [25–27] and offers several advantages 
described below.

•	 Transfer learning helps to solve complex real-world problems having little or 
almost no labeled data availability [17].

•	 It allows transferring knowledge from one model to another based on domains 
and tasks.

•	 With transfer learning, the final model achieved has better generalization ability 
than directly training the data on a small population.

In the following, we elaborate on the applications and advantages of using transfer 
learning, particularly for genotype data.

The motivation for using transfer learning is personalized medicine [28], which is 
a medical model that separates people into different groups with medical decisions 
and products being tailored to the individual patient based on their risk of disease. 
Genotype data for one person belonging to a particular population cannot train the 
deep learning model. However, with transfer learning, using genotype data of another 
population, we can make some valuable insights about that person, leading to per-
sonalized medicine for a specific person. In the case of humans, cancer is the perfect 
example. Suppose we have 1000 cancer patients from the CEU (Northern Europeans 
from Utah) population and 10 cancer patients from the YRI (Yoruba in Ibadan) popu-
lation. Direct statistical analysis on 10 (YRI) cancer patients would not lend itself to 
a Genome Wide Association Study, as it would be underpowered for this purpose. 
However, using genotype data from 1000 (CEU) cancer patients can improve case/
control classification. Most deep learning algorithms work best when given a lot of 
data [29], and we can leverage samples from large populations to make case/control 
predictions on small populations, after adjusting for the characteristics of the small 
population. Many species have biological function resemblances [30], so transfer 
learning using genotype information would be an invaluable resource for the effective 
management of breeding programs and cases/controls studies in small and endan-
gered populations. Consider Bornean elephants (smallest Asian elephant subspe-
cies) [31] which is among endangered species. Suppose that the Bornean elephants, 
which are small in quantity, suffer from some disease. In that case, we would not have 
enough genetic information for any analysis or prediction. However, we can use case/
control studies of other elephant species that are large in quantity to get insights into 
the Bornean elephants.

Deep learning models perform well when the amount of available datasets is suf-
ficiently high.The deep learning models trained on the large population store the 
knowledge that can be used for classification; however, these models do not contain 
the exact representation required for classifying small population samples, so we used 
fine-tunning (transfer learning) to improve the representation learned by the mod-
els using the training data from the small population to improve the classification 
score. Deep learning models store the information in various layers, which can be 
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made trainable/non-trainable. It helps to extract the particular knowledge or update 
the stored knowledge allowing for fine-tuning the model to improve the classification 
score.

The second reason is that existing tools like Plink and LDPred-2 consider the linear 
interaction of SNPs weighted by the corresponding Odds ratio to find the polygenic 
risk scores. These models cannot be directly used for transferring knowledge as it will 
result in only SNP transfer learning methodology with limited information from the 
large population.

In general, deep learning algorithms perform well when the dataset is large, whereas 
the performance is poor when the dataset is in low quantity. With that in mind, we 
used classic machine learning algorithms, which are good when the dataset is low. 
Second, the genotype-phenotype prediction depends on the phenotype under consid-
eration. We first tested classic machine learning and then employed a deep learning 
algorithm for prediction. So, if classical machine learning algorithms can work for 
transfer learning, there is no need to use deep learning algorithms.

We considered only simulated data for testing the applicability of transfer learning 
for genotype data and the following are the reasons for this:

•	 Phenotype: For transfer learning, data for a specific phenotype for both popula-
tions is required, and we did not have the data for a specific phenotype for both 
populations. If we directly use the 1000 Genome data, we can have a phenotype 
for all people, but for the large population, data will be low, which is one of the 
assumptions for successful transfer learning.

•	 Heritability: Second, the performance of the deep learning models depends on 
the dataset’s quality and heritability [32]. The real dataset mostly has missing val-
ues, which may reduce the number of common SNPs between both populations, 
whereas simulated data has fewer missing values for SNPs.

•	 Different populations: If the dataset is a mix, one has to classify people into dif-
ferent populations. Moreover, there are many possibilities for transfer learning. 
We transferred knowledge from CEU to YRI, whereas transfer from YRI to CEU is 
also possible. Due to multiple possibilities, we restricted the scope to a particular 
transfer to test the applicability.

The proposed method is distinct from the existing studies for the following two rea-
sons. We searched for existing transfer learning methodologies for genotype data, 
but we did not find any article specifically designed for genotype data. Second, the 
method presented in the article can assist in studying the transfer learning approach 
for various populations. For example, we considered CEU as a large population and 
YRI as a small population, but they can be interchanged too. Phenotypes with various 
heritability and number of risk SNPs can be generated, and the effectiveness of trans-
fer learning can be studied. All the above reasons make this article distinct, and there 
is no such article tackling the above issue.

Section  (Material, Module 1 to 3) contains the data generation part. Section (Meth-
ods, Module 4 to 5) provides technical context and describes the entire pipeline for 
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transfer learning. Section  (Results) demonstrates the results. Section (Discussion) 
contains a closing discussion.

Materials
This section contains the datasets used in this manuscript. We explained the data gen-
eration part in detail for the following reasons.

We worked on simulated data, and using the tools used to generate data, one can 
generate data with multiple possibilities. For instance, genotype data with varying her-
itability, genetic variation, and the number of risk SNPs can be generated, and the effec-
tiveness of transfer learning for various phenotypes can be explored. It may work for 
some simulated phenotypes and may give negative results for others. A dataset with 
the same parameters must be generated for both populations to support such studies, 

Fig. 1  This diagram shows the flowchart of the deep learning-based transfer learning approach for the 
genotype-phenotype prediction that consists of 5 modules
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making the data generation process crucial in the pipeline. The overall methodology is 
explained in Fig. 1.

The transfer learning approach for the actual genotype data is straightforward, but 
when working on simulated genotype data, there are various parameters, which can 
change the outcome of the whole process, and it requires an in-depth explanation of 
all the processes involved in the data generation part. These processes include handling 
directory structure and file formats, coordinating genotype data between populations, 
and applying transfer learning to a small population. As we presented the pipeline along 
with the use case, the data generation part also includes the information for the use case 
to comprehend the methodology section. We feel not explaining this section in detail 
would miss the overall gist of the manuscript, making it possibly difficult to understand.

Module 1: Generate data using HAPGEN2

We generated genotype data for YRI (Small population) and CEU (Large population) 
using HAPGEN2, which is a tool that takes 1000 Genomes Pilot + HapMap 3 data [33], 
and simulates cases/controls genotype data by specifying the disease model through a 
set of disease-causing SNPs together with their relative risks [34].

•	 1000 controls for CEU and 100 controls for YRI
•	 Generated genotype data for Chromosome 21
•	 This step generates four files: YRI.gen and YRI.sample (genotype data and sample file 

for the small population), CEU.gen, and CEU.sample (genotype data and sample file 
for the large population)

Module 2: Generate phenotype using phenotype simulator

PhenotypeSimulator takes genotypes to simulate the basic genetic, non-genetic covari-
ates, observational noise, and non-genetic correlation structures. The effect structure of 
the four abovementioned components is divided into a shared effect across traits or an 
independent effect for a number of traits, allowing for complex phenotype structures. 
Finally, the simulated phenotype and its components are saved into genetic output for-
mats. Using PS, generate phenotype for each sample in the YRI.samples and CEU.sam-
ples files, and perform further analysis on common SNPs between the two populations. 
Transfer learning requires training a machine learning model on the common SNPs 
between both populations because each SNP is a feature when training the model. If 
SNP is missing from the small population, we cannot transfer knowledge.

•	 Number of SNPs in CEU: 101053
•	 Number of SNPs in YRI: 136021
•	 Number of common SNPs between CEU and YRI: 62283

Generate phenotype for the small population

YRI.sample and YRI.gen files, generated in the previous step, are passed to PS to 
simulate a phenotype for each person. We considered the default values for each 
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parameter as shown on page 3,example 2, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
Pheno​typeS​imula​tor/​vigne​ttes/​Pheno​typeS​imula​tor.​pdf in the PhenotypeSimulator 
documentation. A detailed explanation of each variable is mentioned in PhenotypeS-
imulator documentation https://​cran.r-​proje​ct.​org/​web/​packa​ges/​Pheno​typeS​imula​
tor/​Pheno​typeS​imula​tor.​pdf. We generate 4 phenotypes for 5 risk SNPs and 10 risk 
SNPs, labeled with a specific code as shown below.

•	 4 phenotypes with 5 risk SNPs: YRI_5_1, YRI_5_2, YRI_5_3, and YRI_5_4
•	 4 phenotypes with 10 risk snps: YRI_10_1, YRI_10_2, YRI_10_3, and YRI_10_4
•	 The actual risk SNPs are different and randomly decided by PS for each pheno-

type.

Generate phenotype for the large population

CEU.sample and CEU.gen file, generated in the previous step, are passed to PS to simu-
late the phenotype, using the same parameters and the same risk SNPs to simulate the 
data for the small population.

•	 4 phenotypes with risk SNPs 5: CEU_5_1, CEU_5_2, CEU_5_3, and CEU_5_4
•	 4 phenotypes with risk SNPs 10: CEU_10_1, CEU_10_2, CEU_10_3, and CEU_10_4
•	 One crucial point is that the actual risk SNPs for YRI_5_1 are the same for CEU_5_1, 

and the machine learning model trained on CEU_5_1 is used for the prediction of 
YRI_5_1.

•	 PS also outputs the risk SNPs for the small population, which can be extracted and 
passed to PS as causal SNPs when generating data for the large population pass.

Each phenotype is represented in this format, X_Y_Z, X is the population code (CEU or 
YRI), Y is the number of risk SNPs (5 or 10), and Z is the iteration number (1 to 4). The 
number of risk SNPs (Y) can be mutated in the PS. Z is a specific iteration. We generated 
a new dataset for each iteration, and the risk SNPs selected by PS are different for the 
same Y.

At this stage, we have genotype data for eight phenotypes. Considering these two data-
sets, CEU_5_1 and YRI_5_1, we explained the next steps in the pipeline, and these steps 
are the same for each phenotype.

Convert continuous phenotype to cases/controls

PS generates continuous phenotype, which we converted to binary phenotype after 
thresholding on 0 (below 0 a control and above 0 is a case), for CEU_5_1 and YRI_5_1. 
Represent controls with 0 and cases with 1, and update the CEU_5_1/CEU.sample and 
YRI_5_1/YRI.sample files accordingly with new phenotypes values after threshold-
ing. Generate a separate phenotype file for both populations, which contains the sam-
ple id and the phenotype, and convert CEU_5_1/CEU.gen and YRI_5_1/YRI.gen files in 
23andme file format, so the machine learning techniques specified in this article [35] are 
applicable to genotype-phenotype prediction.

https://cran.r-project.org/web/packages/PhenotypeSimulator/vignettes/PhenotypeSimulator.pdf
https://cran.r-project.org/web/packages/PhenotypeSimulator/vignettes/PhenotypeSimulator.pdf
https://cran.r-project.org/web/packages/PhenotypeSimulator/PhenotypeSimulator.pdf
https://cran.r-project.org/web/packages/PhenotypeSimulator/PhenotypeSimulator.pdf
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Module 3: Plot linkage disequilibrium, manhattan, and QQplot

Module 3 is optional used to generate the manhattan, QQ, and Linkage disequilibrium 
plot for a particular phenotype of both populations. Figure 2 elaborates the visualization 
step. For visualization, use X_5_1/X.gen and X_5_1/X.sample files.

Methods
This section provides in-depth detail of the proposed pipeline. In each section, some 
subsections describe the sub-steps in each module.

Module 4: Machine learning for both small and large populations

At this stage, we have these files for both populations.

•	 Genotype files in 23andme file format.
•	 SNPs file
•	 Phenotype

Quality control

Quality control steps are performed on the genotype data to ensure the quality of the 
data is of a high standard for any interpretation [36–38], but for the simulated data, 

Fig. 2  Module 3: Plot linkage disequilibrium, manhattan, and QQplot. Genotype data generated from PS 
is passed to Gtool -> Plink to convert genotype data into VCF file format, and that file is used to generate 
linkage disequilibrium. Gtool output is also used to find p-values for each SNP and generate the manhattan 
plot
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some quality control steps, like removing SNPs with missing alleles and duplicate SNPs, 
can be skipped. Perform these steps independently for both large and small populations.

SNPs pre‑selection

Using 62,283 SNPs for training may overfit the model, so SNPs pre-selection process 
(p-value threshold or mutation difference between cases/controls at each SNP [35]) 
will reduce the dimensionality of input data leading to a generalized model. Generate 
multiple datasets using the SNPs pre-selection process on the training data for both 
populations. Tables 1 and 2 show the number of SNPs in each sub-dataset of the small 
population and the large population for each phenotype.

Machine learning for the small population

Before applying machine learning for genotype-phenotype prediction, we must gener-
ate multiple sub-datasets for both populations. Each sub-dataset contains a different 
number of SNPs. It is essential to try different SNPs to find the model that generalizes 
well. We generated about 13 sub-datasets containing a different number of SNPs for 
each phenotype. As the SNPs pre-selection process is performed on the training data, 
we must extract the same SNPs from the test data. Make sub-datasets like this YRI_5_1/
snps_X, where X represents the number of SNPs in the particular sub-dataset. The num-
ber of SNPs selected for a specific dataset depends on the linear threshold value. Dataset 
split for YRI population is like this.

Table 1  13 sub-datasets for each phenotype containing different number of SNPs

0 means sub-dataset does not contain any phenotype and such sub-datasets are ignored

SNPs in sub-dataset 1 2 3 4 5 6 7 8 9 10 11 12 13

YRI_5_1 3 6 14 32 51 105 154 236 287 435 822 1112 1803

YRI_5_2 1 4 7 26 28 60 65 192 233 314 662 935 1868

YRI_5_3 0 1 10 21 38 67 116 202 239 436 728 995 1616

YRI_5_4 4 5 24 83 127 153 193 255 295 487 732 1048 1729

YRI_10_1 2 7 18 47 91 137 180 345 422 551 1086 1899

YRI_10_2 7 11 12 67 136 171 248 279 494 563 656 1158 2032

YRI_10_3 3 5 13 43 65 103 130 146 341 431 590 1110 1974

YRI_10_4 1 3 20 36 75 109 179 264 312 561 913 1282 2130

Table 2  10 sub-datasets for each phenotype containing different number of SNPs

0 means sub-dataset does not contain any phenotype and such sub-datasets are ignored

SNPs in sub-dataset 1 2 3 4 5 6 7 8 9 10

CEU_5_1 17 18 48 154 193 1135 1196 3421 4901 6629

CEU_5_2 0 4 18 74 89 949 987 3551 4867 6583

CEU_5_3 0 4 10 73 80 921 1016 3411 4780 6641

CEU_5_4 0 1 28 101 126 932 969 3438 4718 6751

CEU_10_1 2 20 96 101 809 894 3485 4816 6601

CEU_10_2 1 4 22 150 162 1005 1076 3545 4999 6673

CEU_10_3 1 5 134 243 296 1119 1162 3732 5015 6731

CEU_10_4 0 1 44 151 164 924 980 3522 4962 6699
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•	 Training data 70 samples (YRI_TD)
•	 Validation data 10 samples (YRI_VD)
•	 Test data 20 samples (YRI_ED)
•	 Final test data 50 samples (YRI_FD)

For genotype-phenotype prediction of the small population we used five machine 
learning algorithms: SVM = Support vector machine [39], Cart = Decision tree clas-
sifier [40], Rus = Random under sampler, Forest = Random forest classifier [41], Ub = 
Bagging classifier. We trained each sub dataset on these 5 models and selected the sub-
dataset which performed well on the test data. For example, if YRI_5_1/snps_1000/SVM 
generated the best accuracy for the test data YRI_ED, save that model and test newly 
generated data YRI_FD.

•	 To test the generalization of the best model, generate a new dataset YRI_FD.
•	 A new dataset shows how well genotype-phenotype prediction for the small popula-

tion works without transfer learning.
•	 Use this newly generated data for the evaluation of the transfer learning methodol-

ogy.

Table  3 shows the results of best machine learning without transfer learning for both 
YRI_ED and YRI_FD datasets.

Machine learning for the large population

For each phenotype of the large population, we generated about ten sub-datasets con-
taining a different number of SNPs. For each sub-dataset, we used nine different archi-
tectures of deep learning algorithms ANN (3, Table 4 shows the architecture), LSTM(2), 
GRU(2), and BILSTM(2) (Table  5 shows the architecture) for transfer learning; after 
training, save all models.

Following is the dataset split for training the machine learning model on the CEU 
population.

•	 Training data 700 samples (CEU_TD)

Table 3  The first, second, third, fourth, and fifth columns show the phenotype, the optimal number 
of SNPs, the best model for the YRI_ED dataset, accuracy on the YRI_ED dataset, and the final 
accuracy on the YRI_FD dataset

Phenotype SNPs Best model YRI_ED accuracy YRI_FD 
accuracy

YRI_5_1 236 UB 66 56

YRI_5_2 26 CART​ 85 52

YRI_5_3 10 SVM 61 44

YRI_5_4 1048 UB 71 42

YRI_10_1 1086 SVM 76 48

YRI_10_2 11 Random forest 66 52

YRI_10_3 1110 CART​ 71 52

YRI_10_4 36 SVM 61 46
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•	 Validation data 100 samples (CEU_VD)
•	 Test data 200 samples (CEU_ED)

Figure 3 shows the machine learning methodology for genotype-phenotype prediction.

Module 5: Transfer learning for the small population

In the case of transfer learning, we have to select SNPs from two populations. If the 
machine learning model trains on N features (encoded SNPs) from the large population 
(CEU_5_1/snps_1000/), then we have to choose the same SNPs from a small popula-
tion (YRI_5_1/snps_transfer_1000/). For each sub-dataset of the large population, make 
a corresponding sub-dataset of the small population, which contains the same SNPs in 
the large population as shown in Fig. 4.

In two ways, transfer learning methods can be used for genotype data.

Transfer learning with SNPs transfer learning

SNPs selected to classify large population datasets into cases/controls based on 
mutation differences are good features for machine learning. Same SNPs can also be 
used for the classification of a small population. For each sub-dataset for a particular 

Table 4  Model 1, 2, 3 architecture

The number of layers and the number of neurons in each layer can vary. Moreover, the hyper-parameters can be tuned to 
improve the final performance. The number of trainable and non-trainable layers can vary, but transfer learning does not 
perform well if all layers are trainable and the performance is improved

Model 1 Model 2 Model 3

Layers Parameters Parameters Parameters

Layer 1—FullyConnected Input layer Input layer Input layer

Layer 2—FullyConnected 30 80 80

Layer 3—FullyConnected 10 70 70

Layer 4—FullyConnected 2 40 50

Layer 5—FullyConnected – 10 20

Layer 6—FullyConnected – 2 10

Layer 7- FullyConnected – 2

Table 5  Model (4, 5, 6), (7, 8, 9) architecture

The number of layers and the number of neurons in each layer can vary. Moreover, the hyper-parameters can be tuned to 
improve the final performance. The number of trainable and non-trainable layers can vary, but transfer learning does not 
perform well if all layers are trainable and the performance is improved

Model 4/5/6 Model 7/8/9

Layers Parameters Parameters

Layer 1—FullyConnected Input layer Input layer

Layer 2—GRU/LSTM/BILSTM 50 50

Layer 3—GRU/LSTM/BILSTM 20 20

Layer 4—FullyConnected 2 10

Layer 5—FullyConnected – 5

Layer 6—FullyConnected – 2
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phenotype train the 5 classific machine learning algorithm on (CEU_5_1/snps_trans-
fer_1000/training data), to find the optimal sub-dataset test the model on (YRI_5_1/
snps_transfer_1000/test data) and for generalization test the model on (YRI_5_1/
snps_transfer_1000/YRI_FD).

Fig. 3  Module 4: Machine learning approach for training the large population genotype data. Train the 
machine learning model for a large population, and save all models. We can also choose those models for 
which the test accuracy is high, but we would have a limited number of models to test when evaluating the 
transfer learning performance

Fig. 4  The SNPs selection process for the small population to use transfer learning for a particular phenotype. 
Before the SNPs preselection process, it is necessary to select the common SNPs between both populations 
using Rsid



Page 13 of 22Muneeb et al. BMC Bioinformatics          (2022) 23:511 	

Transfer learning with deep transfer learning

In deep transfer learning, use the model trained on the large population for the small 
population genotype-phenotype prediction. Models trained on the large population can 
substantially increase the classification accuracy of the small population. The procedure 
to use deep transfer learning is explained in the following bullets and graphically shown 
in Fig. 5.

•	 For each large population sub-dataset (CEU_5_1/snps_X, X is the number of SNPs in 
sub-dataset), train 9 deep learning models.

•	 For each large population sub-dataset (CEU_5_1/snps_X), generate a corresponding 
sub-dataset for the small population containing the same SNPs of the large popula-
tion (YRI_5_1/snps_transfer_X).

Fig. 5  The process of selecting the best sub-dataset and model for transfer learning. Choose the model for 
which the training, validation, and test accuracy is high and test the final model on the final dataset
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•	 For each model (CEU_5_1/snps_1000_Model1), make layers trainable and nontrain-
able from bottom to top. When the model is trainable, pass (YRI_5_1/snps_trans-
fer_1000_TD) for training, (YRI_5_1/snps_transfer_1000_VD) for validation, and 
evaluate the model on (YRI_5_1/snps_transfer_1000_ED). Select models which gen-
erate the best accuracy for (YRI_5_1/snps_transfer_1000_ED).

•	 Repeat this process for each sub-dataset of a particular phenotype.
•	 There are about 10 sub-datasets for the large population and 9 models for each sub-

dataset. Based on the (YRI_5_1/snps_transfer_1000_ED) select the model for the 
final evaluation on (YRI_5_1/snps_transfer_1000/YRI_FD).

Models and implementation

This section contains information about the deep neural networks and transfer learning 
types used in the methodology.

Models

For any deep learning model, the number of layers, the number of neurons, and hyper-
parameter selection can affect transfer learning performance [42]. We used nine 
different architectures of deep learning algorithms ANN(3), LSTM(2), GRU(2), and BIL-
STM(2) for transfer learning. All the models should be trained again if we change the 
base dataset.

Artificial neural network

An ANN goes through a training process where it learns to identify patterns in the 
input data [43, 44]. It contrasts its actual output generated with what it was intended 
to achieve during the back-propagation process. The activation function produces non-
linearity, which is the most significant benefit of using ANN. Every sub-dataset has a 
different number of SNPs, so we used an ANN with different processing units in the first 
layer for each sub-dataset.

Recurrent neural network

The recurrent neural networks, known for their memory, which allow them to use past 
inputs to influence the current input and output, are used for time-series or sequential 
data such as language translation [45], natural language processing, voice recognition 
[46] and image captioning and classification [47].

We considered three types of recurrent neural networks: GRU, LSTM, and Bi-direc-
tional LSTM.

GRU: This deep learning algorithm consists of two gates (update and reset gate) to 
predict the next output in the sequence. The update gate determines the amount of prior 
knowledge to be transferred to the subsequent state, enables the model to copy all prior 
knowledge if necessary, and eliminates the danger of vanishing gradient. How much of 
the prior data will be ignored is determined by the reset gate.

LSTM: This deep learning algorithm consists of three gates (input, forget, and out-
put gate) to predict the next output in the sequence. The input gate chooses what data 
from the input signal and short-term memory from the previous phase should be kept 
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in long-term memory. The forget determines which long-term memory details should 
be retained or ignored. The output gate creates new short-term memory and transfers it 
to the cell in the following step using the current input, the old short-term memory, and 
the freshly computed long-term memory.

BILSTM: In a bidirectional LSTM, we consider two separate sequences (One from 
right to left and the other in the reverse order) and two LSTM networks.

These algorithms have already been used for genotype-phenotype [48–50] prediction 
making them applicate for genotype-phenotype transfer learning.

The use of the algorithm depends on the application. For example, CNN and its vari-
ants (ImageNet, ResNet, VGG) are good when transfer learning is used for image data. 
Similarly, models like word2vec and GloVe are used for natural language-based transfer 
learning. For genotype data, there is no existing model which can be used, so we must 
design such models from scratch. Among deep learning models, the best algorithms 
which can be used for transfer learning are ANN and RNN.

Types of transfer learning

There are three different types of transfer learning we consider here, simple transfer 
learning, pre-trained models, and fine-tuning.

Figure 6 shows the primary mechanism of transfer learning to transfer knowledge for 
genotype-phenotype prediction.

Simple transfer learning

Transfer learning means when the model trained on some task A is used to make pre-
dictions for some other but related task B. Similarly, a deep learning model trained on 
a large population can predict a small population for a particular phenotype. For simple 
transfer learning, train the deep learning model on the large population, evaluate model 
performance on test data of the large population, and use that model to predict the small 
population.

The word “transfer learning” is described using domains and tasks. A domain D 
consists of: a feature space X and a marginal probability distribution P(X), where 
X = {x1, . . . , xn} ∈ X . Given a specific domain, D = {X ,P(X)} , a task consists of two 

Fig. 6  Basic transfer learning mechanism for genotype data. The model trained on the large population 
can be used to predict multiple small populations, and one has to ensure that before starting the analysis, 
common SNPs should be selected among all populations
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components: a label space Y and an objective predictive function f : X → Y  . The 
function f is used to predict the corresponding label f(x) of a new instance x. This task, 
denoted by T = {Y , f (x)} , is learned from the training data consisting of pairs {xi, yi} , 
where xi ∈ X and yi ∈ Y

Given a source domain DS and learning task TS , a target domain DT and learning task 
TT , where DS  = DT , or TS  = TT , transfer learning aims to help improve the learning of 
the target predictive function fT (·) in TT using the knowledge in DS and TS .

Pre‑trained model

Pre-trained type means when a model that has already been learned is used for trans-
fer learning, and the nature of the problem specifies the number of layers to reuse and 
retrain. For transfer learning, estimation, function extraction, and fine-tuning, Keras 
contains nine pre-trained models. Many research institutions make trained models 
accessible regularly. Unfortunately, there is no existing pre-trained model for genotype-
phenotype prediction. But it is important to discuss this strategy here. Figure 7 shows 
the transfer learning mechanism using the pre-trained model for genotype-phenotype 
prediction.

One important point to understand here is that when we transfer knowledge which 
features should be used for a small population. From small population data, we will 
choose the same SNPs for which the initial model was trained using the large population 
data. In a real dataset, there is a possibility that in a small population, SNPs are missing. 
In that case, the missing SNPs should be imputed [12] or ignored.

Fine‑tuning

In fine-tuning-based transfer learning, train a deep learning model on the large popu-
lation, retrain the model on the training data of the small population by making some 

Fig. 7  Module 5.2: Transfer learning using pre-trained model. All layers are non-trainable, and the same 
SNPs (on which the large population model is trained) are passed to the machine learning model for small 
population classification
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layers trainable and non-trainable, and finally, evaluate the model on test data of the 
small population. This technique is common in computer vision because it decreases the 
size of the dataset required to train the model, which saves time and makes it more suit-
able for traditional algorithms. Figure  8 shows the transfer learning mechanism using 
fine-tuning for genotype-phenotype prediction.

Results
It is important to notice that we should also look for bad results. As we increase the num-
ber of SNPs, the deep learning models will be more biased towards the large population, 
and that is why sub-datasets containing a different number of SNPs and models with dif-
ferent hyper-parameters were generated to generalize the final results [51]. Before using 
deep learning, it is also important to understand what we will transfer as knowledge. 
There are two important parameters that we can learn from the large population.

•	 Selected SNPs from a large population
•	 Selected SNPs and weights learned by deep learning model from a large population.

Model 1

When we choose SNPs based on mutation differences to classify large population data-
sets (B1) into cases/controls, those SNPs can act as good features for machine learning. 
Same SNPs can also be used to classify a small population (T1). Table 6 shows the results 
of SNPs transfer learning using a classical machine learning model. Results show that 
this technique did not work on YRI_FD of each phenotype.

Fig. 8  Module 5.3: Transfer learning with fine-tuning. Some of the layers are trainable, and some are not. A 
different number of trainable and non-trainable layers can be tried to improve the performance of the model
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Model 2

We used about 9 different architectures of 4 models ANN, LSTM, GRU, and BILSTM. 
Results show there is a bit of improvement in the results. Tables 7, 8, and 9 show the 
results when selected SNPs and weights learned by the deep learning model from a large 
population are used for transfer learning.

It is worth mentioning here what each layer is learning. In the deep learning model, 
the top layers correspond to minor features, whereas lower layers are population-spe-
cific. The reason that transfer learning may work in the real application is the low 
genetic diversity in the small populations [52]. So features learned from the large 

Table 6  Results of SNPs transfer learning

The first, second, third, fourth, and fifth columns show the phenotype, the optimal number of SNPs, the best model for the 
YRI_ED dataset, accuracy on the YRI_ED dataset, and the final accuracy on the YRI_FD dataset

Phenotype SNPs Best model YRI_ED accuracy YRI_FD 
accuracy

YRI_5_1 236 RUS 66 48

YRI_5_2 26 Random forest 85 54

YRI_5_3 10 Random forest 61 44

YRI_5_4 1048 SVM 71 38

YRI_10_1 1086 SVM 76 46

YRI_10_2 11 Random forest 66 48

YRI_10_3 1110 Random forest 71 48

YRI_10_4 36 RUS 61 32

Table 7  Results of deep transfer learning

The first, second, third, and fourth columns show the phenotype, the optimal number of SNPs, the best model for the 
YRI_ED dataset, and the accuracy of the YRI_ED dataset. These models are further used on YRI_FD

Phenotype SNPs Best model Best model 
accuracy on 
YRI_ED

CEU_5_1 1196, 1196, 4901 Model 1,2,5 66

CEU_5_2 3551, 6583 Model 3,5 75

CEU_5_3 921, 80 Model 2,4 71

CEU_5_4 126,932,932,969 Model 2,3,4,5 71

CEU_10_1 3485, 6601 Model 4,6 71

CEU_10_2 150,150,162,3545 Model 6,9,4,2 76

CEU_10_3 134, 134, 5015 Model 5,7,7 76

CEU_10_4 164 Model 4 76

Table 8  Results of deep transfer learning for 5 risk SNPs

The two-tailed P value equals 0.0306, t = 2.8146, df = 6, standard error of difference = 3.731

5_1 5_2 5_3 5_4

Results without transfer learning 56 52 44 42

With snps transfer learning 48 54 44 38

Improvement with snps transfer learning − 8 2 0 − 4

With deep transfer learning 58 58 64 56

Improvement with deep transfer learning 2 6 20 14

Max achieved 58 58 64 56

Final improvement 2 6 20 14
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population are more robust than features from a small population. We do not know 
in advance which layers should be trainable and non-trainable. So, for in-depth analy-
sis, we should try to make each layer non-trainable for each model and then test the 
model performance. There is also a possibility that the model performs negatively, 
which is called negative transfer [17].

Computational analysis

Computation time depends on several factors like the number of neurons in each 
layer (l1, l2, ...lN ) , the number of layers in a model N, model type (ANN or LSTM), the 
number of epochs E, the number of trainable layers for transfer learning t, and the 
number of neurons in each trainable layer for transfer learning (lN , lN−1, ..lt) , where 
t > 1.

Consider the time to train the neurons in layer L for one iteration is Tl , where l 
ranges from (1− N ).

Among the three types of transfer learning, we used only two, and each transfer 
learning type has a different computation time. Consider the computation time for 
the following two cases: Transfer learning with SNPs transfer learning and Transfer 
learning with deep transfer learning.

Transfer learning with SNPs transfer learning. This process involves extracting the 
SNPs from the large population using the p-value threshold on the large population’s 
GWAS summary statistic file O(1), extracting the values for the corresponding SNPs 
from the small population’s genotype data O(1), and training/testing the machine 
learning model on the small population genotype data O(E ∗ (T1 + T2 + ..TN )) . The 
total computation time is O(1)+ O(1)+ O(E ∗ (T1 + T2 + ..TN )) , and it was approxi-
mately 10 minutes for one dataset and one machine learning model.

Transfer learning with deep transfer learning. The time to train the model on a large 
population’s genotype is O(E ∗ (T1 + T2 + ..TN )) . When transferring knowledge from 
a large population, one must decide the number of trainable and non-trainable lay-
ers. If the number of trainable layers is = 0, the final computation time would be 
O(E ∗ (T1 + T2 + ..TN )) . If some layers are trainable t, the actual computation time 
would be O(E ∗ (T1 + T2 + ..TN ))+ O(E ∗ (TN + TN−1 + ..Tt)) , where is t is the num-
ber of trainable layers from bottom to top. It was approximately 20 minutes for L = 5, 
t = 2, and E = 50.

Table 9  Results of deep transfer learning for 10 risk SNPs

The two-tailed P value equals 0.0478, t = 2.4803, df = 6, standard error of difference = 3.629

10_1 10_2 10_3 10_4

Results without transfer learning 48 52 52 46

With snps transfer learning 46 48 48 32

Improvement with snps transfer learning − 2 − 4 − 4 − 14

With deep transfer learning 62 66 54 52

Improvement with deep transfer learning 14 14 2 6

Max achieved 62 66 54 52

Final improvement 14 14 2 6
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Conclusion
Machine learning and transfer learning already exist in the literature, but we applied 
these methodologies for genotype data to show that transfer learning is applicable for 
genotype data. The whole pipeline requires an in-depth explanation of all the pro-
cesses involved, like handling directory structure and file formats [53], coordinating 
genotype data between populations, and applying transfer learning to a small popula-
tion. As highlighted in the manuscript, we explained these processes and developed 
sub-modules for processing data. For instance, when generating data for both popula-
tions, how to produce symmetric between both datasets.

Any algorithm, TCA, CORAL, 1DCNN, and SVC can also be used for transfer 
learning, and there is a possibility that these algorithms yield more accuracy when 
transferring knowledge. So, in the model section, any number of algorithms can be 
employed without affecting the methodology. We worked on simulated data, and 
when transferring knowledge to the real dataset for a specific phenotype (cancer or 
type-2 diabetes), results would be clearer and more interpretable.

Other parameters can also be used, for example, sensitivity, specificity, F1 score, and 
AUC. The dataset we considered is almost balanced, so accuracy and AUC are almost 
the same in this case. The other point is that when the best model among multiple 
models is to be selected for the final testing, we have to decide based on validation 
accuracy or AUC, so there is a possibility that the model which gives the best AUC is 
different from the one which gave the best accuracy. It is recommended to select one 
evaluation metric when evaluating the final performance of transfer learning.

We can use this pipeline to analyze endangered species. Although we tested this 
approach on a generated dataset, this approach will be more transparent with the real 
data. However, if the base data is extensive compared to the target data, we can expect 
transfer learning results to be better.
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