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Abstract 

Background:  Despite numerous molecular and computational advances, roughly half 
of patients with a rare disease remain undiagnosed after exome or genome sequenc‑
ing. A particularly challenging barrier to diagnosis is identifying variants that cause 
deleterious alternative splicing at intronic or exonic loci outside of canonical donor or 
acceptor splice sites.

Results:  Several existing tools predict the likelihood that a genetic variant causes alter‑
native splicing. We sought to extend such methods by developing a new metric that 
aids in discerning whether a genetic variant leads to deleterious alternative splicing. Our 
metric combines genetic variation in the Genome Aggregate Database with alternative 
splicing predictions from SpliceAI to compare observed and expected levels of splice-
altering genetic variation. We infer genic regions with significantly less splice-altering 
variation than expected to be constrained. The resulting model of regional splicing 
constraint captures differential splicing constraint across gene and exon categories, 
and the most constrained genic regions are enriched for pathogenic splice-altering 
variants. Building from this model, we developed ConSpliceML. This ensemble machine 
learning approach combines regional splicing constraint with multiple per-nucleotide 
alternative splicing scores to guide the prediction of deleterious splicing variants in 
protein-coding genes. ConSpliceML more accurately distinguishes deleterious and 
benign splicing variants than state-of-the-art splicing prediction methods, especially in 
“cryptic” splicing regions beyond canonical donor or acceptor splice sites.

Conclusion:  Integrating a model of genetic constraint with annotations from existing 
alternative splicing tools allows ConSpliceML to prioritize potentially deleterious splice-
altering variants in studies of rare human diseases.
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Background
The diagnosis of Mendelian disease patients has progressed substantially owing to con-
tinued improvement of DNA sequencing technologies and software development for 
variant analysis. However, the diagnostic rate for these patients is still around 50% [1–4], 
leaving numerous patients with a diagnostic odyssey that persists indefinitely and results 
in financial, emotional, and physical burdens. Interpreting the effects of genetic variation 
outside of protein-coding exons is arguably one of the greatest challenges that remains. 
Discerning the impact of the non-canonical splice-site subset [5–9] of these deleteri-
ous genetic variants is especially difficult. Consequently, potential splicing variants lying 
within introns or exons are commonly ignored during clinical diagnosis.

Up to 95% of all protein-coding genes in humans are predicted to undergo alternative 
splicing [5, 6]. Alternative splicing is a conserved process that expands the functional 
potential of nascent transcripts [10–12] and requires tight regulation by the spliceo-
some, a large RNA and protein complex [13–17]. Previous work has identified highly 
conserved DNA sequences that facilitate spliceosome assembly, function, and regulation 
[10, 16, 18]. For example, variants at canonical di-nucleotide donor or acceptor splice 
sites lead to mis-splicing and are frequently deleterious. Disruption of alternative splic-
ing is known to underlie numerous diseases [8, 9, 19–24]. Therefore, variants impacting 
canonical donor or acceptor sites should be considered as strong evidence for patho-
genicity according to the guidelines established by the American College of Medical 
Genetics (ACMG). [25]

Early experiments estimated that about 15% of disease-causing point mutations affect 
pre-mRNA splicing, [26]. More recent studies predict that between one-third to one-
half of disease-causing variants disrupt splicing [19, 27–29]. These estimates are based 
on evidence of splice-altering variants occurring beyond the exon–intron junctions. Var-
iants at important splicing motifs such as the intronic donor, acceptor, branch point, and 
polypyrimidine track sites would potentially lead to mis-splicing [8, 9, 20]. Mis-splic-
ing can also be caused by variants that affect splicing regulatory regions such as exonic 
and intronic splicing enhancers or silencers [30–34]. Since most splicing occurs co-
transcriptionally [35–40], variants that affect transcriptional processing may also alter 
splicing. For example, variants that alter the elongation rate and transcription kinetics 
of RNA polymerase II [41–43], RNA secondary structure, [44–47], or nucleosome posi-
tioning [48, 49] could affect splicing during transcription. Furthermore, synonymous 
and non-synonymous variants in exonic regions affect splicing [22]. Additional work 
has estimated that an individual exome-sequencing will harbor more than 500 potential 
splice-affecting variants of unknown significance [50] and that up to 10% of the exonic 
disease-causing variants may also affect splicing [22]. These findings suggest that current 
gaps in understanding, detecting, and interpreting splicing across the entire coding and 
non-coding body of protein-coding genes likely contribute to the low diagnostic rate of 
rare diseases.

Multiple software tools have been developed that improve the prediction and iden-
tification of splice-altering variants [31, 32, 43, 50–76]. For example, SpliceAI is a deep 
residual neural network that uses only the primary nucleotide sequence to yield accurate 
alternative splicing predictions [76]. For each reference and possible alternative allele 
combination, SpliceAI provides four predictions. These predictions describe whether the 
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variant may cause an acceptor loss, acceptor gain, donor loss, or donor gain. Similarly, 
SQUIRLS uses a Random Forest approach to predict whether a variant causes alterna-
tive splicing with similar performance as SpliceAI [77]. SQUIRLS differs in that it uses 
various features such as conservation scores from phyloP [78], sequence context param-
eters such as local distance from an exon and canonical splice sites, models of changes in 
spliceosome free energy binding, and other prediction tools such as ESRSeq [79]. How-
ever, these and other existing approaches provide little to no guidance as to whether or 
not the variant is deleterious. Consequently, there is a need for improved methods that 
guide the prioritization of the subset of variants that may lead to deleterious alternative 
splicing to improve the diagnosis of rare diseases. This gap motivates our development of 
ConSpliceML, an ensemble machine learning method that combines regional measures 
of splicing constraint with computational predictions of the potential for genetic vari-
ants to cause alternative splicing. We demonstrate that ConSpliceML more efficiently 
prioritizes deleterious splicing variants in genic regions outside of canonical donor or 
acceptor sites.

Results
A statistical model of genetic constraint against deleterious splicing variants

We sought to develop a model of splicing constraint within protein-coding genes, moti-
vated by the logic that owing to purifying selection, genomic regions leading to delete-
rious splicing will exhibit depletion of genetic variation in a large cohort of ostensibly 
healthy individuals. Using the single-nucleotide variants (SNVs) detected among 76,156 
individuals in v3.1.1 of gnomAD [80], we estimated substitution probabilities among 
protein-coding genes (Methods). We refined the substitution probabilities by estimat-
ing each substitution’s probability of leading to alternative splicing by binning the sum 
of the SpliceAI scores provided for each reference nucleotide (Additional file  1: Fig. 
S1A, Fig.  1A, Methods). Each SpliceAI score estimates the potential for novel donor 
or acceptor sites if each of the three possible substitution alleles arose at a given ref-
erence position. Since SpliceAI’s deep neural network incorporates flanking sequence 
when modeling the cryptic splicing potential for each reference allele, its scores indi-
rectly provide local sequence context to the resulting substitution probability matrix. As 
expected, we observe an overall decrease in the substitution probabilities as the sum of 
SpliceAI scores increases, indicating that variants predicted to alter splicing by SpliceAI 
are depleted in a healthy population (Fig. 1A, Additional file 1: Fig. S1B). However, since 
SpliceAI predicts whether a single allele will cause alternative splicing, our goal is to 
measure regional depletion of splicing variation to identify loci exhibiting genetic con-
straint against deleterious splicing.

With this goal in mind, we compare the observed count of variation in gnomAD to 
what is expected (Fig. 1B, Methods) across either entire genes or arbitrary regions within 
a gene. The expected counts for a given genomic region are derived from the substitu-
tion probability matrix (Additional file 1: Table S1, S2), where the substitution probabil-
ity for each nucleotide in that region is determined by the nucleotide’s reference allele, 
and SpliceAI summed score. The sum of the substitution probabilities for each nucleo-
tide in the region yields the region’s expected substitution counts. We calculate a final 
ratio of the observed (O) to expected (E) variant counts that are further weighted based 
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on each bin’s likelihood to contribute to alternative splicing events (Fig. 1C, Methods). 
The null expectation for the O/E ratio was normalized to zero with an unbounded lower 
and upper limit to allow for a continuous spectrum of constraint (Methods). As a result, 
genomic regions less tolerant of splicing will have lower O/E ratios, as fewer splicing 
variants were observed in gnomAD than expected (a hypothetical example is depicted 
in Fig. 1D). Finally, we transform O/E ratios to normalized scores ranging from 0.0 to 
1.0, with 0.0 being the least constrained (tolerant) regions and 1.0 being the most con-
strained (intolerant) regions to splicing.

Characterizing intolerance to aberrant splicing at the gene level

Gene-based genetic constraint scores such as the probability of loss-of-function intoler-
ance (pLI) [81] and LOEUF [80] predict a gene’s intolerance to putative loss-of-function 
(pLoF) mutations. However, such metrics only include pLoF splicing mutations at the 
canonical donor and acceptor splice sites and are thus likely to miss deleterious splic-
ing mutations. We were interested in characterizing each gene’s global intolerance to 

Fig. 1  Overview of the regional splicing constraint model. A The per-site splicing substitution rate 
by reference allele and Sum SpliceAI score bin across autosomal protein-coding genes. The rate of no 
substitutions across all SpliceAI score bins for each reference allele is A > A = 0.9003, C > C = 0.8565, 
G > G = 0.8433, and T > T = 0.9347 B Calculating an Observed over Expected (O/E) ratio for a genomic region 
by counting the number of variants in that region from gnomAD and the number of expected variants with 
a given SpliceAI score. C The O/E score distribution. Smaller O/E scores indicate higher constraint against 
splicing, while larger O/E scores indicate lower constraints against splicing. (O/E plot truncated at -2000 to 
2000 for visibility) D Representation of regional splicing constraint O/E scores across a hypothetical gene. The 
presence of gnomAD variants, in gray and the SpliceAI prediction for each position in the gene, in shades 
of red influences the splicing-specific observed and expected counts in a region. gnomAD variants with 
higher SpliceAI scores show evidence for more tolerance against splicing variation. In contrast, sites with a 
higher SpliceAI score and no gnomAD variant show evidence for less tolerance against splicing. Pathogenic 
splicing variants, in black, are commonly absent from gnomAD and have predictions of alternative splicing 
from SpliceAI. In this example, the regional constraint model identifies constraint signals at regions that 
harbor pathogenic splicing variants, such as at canonical splice regions (^) and cryptic splice regions (^^). All 
genomic positions in C without a SpliceAI score should be recognized as sites with a SpliceAI score < 0.1
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aberrant splicing mutations. Therefore, we measured splicing constraint using regions 
defined by the genomic interval defining each gene.

As a positive control, we tested expected patterns of constraint using gene sets known 
to underlie Autosomal Recessive (AR), Autosomal Dominant (AD), and Haploinsuf-
ficient (HI) disorders. Based on the evidence of strong or moderate sensitivity to het-
erozygous or homozygous pLoF variants [80, 82], respectively, we hypothesized that the 
AD and HI genes would exhibit high predicted splicing constraint. In contrast, the dis-
tribution of splicing constraint for AR genes would be broader. We based these expec-
tations on the notion that a single LoF variant arising on AD and HI genes may cause 
disease, while disease phenotypes on AR genes require LoF variants on both haplotypes. 
We included Olfactory Receptor (OR) genes as a negative control since these genes are 
known to be tolerant to pLoF variants [83]. Since the majority of OR genes are single 
exons genes which are not expected to undergo splicing, we included genes shown to 
be non-essential for cell viability in CRISPR screens as a second negative control [84]. 
As expected, both the AD and HI genes are more constrained against aberrant splicing; 
AR genes have a wide distribution across the score range, with OR genes and CRISPR 
non-essential genes less constrained (Fig. 2A). Using several other gene sets, we iden-
tify similar patterns of expected splicing constraint in genes known to be involved in 
developmental delay and intellectual disability [85–90], genes shown to be essential in 
CRISPR screens [84], and genes shown to be tolerant to at least one homozygous pLoF 
mutation [81] (Additional file 1: Fig. S2, S3).

The patterns of splicing constraint for these gene sets are strongly correlated with the 
constraint on coding sequence measured by LOEUF and moderately correlated with pLI 
(Additional file 1: Fig. S4). We expect such correlations since genes under selective pres-
sure should be broadly intolerant of any pLoF variant. For example, a pLoF nonsense 
variant in a gene with an AD inheritance pattern should have a similar constraint against 
a pLoF variant that leads to aberrant splicing. However, we also expected differences 
in constraint patterns since the splicing constraint model combines constraint in both 

Fig. 2  Patterns of genic splicing constraint. A The proportion of OR genes, CRISPR Non-essential genes, AR 
genes, AD genes, and HI genes across the splicing constraint deciles. Color corresponds to the gene set. B 
The distribution of VG values by splicing constraint deciles (p-value = 2.488e−31). Significance determined 
using ordinary least squares linear regression. The boxes’ interquartile range (IQR) ranges from the 25th to 
75th percentile. The horizontal black line in each box represents the median VG value for that decile. The 
whiskers are 1.5X the IQR. Outliers are not plotted. C The proportion of genes in each splicing constraint 
decile that had zero significant sOutliers (p-value = 8.832e−06, Adjusted R2 = 0.916). Significance determined 
using ordinary least squares linear regression. The dark blue line represents the linear regression line. Light 
blue shade represents the 95% confidence interval. OR Olfactory Receptor, AR Autosomal Recessive, AD 
Autosomal Dominant, HI Haploinsufficient, sOutliers splicing outliers
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coding and non-coding regions of a gene, whereas LOEUF and pLI focus solely on cod-
ing regions. Additionally, we anticipated the observed differences in constraint as the 
splicing constraint model is based on splicing predictions while pLI and LOEUF inte-
grate all types of pLoF variation (Additional file 1: Fig. S4).

Given that deleterious, splice-altering variants commonly trigger nonsense-mediated 
decay (NMD) [91], which often reduces gene expression, we compared our gene-wide 
splicing constraint estimates to a measure of dosage sensitivity. We hypothesized that a 
gene’s sensitivity to changes in expression would be correlated with a gene’s constraint 
against splicing. To test this hypothesis, we used the expected genetic variation in gene 
expression (VG) [92] calculated from the RNA-seq expression data in the Genotype-
Tissue Expression (GTEx) project [93, 94] to measure a gene’s sensitivity to expression 
variation. VG measures each gene’s expression variance and represents how tolerant a 
gene is to genetic variants that change expression. As expected, splicing constraint is 
significantly negatively correlated with VG (p-value = 2.488e−31, Fig.  2B) and remains 
significant after controlling for the number of exons per gene (p-value = 5.99e−26, Addi-
tional file 1: Fig. S5). Genes in the highest constraint decile have a mean of 4.23-fold less 
variance in gene expression than genes in the lowest decile. Furthermore, the distribu-
tion of VG is significantly different across splicing constraint bins after FDR correction 
(Additional file 1: Fig. S5).

Since most genes are alternatively spliced, we hypothesized that genes less tolerant to 
variation in alternative splicing events would have a higher genic splicing constraint than 
genes more tolerant to alternative splicing variation. We used alternative splicing events 
detected in GTEx by Ferraro et al. [95] to test our hypothesis of observing a depletion in 
alternative splicing for genes under higher splicing constraint. To estimate alternative 
splicing tolerance, we used the alternative splicing events that were significant outliers 
from the population distribution of alternative splicing events in a gene (sOutliers). As 
expected, there is a significant positive correlation with the proportion of genes having 
zero significant sOutliers and the splicing constraint for those genes. This observation 
indicates that genes more intolerant to alternative splicing have significantly fewer sOut-
liers (p-value = 8.83e-06, Fig. 2C, Additional file 1: Fig. S6). Additionally, we observe a 
negative correlation between splicing constraint and the proportion of genes having at 
least one significant sOutlier, indicating genes more intolerant to alternative splicing 
have significantly fewer sOutliers (p-value = 8.83e−06, Additional file 1: Fig. S6).

A regional model of splicing constraint

Genic loci outside of canonical splice junctions are involved in splicing [8, 12, 18, 23, 
39, 50, 96]. While a gene-wide measure of splicing constraint reveals global constraint 
against splicing, it is insufficient for identifying the focal origins of constraint, especially 
when motifs drive the signal outside of exon–intron junctions. For example, we expect 
the highest levels of splicing constraint to be localized to regions of genes that are critical 
to splicing. It is thus reasonable to consider an intragenic regional model of constraint 
that identifies focal regions within a gene that are most intolerant of aberrant splicing. 
Indeed, regional constraint metrics such as Constrained Coding Regions (CCR) [97] 
highlight regional variability in constraint against pLoF variation within protein-coding 
genes. In the case of diagnosing rare diseases, it is imperative to identify and prioritize 
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the deleterious causal variant, and using a regional level metric allows one to estimate 
where causal splicing variants would lie within a gene. Therefore, we created multiple 
regional splicing constraint models using various window sizes to determine the optimal 
region size to predict the pathogenicity of a splicing variant. We used window sizes that 
balanced smaller sizes with more spatial resolution with larger sizes that would contain 
more expected variants and therefore give more power to detect a difference between 
observed and expected splicing variation (Methods, Additional file 1: Fig. S7).

As a positive control, we evaluated the regional splicing constraint model at various 
region sizes around exon features using a set of constitutive exons (exons present in 
every isoform of a gene) and cassette exons (exons alternatively spliced in or out of a 
gene depending on the expressed isoform) defined by Busch et al. [98] We hypothesized 
that the splicing constraint at exons should generally be higher than in the surrounding 
5′ and 3′ introns of those exons. This hypothesis comes from the fact that coding regions, 
in general, are more constrained than non-coding regions and that the exon boundaries 
are determined by splicing definition. As expected, we observe an increase in constraint 
as we move towards the 5′ end of an exon and a decrease in constraint as we move away 
from the 3′ end (Fig. 3A, Additional file 1: Fig. S8). Additionally, as expected, we see that 
a genetic constraint model unaware of splicing has a similar constraint pattern around 
exons. However, the change in constraint is much less dramatic than the splicing aware 
constraint model (Additional file 1: Fig. S9). This observation further suggests that the 
model captures specific constraints beyond the difference in constraint between cod-
ing and non-coding regions of genes. Finally, we observe differences in the magnitude 
of constraint-driven by the inclusion rate of an exon, where exons with a higher inclu-
sion rate are slightly more constrained than exons with a moderate rate. This observa-
tion supports previous high-inclusion cassette exons being characteristically identical to 
constitutive exons. [98, 99]

We note the difference in constraint profiles based on the size of the constraint region. 
As the region size decreases, the difference between exon classes as a whole diminishes, 
while the specificity of the feature driving the constraint increases. For example, we see 
an increase in the specificity of the 5′ and 3′ canonical splicing motifs as we move from 
the 2000 bp splicing constraint model to the 50 bp model (Fig. 3A, Additional file 1: Fig. 
S8). This result indicates that we can define an optimal region size based on the feature 
of interest. Splicing is primarily driven by small regulatory motifs such as the canonical 
acceptor and donor motifs, the polypyrimidine tract, and enhancer or silencer motifs. 
Therefore, an ideal region size would capture splicing motifs while excluding irrelevant 
adjacent nucleotides around the motifs that do not participate in splicing. However, the 
region also needs to encompass a sufficient number of nucleotides to calculate a robust 
O/E signal. Therefore, the region’s size needs to balance the size of a splicing motif and 
a region with a sufficient number of nucleotides to establish a robust O/E signal (Addi-
tional file  1: Fig. S7, Methods). Empirically testing this hypothesis further supports 
a smaller region size as the optimal size for detecting focal splicing constraint within 
genes. Specifically, we found that the 50 bp  regional splicing constraint model was suf-
ficiently large to encompass splicing motifs and capture O/E signal, while also small 
enough to identify focal constraint, likely driven by the splicing motifs (Fig. 3A, Addi-
tional file 1: Figs. S7, S8, S10, Methods).



Page 8 of 32Cormier et al. BMC Bioinformatics          (2022) 23:482 

Beyond annotated exons, the regional splicing model also captures constraint 
against splicing at poison exons, which are conserved, alternatively spliced exons that 
lead to nonsense-mediated decay (NMD) caused by a premature termination codon 
located in the poison exon [100]. While many poison exons are important regula-
tory features of the genome, others, when expressed, cause deleterious effects [100]. 
For example, multiple deleterious poison exons have been found in SCN1A, leading 
to Dravet Syndrome (DRVT [MIM: 607208]), a severe neurodevelopmental disor-
der marked by epileptic encephalopathies [96, 101, 102]. The 50  bp regional model 
detects each of the three poison exons in SCN1A with constraint scores at or above 
0.95. The poison exons rank in the top 8th percentile and are in the top 2% of non-
coding regions in SCN1A. Additionally, two of the three poison exons have higher 
constraint scores than the median constraint seen in coding regions of SCN1A, with 
the third having a constraint score of 0.017 below the median. (Additional file 1: Fig. 
S11). These poison exons also have similar constraint profiles as the annotated exons 

Fig. 3  Splicing constraint around exon features. A The pattern of splicing constraint at and around exon 
features including constitutive exons (Full Inclusion Exons) and cassette exons (Moderate Inclusion Exons 
and High Inclusion Exons). Full Inclusion Exons have an inclusion rate of 100%. High Inclusion Exons have an 
inclusion rate >  = 90% and < 100%. Moderate Inclusion Exons have an inclusion rate < 90%. Plots are oriented 
5′ to 3′ from left to right. Vertical dotted lines represent the relative start (left) and end (right) position of 
exons. Colors represent exon class based on inclusion rate. Dark lines for each exon class represent the 
median regional constraint score along the relative region around exons. The lighter shaded regions around 
the line represent the 95% CI determined by 1000 bootstrap iterations for each exon class. Oriented by the 
window size with the 2000 bp model on the top, 500 bp model in the middle, and 50 bp model on the 
bottom. Figure color legend is located to the right of the top plot. B, C Regional constraint score profiles for a 
poison exon in (B) and a randomly selected canonical SCN1A exon (C). The red horizontal bars in B represent 
the poison exon, and the dark blue horizontal bars in C represent the canonical exon. The gene track around 
the exon feature is shown below the regional constraint score profile with the GRCh38 3’ and 5’ (left and 
right, respectively) genomic coordinates for that exon feature above the gene track. SCN1A is on the negative 
strand; therefore 5′ to 3′ is from right to left in B and C. The regional constraint score track represents the 
splicing constraint profile using the 50 bp regional model
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in SCN1A (Fig.  3B,C; Additional file  1: Fig. S12; Additional file  1: Table  S3), which 
replicates the pattern seen for constitutive and cassette exons (Fig. 3A).

Interpreting pathogenic splicing variation with a regional model of splicing constraint

We next evaluated how well the regional splicing constraint model was able to identify 
pathogenic splice-altering variants. We curated 376 pathogenic splice altering variants 
from literature, where each variant has some functional support for its effect on splic-
ing (Additional file 2: Table S4). Additionally, each variant was associated with a disease, 
such as Hereditary Hemorrhagic Telangiectasia (HHT2 [MIM: 600376]) [103–110], 
Stickler Syndrome(STL1 [MIM: 108300]) [111–115], Optic Atrophy 1 (OPA1 [MIM: 
165500]) [116, 117], Marfan Syndrome (MFS [MIM: 154700]) [118, 119], Retinoblastoma 
(RB1 [MIM: 180200]) [120, 121], and Neurofibromatosis type 1 (NF1 [MIM: 162200]) 
[122, 123]. The regional constraint model placed 86% of the 376 variants at or above a 
constraint score of 0.95, indicating strong constraint against alternative splicing. For 
example, it classified 89% of intronic non-canonical splice-altering variants in ACVRL1, 
a gene that has well-characterized intronic splice-altering variants that cause Hereditary 
Hemorrhagic Telangiectasia (HHT2 [MIM: 600376]), with constraint scores at or above 
0.88 (Fig. 4A–C).

We excluded variants at canonical donor and acceptor splice sites from this list of 
pathogenic splicing variants to evaluate the performance of the splicing constraint model 
outside of regions that are commonly used when prioritizing variants in rare disease 
clinical diagnosis (Fig. 4D). We also included SpliceAI [76], SQUIRLS [77], and CADD 
v1.6 [124] to compare our performance to state-of-the-art splicing prediction and inter-
pretation methods. We excluded other splicing prediction software because they cannot 
score all of the deep intronic variants in the set. Furthermore, many tools have been pre-
viously compared to SpliceAI, SQUIRLS, or CADD.

Although SpliceAI, SQUIRLS, and CADD perform well, the regional constraint model 
significantly scores these variants much higher than each of these tools (Fig. 4E).

Frésard et al. recently used RNA-seq to identify a pathogenic splicing mutation around 
the 3′ end of exon 5 in ASAH1 that leads to exon 6 skipping and causes Spinal Muscular 
Atrophy with Progressive Myoclonic Epilepsy (SMAPME [MIM: 159950]) [125]. Moti-
vated by this finding, we evaluated the splicing constraint model’s ability to isolate such 
deleterious splicing events in the absence of RNA sequencing (RNA-seq) data. We find 
that it accurately identifies the splicing constraint of this region with a score of 0.989 
(Additional file 1: Fig. S13A). Murdock et al. [126] used RNA-seq to identify deleteri-
ous changes in splicing and expression in a cohort of undiagnosed patients from the 
Undiagnosed Disease Network (UDN). They identified multiple deleterious splice-alter-
ing variants that explained disease pathology. The variants identified included: a deep 
intronic pathogenic splicing variant in PQBP1 that leads to an out-of-frame pseudoexon 
and causes X-linked recessive Renpenning Syndrome (RENS1 [MIM: 309500]); a deep 
intronic pathogenic splicing variant in HNRNPK that resulting in intron retention that 
caused Au-Kline Syndrome (AUKS [MIM: 616580]); and an intronic pathogenic splic-
ing variant in RPL13 that lead to intron retention and causes Spondyloepimetaphyseal 
Dysplasia (SEMD [MIM: 618728]). Similarly, the splicing constraint model scored each 
region above 0.98 (Additional file 1: Fig. S13B–D).
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Variant interpretation with ConSpliceML

While regional constraint identifies genomic regions harboring nucleotides with the 
potential for deleterious splicing when mutated, not all loci in each region are con-
strained. Consequently, solely using a region’s constraint to prioritize individual residues 
will result in false-positive predictions of deleterious splicing. Therefore, we created 
ConSpliceML to provide a more accurate method for prioritizing individual genetic var-
iants. ConSpliceML uses a Random Forest (RF) classifier to combine regional splicing 
constraint measures with per-nucleotide alternative splicing predictions from SpliceAI 

Fig. 4  Splicing constraint for pathogenic alternative splicing variants. A Regional constraint profile for the 
ACVRL1 gene with pathogenic splice-altering variants that cause HHT. The pathogenic variants are labeled 
as orange lollipops on the gene track and the corresponding splicing constraint region is circled in orange 
on the ConSplice track. The ConSplice score is provided below the variant lollipop. The y-axis depicts 
the regional constraint score log10 scale. B-C Zoomed-in view of the genomic regions that harbor the 
pathogenic variants in ACVRL1 seen in A. D The distribution of the manually curated pathogenic variants 
relative to the exonic position. The blue bar represents an exon while the gray bars represent introns around 
the exon. Oriented 5′ to 3’ from left to right, with the acceptor side on the left and the donor side on the 
right. Any variant > 10 bp away from the exon–intron junction in the intron or exon are labeled “Deep 
Intronic” or “Deep Exonic”, respectively. Canonical acceptor and donor sites = A-1, A-2., D + 1, D + 2. E The 
distribution of scores assigned by each method to the pathogenic variants in the set. The IQR of the boxes 
ranges from the 25th to 75th percentile. The vertical black line in each box represents the median score for 
that method. The whiskers are 1.5X the IQR. Outliers are not plotted
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and SQUIRLS (Methods). We chose to use both SpliceAI and SQUIRLS since they each 
perform well at predicting alternative splicing [77], yet also capture variants missed by 
the other.

To train and evaluate ConSpliceML, we used the Human Gene Mutation Database 
(HGMD) [127–129], to collect 18,317 disease-causing, alternative splicing variants. 
In addition, we collected 48,978 benign variants from a collection of de novo muta-
tions (DNMs) identified in whole-genome sequencing of multi-generational [130] and 
two generation [131] families from Utah and Iceland, respectively, as well as validated 
benign alternative splicing variants from GTEx curated by Jaganathan et al. [76] (Addi-
tional file 3: Table S5). We only included variants in protein-coding genes with SpliceAI, 
SQUIRLS, CADD, and regional splicing constraint scores. The final set represents 95% 
of the autosomal pathogenic variants and 36% of autosomal benign variants after fil-
tering. Many of the benign variants are removed because they do not fall within pro-
tein-coding genes. We split this variant collection into a training set and test set using 
60% of the variants for training and 40% for testing. To further avoid overfitting, we 
exlcuded variants in the training set if a variant in the test set was found in the same 
splicing constraint region. Furthermore, we performed training and validation using 
five-fold cross-validation with the training set to assess training accuracy performance 
and training consistency across different folds (Additional file 1: Fig. S14). To compare 
the performance between CADD, SpliceAI, SQUIRLS, and ConSpliceML, we trained 
the ConSpliceML model using the 60% training set and tested the performance of each 
method using the 40% test set.

We analyzed each method’s precision and recall for differentiating pathogenic and 
benign splice-altering variants at various thresholds. With all the variants in the test set, 
we find that each method performs well, with ConSpliceML performing the best with an 
average precision of 0.97 and SpliceAI as the second best with an average precision of 
0.96 (Additional file 1: Fig. S15). However, since variants at canonical donor and accep-
tor splicing sites are routinely prioritized without the need for annotations during rare 
disease clinical diagnosis, we evaluated how well each method could isolate deleterious 
splicing variants outside of the canonical splice sites. We find a moderate decrease in 
performance for each method, with ConSpliceML continuing to outperform all other 
methods (Fig. 5A).

Furthermore, roughly 50% of rare, monogenic disease cases are diagnosed when prior-
itizing variants in coding sequence, canonical splice sites, or variants within the "splice 
region" defined by VEP [132] as eight bases into the intron and three bases into the exon 
at exon–intron junctions. We, therefore, measured the performance of each method 
outside the canonical splice sites and "splice regions" commonly used to prioritize vari-
ants in rare disease studies. Not surprisingly, we observed a decrease in performance 
by all methods, with CADD having the greatest drop in performance and ConSpliceML 
outperforming all other methods (Fig. 5B).

The authors of SpliceAI recommend prioritizing variants as potentially splice-altering 
if the SpliceAI score is greater than 0.2 [76, 133–135]. However, some pathogenic splic-
ing variants fall below this threshold and, as a result, would be ignored in rare disease 
analyses. When evaluating performance for variants having a SpliceAI score less than 
0.2, we observe that ConSpliceML outperforms all other methods when either canonical 
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splice variants are included or not (Fig. 5C, D). We excluded the analysis of variants out-
side the splice region due to an insufficient number of pathogenic variants for evalua-
tion. Although it is not clear why SpliceAI is underperforming for these variants, there 
is evidence that SpliceAI misses certain alternative splicing variants. For example, Chen 

Fig. 5  Splicing prediction and interpretation performance. A–D Precision-Recall (PR) curves depicting the 
performance of CADD, SpliceAI, SQUIRLS, and ConSpliceML in differentiating pathogenic splice-altering 
variants from benign variants. The dotted horizontal line represents the baseline value, meaning a random 
chance prediction. The Precision-Recall Area Under the Curve (PR AUC) for each metric is given in the plot 
legend, along with a more accurate measurement of performance called the Average Precision Score (Avg. 
PR Score). A PR Curve for all pathogenic and benign variants in the test set, excluding the canonical donor 
and acceptor splice sites. 2273 pathogenic variants. 19,499 benign variants. B PR Curve for all pathogenic and 
benign variants in the test set, excluding variants in the splice region. 627 pathogenic variants. 19,278 benign 
variants. C All variants in the filtered test set with a SpliceAI score between 0.0 and 0.2. 477 pathogenic 
variants. 18,688 benign variants. D Same as C but excluding variants at the canonical acceptor and donor 
splice sites. 452 pathogenic variants. 18,686 benign variants. E The odds ratio enrichment of pathogenic 
versus benign variants across the ConSpliceML deciles uses all test set variants. Odds ratio values are 
highlighted in black above each bar. Error bars represent the 95% CI. The dotted horizontal line represents an 
odds ratio at 1
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et  al. found that SpliceAI was unable to fully distinguish between deleterious or neu-
tral splice-altering variants and non-splice-affecting variants at the + 2 position of splice 
donor sites. [136]

Lastly, we measured the enrichment of pathogenic versus benign variants observed 
across ConSpliceML score ranges to establish a rational scoring threshold for rare dis-
ease analyses (Fig. 5E, Additional file 1: Fig. S16). We observed a significant difference 
in the enrichment scores between pathogenic and benign variants starting at a Con-
SpliceML score of 0.5 (Fig. 5E). Further restricting variants to those outside of canonical 
sites and the splice region revealed a significant enrichment starting at a ConSpliceML 
score of 0.3 and 0.2, respectively (Additional file 1: Fig. S16A, B). Therefore, we recom-
mend that when using ConSpliceML, a score of 0.5 be used as a preliminary cutoff to 
distinguish pathogenic and benign splice altering variants. Subsequent iteration could 
reduce the cutoff to a lower ConSpliceML score to improve the sensitivity of identifying 
deleterious deep intronic and exonic splicing variants outside the splice region.

Discussion
Splicing is a highly regulated cellular process that, when disrupted, can lead to disease. 
Beyond a few nucleotides around exon–intron junctions, variants that could yield aber-
rant splicing are typically ignored during clinical diagnosis. There is growing evidence 
that cryptic splicing variants may underlie unsolved cases of rare disease and is a factor 
in the low diagnostic yield. Although multiple tools have been developed to improve the 
identification and interpretation of splice-altering variants, they largely underperform 
when interpreting intronic and exonic splice-altering variants outside the splice region. 
We developed a model of genetic constraint against aberrant splicing that combines pat-
terns of genetic variation observed in a large cohort of ostensibly healthy individuals 
with per-nucleotide splicing predictions from SpliceAI. To our knowledge, this model is 
the first constraint metric built specifically for aberrant splicing that can score the entire 
gene body rather than solely loci near coding regions.

However, since our model measures splicing constraint in genomic regions, it is 
insufficient to provide an accurate score at the nucleotide level for variant interpreta-
tion. Therefore, we created ConSpliceML, which combines regional constraint with per-
nucleotide splicing predictions from SpliceAI and SQUIRLS, providing a per-nucleotide 
prediction of pathogenic splicing in protein-coding genes. ConSpliceML outperforms 
state-of-the-art splicing prediction methods at differentiating pathogenic and benign 
splice altering variants, demonstrating the impact of including constraint on measures of 
potential deleteriousness.

However, ConSpliceML has notable limitations. First, population datasets, such as 
gnomAD, are far from reaching saturation for splicing variation, a common problem for 
pLoF variants [80]. This limitation will lessen as the number of human genomes increases 
in population genomic datasets. Another benefit of increasing the number of individu-
als in the human population datasets is that it provides additional power to increase the 
resolution of regional constraint models, which will help identify more focalized regions 
in a gene driving the splicing constraint. Secondly, there is a limited number of available 
pathogenic splicing variants, especially in deep intronic and exonic regions, in our truth 
set. This small set of variants limits our ability to measure ConSpliceML’s performance 
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outside of canonical splicing regions. Further evaluation of ConSpliceML and other 
methods will be necessary as the community identifies additional deep intronic and 
exonic splicing variants in studies of rare human diseases. Finally, the splicing constraint 
model is built using splice site gain and loss predictions from SpliceAI. Although the 
model does quite well in identifying constraint against splicing throughout the protein-
coding genome, there are other genomic variants (e.g., splicing eQTLs or structuiral 
variants) that disrupt splicing. While such variants are not currently accounted for, our 
model has the potential for future improvement as new techniques are developed to pre-
dict the consequence of such alterations on splicing.

Conclusion
Genetic constraint facilitates the interpretation of genomic variants in rare disease stud-
ies. ConSpliceML outperforms other prediction and interpretation methods for splic-
ing variants at the canonical donor and acceptor sites, in the splice region, and in deep 
intronic and exonic regions of protein-coding genes. We provide a command-line tool 
(https://​github.​com/​mikec​ormier/​ConSp​lice) that generates the splicing constraint 
model, trains ConSpliceML, and scores variants with both splicing constraint and Con-
SpliceML. We also offer a VCF [137] file with precomputed regional constraint score and 
ConSpliceML scores for all possible SNVs that could occur in protein-coding genes. We 
suggest an initial pathogenic cutoff of 0.5 when using ConSpliceML and subsequently 
reducing the cutoff for additional iterations to improve the sensitivity to identify delete-
rious splicing variants outside of the canonical splice regions. These resources allow for 
easy distribution of ConSpliceML to the research and clinical communities for improved 
splicing variant detection and interpretation. We anticipate that ConSpliceML will facili-
tate the clinical diagnoses for patients with rare diseases, as it identifies missing patho-
genic variants driving disease pathology.

Methods
Estimating substitution probabilities

Observed variants used to construct the substitution probabilities were identified using 
the genetic variation found in 76,156 individuals from v3.1.1 of gnomAD [80]. Vari-
ants were used only if they passed the following filtering criteria: the variant was a sin-
gle nucleotide variant (SNV), had a PASS filter, had an allele count >  = 1, had a least 
10X coverage in 50% of the samples, had a reference allele that matched the reference 
genome, was in a protein-coding gene determined by GENCODE [138, 139] v34 tran-
scripts, had an associated SpliceAI score prediction, and was not in the pathogenic or 
benign variant truth set. Additionally, any self-chain or segmental duplication region 
with a 95% or more identity to another region of the genome was excluded from the 
splicing constraint model. Because of the difference in constraint between the autosome 
and the X chromosome, two separate substitution probability matrices and two separate 
splicing constraint models were generated representing the autosome and the X chro-
mosome. The Y chromosome is excluded in these models.

Relative substitution probabilities were calculated by creating a substitution matrix 
that modeled each reference allele changing (or not) to any of the other alleles across 
all protein-coding genes. The reference to nonreference cells in the 4 × 4 matrix track 

https://github.com/mikecormier/ConSplice


Page 15 of 32Cormier et al. BMC Bioinformatics          (2022) 23:482 	

the number of per-reference to alternative observed variants from gnomAD that pass 
the filters mentioned above, while the reference to reference cells tracked the number of 
sites in protein-coding genes that did not have a gnomAD variant. A reference-specific 
substitution probability was then calculated using the marginal distribution of counts for 
each reference allele, where the probability represents the normalized counts of refer-
ence to non-reference alleles, which is the normalized difference between the total num-
ber of sites and the number of sites with no gnomAD variant for that reference allele.

These substitution probabilities were further refined using SpliceAI [76] predic-
tions, which provide an alternative splicing prediction for each nucleotide considered. 
SpliceAI allows us to consider the splicing specific substitution rate in coding and non-
coding regions of genes where before only the canonical donor and acceptor splice sites 
could confidently be used. Thus, the substitution probabilities can be transformed into 
splicing aware expectations, utilizing every site in protein-coding genes. Furthermore, 
SpliceAI uses the local sequence context around a nucleotide, 5 kb upstream and 5 kb 
downstream, to predict the effect of each nucleotide on splicing, thus adding a broader 
sequence context to the expectation calculation. SpliceAI provides four predictions for 
each nucleotide, including Acceptor Gain (AG), Acceptor Loss (AL), Donor Gain (DG), 
and Donor Loss (DL). We chose to use the sum of the four SpliceAI scores, sum(AG, AL, 
DG, DL), at a single site to account for nucleotides that may contribute to more than one 
of the four alternative splicing scenarios based on sequence context. For a given refer-
ence allele, SpliceAI provides predictions for each possible alternative SNV allele at that 
site. For sites without a gnomAD variant that passed the filters mentioned above, the 
sum of the four SpliceAI scores for each reference to alternative allele at that position 
was calculated and the max sum SpliceAI score was selected. For sites with a variant, the 
sum SpliceAI score was calculated using the four SpliceAI scores for the variant’s spe-
cific reference to the alternative allele.

The substitution matrix was updated by separating the reference to alternative allele 
counts into eight SpliceAI score range bins (Additional file 1: Fig. S1A) for each of the 
four reference alleles changing (or not) to the four alternative alleles. The final substitu-
tion probabilities were calculated by merging all GENCODE protein-coding transcripts, 
separated by positive and negative strand, and counting the number of gnomAD variants 
or sites without gnomAD variants across the merged transcripts, separated by SpliceAI 
score prediction and reference allele to alternative allele combination. The substitution 
probabilities were calculated as mentioned above, which resulted in 32 substitution 
probabilities based on a reference allele and SpliceAI score combination (Fig. 1A, Addi-
tional file  1: Fig. S1B, Additional file  1: Table  S1, S2). These substitution probabilities 
make up the global per-site expectation of seeing an alternative splicing variant based on 
the reference allele and SpliceAI score prediction for each nucleotide. Canonical GEN-
CODE transcripts, segmental duplication annotations, and self-chain annotations were 
obtained from the Go Get Data [140] (GGD) data management system.

Building the regional model of splicing constraint

To calculate the genetic constraint against aberrant splicing in coding and non-
coding regions of the genome, we sought to measure the degree to which the varia-
tion observed deviated from what would be expected given the relative substitution 
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probability matrix. Observed counts for a region were measured by adding up the 
number of gnomAD variants that passed previously stated filters and separated 
into 32 bins based on each variant’s reference allele and SpliceAI score prediction. 
Expected counts for the same region were based on the substitution probabilities for 
each nucleotide in the region, where each nucleotide was assigned an expectation 
from the substitution probability matrix based on the nucleotides reference allele and 
SpliceAI prediction, again separated into the 32 bins. Once observed and expected 
counts were collected for a region, the window was slid down the genome, and the 
observed and expected counts for the new region were collected. Finally, an Observed 
/ Expected (O/E) ratio was calculated for each region using the region’s observed 
counts and expected counts. First, an O/E ratio was calculated for each of the 32 bins 
in a region separately, weighted by the likelihood of that bin contributing to splicing. 
We include a likelihood weight here to boost the signal for constraint against splicing 
in a given region and reduce the noise from irrelevant alleles in that same region. Each 
bin’s likelihood weight was based on the proportion of sites in the genome with that 
reference allele and SpliceAI score range combination, where the weight was equal to 
one over the genome-wide proportion for that bin. Therefore, irrelevant alleles that 
do not contribute to splicing will be down-weighted, reducing noise, while relevant 
alleles that do contribute to splicing will be up-weighted, boosting the signal. Second, 
weighted O/E ratios for all 32 bins for a single region were summed together to get 
the final O/E ratio for that region.

32 bins = The 32 bins based on the combination of reference alleles and SpliceAI 
score ranges.
X = A weight based on the likelihood that bin i contributes to splicing (See below).
O = The observed counts at a specific reference allele + SpliceAI score range bin i.
E = The expected counts at a specific reference allele + SpliceAI score range bin i.

To normalize the observed and expected counts across each of the 32 bins per region, 
we set the observed and expected counts to a default value of 1.0. Using the equation 
above, these default values lead to a regional O/E distribution being centered at 0 rather 
than at 1. Additionally, these default values with the O/E equation above remove the 
lower limit of 0 seen in traditional O/E and chi-squared statistics to a continuous nega-
tive value lower limit, allowing for higher constraint to be represented by a larger nega-
tive value with a null O/E value expectation of 0.0, and higher O/E values representing 
an increase in constraint. The mean O/E value for single exon genes was arbitrarily 
increased in the positive direction to account for the absence of splicing in single-exon 
genes.

Once an O/E score was calculated for every region, the O/E scores were sorted from 
largest to smallest and assigned a normalized score between 0.0 and 1.0. A constraint 
score of 1.0 represents the most constrained region to splicing, while a constraint score 
of 0.0 represents the most tolerant region to splicing.

32bins

i=1

X[i] ∗
(O[i]− E[i])

(E[i])
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Due to the difference between the autosome and the X chromosome, substitu-
tion probabilities and splicing constraint models were generated separately for both 
the autosome and the X chromosome. The pseudoautosomal regions (PAR) on the 
X chromosome were excluded from the X chromosome model. (GRCh38) PAR 
1 = chrX:10,000–2,781,479, PAR 2 = chrX:155,701,382–156,030,895.

Evaluation of likelihood weights and optimal region sizes

To determine the best weighting approach among the six different likelihood weights 
used to develop the constraint model, performance was compared across each of the 
different weights using the pathogenic variants from HGMD and the validated benign 
alternative splicing variants in the benign set from GTEx (see “Pathogenic and benign 
variant truth set” methods section below). We found that the regional constraint model 
performed best when using the 1 / Proportion weight (Additional file 1: Fig. S17–S19). 
Additional file 1: Fig. S17–S19 also shows that the linear weighted model performs bet-
ter for larger regions.

Name of weight (X[i]) X[i] = 

Unweighted 1

Linear weighted SpliceAI score at i

Log weighted − 10* log10(Proportion[i])

1—Proportion weighted 1—Proportion[i]

1/Proportion weighted 1/Proportion [i]

1/Substitution rate weighted 1/Substitution probability at i

Where Proportion[i] represents the total proportion of sites in protein-coding genes 
with a reference allele and SpliceAI prediction in bin i.

Both the genic and regional constraint models were developed using a window-
based approach. The gene size defined the window sizes for the gene model. Intragenic 
regional models were defined by a window either equal to or smaller than the size of a 
gene. Specific regions were excluded from the model if there was less than 80% of the 
nucleotides in that region with a SpliceAI score. To maintain a sufficiently large window 
to calculate constraint, we only included windows that were above the significant cutoff 
for informative sites based on the critical value determined using the F distribution. The 
number of informative sites by window size was modeled with a Poisson distribution 
where lambda was set to the genome-wide proportion of sites in protein-coding genes 
that were predicted to affect splicing by SpliceAI with a SpliceAI score > 0.0 (Additional 
file 1: Fig. S1A, S7). The significance cutoff was based on the F distribution at an alpha 
value of 0.025 using 7 degrees of freedom representing the 8 proportion bins used to cal-
culate the proportion of informative sites. The critical value from the F distribution table 
is 6.5415, meaning a window needs at least 6.5415 informative variants to be significant. 
Additional file 1: Fig. S7 shows the number of informative sites per window size. Based 
on the significance cutoff, a window size of 50 bp or greater was used to generate the 
constraint model. Additional file 1: Fig. S10 shows the performance of various windows 
sizes using the 1/Proportion weight constraint model, where performance is assessed 
using the HGMD pathogenic variants and validated splice-altering benign variants from 
GTEx in the truth set. Figure 3A and Additional file 1: Fig. S8 provide additional testing 
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to evaluate the ability of each window size to capture focal constraint around 5′ and 3′ 
splice regions.

Regional splicing constraint score bins

For multiple analyses in this manuscript, the regional constraint scores are separated 
into decile bins. For each bin, any gene or variant with a regional constraint score within 
the bin’s range was included in that bin. For all but the last bin, genes and variants were 
included if their regional constraint score was equal to or greater than the lower value of 
the bin range and less than the upper value of the range. For the last bin, any gene or var-
iant with a regional constraint score greater than or equal to the lower value of the bin 
range and less than or equal to the upper value of the range were included in that bin.

Gene sets used to assess and compare splicing constraint

We used multiple gene sets to evaluate the genic splicing constraint scores based on pre-
viously established constraint expectations for those gene sets.

Gene Sets:

•	 Haploinsufficient genes We used a set of 294 genes determined to be dosage-sensitive 
in the ClinGen data set [141] and hosted on the Macarthur lab gene list GitHub page 
at https://​github.​com/​macar​thur-​lab/​gene_​lists/​blob/​master/​lists/​cling​en_​level3_​
genes_​2018_​09_​13.​tsv.

•	 Autosomal Dominant genes We used a combined set of 709 genes that were shown 
to follow an autosomal dominant inheritance pattern determined by Blekhman et al. 
[142] and Berg et  al. [143] hosted on the Macarthur lab GitHub page at: https://​
github.​com/​macar​thur-​lab/​gene_​lists/​blob/​master/​lists/​berg_​ad.​tsv.

•	 Autosomal Recessive genes We used a combined set of 1183 genes that were shown to 
follow an autosomal recessive inheritance pattern by Blekhman et al [142]. and Berg 
et al. [143] hosted on the Macarthur lab GitHub page at: https://​github.​com/​macar​
thur-​lab/​gene_​lists/​blob/​master/​lists/​all_​ar.​tsv.

•	 Olfactory Receptor genes We used a set of 371 Olfactory Receptor genes from the 
Mainland et  al. [144] paper hosted on the Macarthur lab GitHub page at: https://​
github.​com/​macar​thur-​lab/​gene_​lists/​blob/​master/​lists/​olfac​tory_​recep​tors.​tsv.

•	 CRISPR Essential and Nonessential genes We used a set of 683 essential genes and 
913 nonessential genes determined to be essential or nonessential, respectively, by 
CRISPR screens from Hart et al. [84] hosted on the Macarthur lab GitHub page at: 
essential genes: https://​github.​com/​macar​thur-​lab/​gene_​lists/​blob/​master/​lists/​
CEGv2_​subset_​unive​rse.​tsv, nonessential genes: https://​github.​com/​macar​thur-​lab/​
gene_​lists/​blob/​master/​lists/​NEGv1_​subset_​unive​rse.​tsv.

•	 Homozygous LoF tolerant genes We used a set of 1815 genes tolerant to high confi-
dent homozygous loss of function mutations in at least one individual in gnomAD 
found in Supplemental Table  S7 of the gnomAD paper [80]: https://​static-​conte​nt.​
sprin​ger.​com/​esm/​art%​3A10.​1038%​2Fs41​586-​020-​2308-7/​Media​Objec​ts/​41586_​
2020_​2308_​MOESM4_​ESM.​zip

•	 Developmental Delay and Intellectual Disability (DD/ID) genes We obtained a 
set of 2072 genes collected across multiple Deciphering Developmental Delay 

https://github.com/macarthur-lab/gene_lists/blob/master/lists/clingen_level3_genes_2018_09_13.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/clingen_level3_genes_2018_09_13.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/berg_ad.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/berg_ad.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/all_ar.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/all_ar.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/olfactory_receptors.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/olfactory_receptors.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/CEGv2_subset_universe.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/CEGv2_subset_universe.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/NEGv1_subset_universe.tsv
https://github.com/macarthur-lab/gene_lists/blob/master/lists/NEGv1_subset_universe.tsv
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2308-7/MediaObjects/41586_2020_2308_MOESM4_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2308-7/MediaObjects/41586_2020_2308_MOESM4_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2308-7/MediaObjects/41586_2020_2308_MOESM4_ESM.zip
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(DDD) studies hosted on the Gene 2 Phenotype [90] website: https://​www.​ebi.​
ac.​uk/​gene2​pheno​type/, csv file: https://​www.​ebi.​ac.​uk/​gene2​pheno​type/​downl​
oads/​DDG2P.​csv.​gz.

Genes in the Haploinsufficient, Autosomal Dominant, Autosomal Recessive, 
Olfactory Receptor, DD/ID, CRISPR Essential, and CRISPR Nonessential gene sets 
were each normalized to a value of one across the genic splicing constraint score 
spectrum to compare the proportion/fraction of genes in each constraint decile 
bin. Genes in the Homozygous LoF tolerant gene set were separated into constraint 
decile bins. For each genic splicing constraint decile bin, the number of Homozy-
gous LoF tolerant genes in a bin was divided by the total number of genes in that 
same bin to get the percent of Homozygous LoF tolerant genes by decile.

pLI and LOEUF constraint scores

The genic splicing constraint metric was compared to the probability of loss-of-
function intolerance (pLI) [81] and the loss-of-function observed/expected upper 
bound fraction (LOEUF) [80] metrics to establish if the splicing constraint metric 
captured known patterns of constraint. pLI and LOEUF were downloaded from the 
gnomAD browser using the constraint download link https://​gnomad-​public-​us-​
east-1.​s3.​amazo​naws.​com/​legacy/​exac_​brows​er/​forweb_​clean​ed_​exac_​r03_​march​
16_z_​data_​pLI_​CNV-​final.​txt.​gz for pLI and the constraint download link https://​
gnomad-​public-​us-​east-1.​s3.​amazo​naws.​com/​relea​se/2.​1.1/​const​raint/​gnomad.​v2.1.​
1.​lof_​metri​cs.​by_​gene.​txt.​bgz for LOEUF. The “pLI” column and the “oe_lof_upper_
bin” column were used for the pLI score and the LOEUF score in their respective 
files.

Splicing constraint and pLI scores are ranked from least to most constrained from 
0.0 to 1.0. LOEUF scores are ranked in the opposite direction with the most con-
strained gene assigned a LEOUF decile of 0 and the least constrained gene assigned a 
LOEUF decile of 9. To compared LOEUF to pLI and splicing constraint, we reversed 
the LOEUF deciles so that the ranking was oriented in the same direction as pLI 
and splicing constraint, and relabeled the deciles to match the pLI and splicing con-
straint decile bins. Therefore, LOEUF deciles in this mansucript are as follows:

Original LOEUF decile Reversed and 
relabeled LOEUF 
decile

9 0.0–0.1

8 0.1–0.2

7 0.2–0.3

6 0.3–0.4

5 0.4–0.5

4 0.5–0.6

3 0.6–0.7

2 0.7–0.8

1 0.8–0.9

0 0.9–1.0

https://www.ebi.ac.uk/gene2phenotype/
https://www.ebi.ac.uk/gene2phenotype/
https://www.ebi.ac.uk/gene2phenotype/downloads/DDG2P.csv.gz
https://www.ebi.ac.uk/gene2phenotype/downloads/DDG2P.csv.gz
https://gnomad-public-us-east-1.s3.amazonaws.com/legacy/exac_browser/forweb_cleaned_exac_r03_march16_z_data_pLI_CNV-final.txt.gz
https://gnomad-public-us-east-1.s3.amazonaws.com/legacy/exac_browser/forweb_cleaned_exac_r03_march16_z_data_pLI_CNV-final.txt.gz
https://gnomad-public-us-east-1.s3.amazonaws.com/legacy/exac_browser/forweb_cleaned_exac_r03_march16_z_data_pLI_CNV-final.txt.gz
https://gnomad-public-us-east-1.s3.amazonaws.com/release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz
https://gnomad-public-us-east-1.s3.amazonaws.com/release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz
https://gnomad-public-us-east-1.s3.amazonaws.com/release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz
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Comparing genic splicing constraint to gene dosage sensitivity using VG estimates 

from GTEx

To assess the correlation between splicing constraint and gene dosage, we used the 
average genetic variation in gene expression (VG) values created from GTEx data by 
Mohammadi et al. [92] located in their Additional file 1: Table S1. The average VG values 
are a per gene weighted harmonic mean across tissues in natural log units. We removed 
any outlier VG value that was > 10 standard deviations from the mean. We assigned each 
gene its cross-tissue average VG value and separated them into ConSplice score decile 
bins. We plotted the distribution of average VG values per constraint decile bin as box 
plots. The interquartile range (IQR) of the boxes ranges from the 25th to 75th percentile. 
The horizontal line in each box represents the median. The whiskers are 1.5X the IQR. 
Outlier values are not included in the plot.

To test for a significant negative correlation between the splicing constraint of a gene 
and its estimated genic expression, we ran an ordinary least squares (OLS) linear regres-
sion using the splicing constraint scores and VG values. We also controlled for the num-
ber of exons per gene in the regression to rule out any covariant significance driven by 
the number of splicing events in a gene. The mean fold difference of variance in gene 
expression between the lowest and highest constraint decile bins was calculated by tak-
ing the mean VG value in the 0.0–0.1 decile and dividing by the mean VG values in the 
0.9–1.0 decile. We further tested for a significant difference in VG distributions between 
different constraint bins. We compared each bin to every other bin in a pair-wise man-
ner using a t-test of independence. The p-values were adjusted using the Benjamini 
Hochberg approach with an alpha value of 0.01. FDR adjusted p-values can be found in 
Additional file 1: Fig. S4.

Comparing genic splicing constraint to GTEx splicing outliers

Splicing Outliers from Ferraro et  al. [95] were obtained from the GTEx portal within 
the version 8 data release file named “gtexV8.sOutlier.stats.globalOutliers.removed.txt.
gz” under the “Outlier Calls” heading: https://​stora​ge.​googl​eapis.​com/​gtex_​analy​sis_​v8/​
outli​er_​calls/​GTEx_​v8_​outli​er_​calls.​zip. The data within the sOutiler file represent the 
per gene cross-tissue p-values for splicing outliers found for each GTEx sample, where 
the p-values were determined using the SPOT [95] metric. For a sOutlier to be included 
in this dataset for a sample, it needed to have been present in multiple tissues based 
on the requirements from Ferraro et al. These events represent a highly confident set of 
sOutliers.

Ferraro et  al. determined that a p-value cutoff of 0.0027 was adequate to determine 
whether or not a cross-tissue splicing outlier was significant or not. We used the same 
p-value cutoff and designated significant sOutliers as those with a p-value < 0.0027. For 
each gene, we counted the number of individuals in GTEx that had a significant cross-
tissue sOutlier p-value.

Using the gene designation within the sOutlier file, we added the associated constraint 
scores. We counted the number of genes with 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and > 10 sOutli-
ers per each constraint decile bin. That is, how many genes within a constraint decile bin 
have zero significant sOutilers, one significant sOutlier, and so on. We then normalized 
the total number of sOutlier genes (i.e., genes from the sOutlier file) for each constraint 

https://storage.googleapis.com/gtex_analysis_v8/outlier_calls/GTEx_v8_outlier_calls.zip
https://storage.googleapis.com/gtex_analysis_v8/outlier_calls/GTEx_v8_outlier_calls.zip
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decile bin. The total normalized number of sOultier genes in a constraint decile bin will 
sum to 1. Figure 3C shows the normalized values for genes with zero sOutliers per con-
straint bin. Additional file 1: Fig. S5B shows the normalized values for the genes with at 
least one sOutlier. Significance was determined using OLS linear regression.

Assessing regional constraint in constitutive vs cassette exons

We used constitutive and cassette exons from the HEXEvent database [98] to evaluate 
the regional splicing constraint metric around exons. Exon definitions were downloaded 
from the HEXEvent website http://​hexev​ent.​mmg.​uci.​edu/​cgi-​bin/​HEXEv​ent/​HEXEv​
entWEB.​cgi for the GRCh38 genome build. For each exon, HEXEvent provides a meas-
ure of exon inclusion called the constitutive level (constLevel). The inclusion level for 
each exon provided by HEXEvent was used to determine “Full Inclusion” constitutive 
exons, “High Inclusion” cassette exons, and “Moderate Inclusion” cassette exons. High 
inclusion cassette exons were defined as exons with an inclusion >  = 90% and < 100% 
based on previous work defining a 90% cutoff [98, 99]. Moderate inclusion cassette exons 
included all exons with an inclusion rate < 90%.

For each exon, a regional constraint score was identified at 25 bp intervals from the 5′ 
and 3′ ends of the exon, moving upstream and downstream of the exon into the intron, 
respectively. These intervals continued until the upstream and downstream exon had 
been reached. The list of regional scores for exons on the negative strand was re-oriented 
to match the positive strand in a 5′ to 3′ manner. Solid lines represent the median Con-
Splice score at each 25 bp interval. The opaque shading around the solid lines represents 
the 95% confidence interval calculated using bootstrap with 1000 iterations.

Splicing unaware model of constraint

To determine if the regional model of splicing constraint was identifying the constraint of 
coding regions compared to non-coding regions alone or identifying the signal of splic-
ing beyond coding regions, we created multiple regional models of constraint unaware 
of splicing to compare to the splicing aware models of constraint. The same approach 
already described for the splicing constraint model was used to create the splicing una-
ware model of constraint. The difference between the two models lies in the inclusion or 
exclusion of SpliceAI predictions to inform the model, where the splicing aware model 
of constraint uses the SpliceAI prediction and the splicing unaware model of constraint 
excludes the SpliceAI predictions. Additionally, since SpliceAI predictions are excluded 
from the splicing unaware model of constraint, the splicing likelihood weights used to 
calculate constraint were also excluded, representing an unweighted model.

Assessing regional constraint in poison exons

Genomic coordinates for the three poison exons in SCN1A seen in Fig. 3B and Addi-
tional file  1: Fig. S12 that cause nonsense-mediated decay (NMD) leading to Dravet 
Syndrome (DRVT [MIM: 607208]) were collected from Steward et al. [101], (Additional 
file  1: Table  S3). IGV [145] was used to visualize the constraint score profiles around 
each exon feature. Constraint scores reflect the 50 bp regional constraint model. Addi-
tional file 1: Table S3 also contains the coordinates of the three randomly selected exons 
in SCN1A seen in Fig. 3C and Additional file 1: Fig. S12. To identify the ranking for each 

http://hexevent.mmg.uci.edu/cgi-bin/HEXEvent/HEXEventWEB.cgi
http://hexevent.mmg.uci.edu/cgi-bin/HEXEvent/HEXEventWEB.cgi
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poison exon in SCN1A, all constraint scores in SCN1A were sorted and assigned a score 
between 0.0 and 1.0. The max constraint score that overlapped each poison exon was at 
or above the 92nd percentile for SCN1A constraint scores.

Coding sequencing (CDS) annotations were used to distinguish coding and noncoding 
sequences in SCN1A. Canonical splice sites were determined based on the − 1, − 2, + 1, 
and + 2 positions around each CDS exon, excluding the − 1 and − 2 positions of the first 
exon and the + 1 and + 2 positions of the last exon which do not participate in splicing. 
The distribution of regional constraint scores was plotted based on if the region over-
lapped a CDS region or not, or a canonical splice site (Additional file 1: Fig. S11). IQR of 
the boxes ranges from the 25th to 75th percentile. The horizontal line in each box repre-
sents the median. The whiskers are 1.5X the IQR. The max regional constraint score for 
each poison exon is plotted as points along the distribution. The max regional constraint 
score for each poison exon was in the top 2% of scores for noncoding regions in SCN1A, 
and is similar to the constraint in both CDS regions and canonical splice site regions.

Manually curated pathogenic splice altering variants

We identified 376 autosomal noncanonical pathogenic splice altering variants by review-
ing scientific medical literature. Each variant in this list has functional support for its 
effect on splicing and an association with a Mendelian disorder. Variants at the canoni-
cal donor and acceptor splice sites were explicitly excluded from this set. For each vari-
ant, we include PubMed ids for the papers the describe the variant, dbSNP [146] RS ids, 
Clinvar [147] ids along with review status, gnomAD v2 and v3 allele frequencies, online 
mendelian inheritance of man (OMIM) [148] ids, the relative exonic position, and the 
number of bases from the nearest exon–intron junction. Each variant also has a SpliceAI 
score, a SQUIRLS score, a CADD v1.6 score, and a 50  bp regional constraint score. 
(Additional file 2: Table S4).

IGV was used to visualize the regional constraint profiles in ACVRL1 found in 
Fig.  4A–C. The variant position was plotted on the gene track as a red lollipop. The 
50 bp constraint region containing the variant is circled in red. The regional constraint 
score for each variant is listed below the variant lollipop in red. The right y-axis shows 
the regional constraint score. The left y-axis shows the log scaled constraint scores using 
the following equation: − 10 * log10(1—constraint score). The constraint profile is plot-
ted using the log scaled scores. Variants in Additional file 1: Fig. S13 were identified from 
Frésard et al. [125] and Murdock et al. [126] and plotted using the same approach for the 
ACVRL1 gene described above.

The count of variants from the set at each relative exonic position was plotted in the 
5’ to 3’ direction from left to right. Variants greater than 10  bp away from the exon–
intron junction were labeled as deep intronic and deep exonic variants. The distribution 
of scores for each variant in the set from CADD-Splice (the splicing version of CADD 
v1.6), SpliceAI, SQURILS, and regional constraint are plotted as boxplots with the IQR 
ranging from the 25th to the 75th percentile, median scores represented by the black 
vertical line in each box, and the whiskers 1.5X the IQR. Outliers beyond the whiskers 
are not plotted.

The 50 bp regional constraint model was used for all analyses in this section.
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Pathogenic and benign variant truth set

The 18,317 filtered variants in the pathogenic truth set were identified from the 
Human Gene Mutation Database [127–129] (HGMD). Each pathogenic variant 
leads to deleterious splicing and was labeled as a disease-causing mutation (DM) by 
HGMD. Variants were downloaded from Q1 of 2021. Variants not on the autosome 
and that did not have a CADD score, SpliceAI score, SQUIRLS score, and regional 
constraint score were excluded from the analysis. The relative exonic position was 
identified using the combination of the “type” and “location” columns in the data-
set. Due to licensing agreements with HGMD, we are not allowed to share these vari-
ants publicly. For those who do have an HGMD commercial license, we provide the 
MySQL command to download the HGMD variants in the “Availability of Data and 
Materials” section WGS below.

The 48,978 filtered variants in the benign truth set come from a combination of de 
novo mutations (DNM) from whole-genome sequencing of multi-generational [130] 
and two generation [131] families, and a set of validated benign splice altering vari-
ants in GTEx [76]. Second and third-generation DNMs from the multi-generational 
family study were downloaded from https://​github.​com/​quinl​an-​lab/​ceph-​dnm-​
manus​cript. These DNMs were lifted over from GRCh37 to GRCh38. DNMs from 
1,548 two-generation trios were downloaded from Supplemental Table 4 of the Jóns-
son et al. paper [131]. These DNMs were already in GRCh38. Validated benign splice 
altering variants seen in 1–4 individuals in the GTEx RNA-seq data were downloaded 
from Jaganathan et al. [76] Variants were lifted over from GRCH37 to GRCh38.

Variants in the benign truth set outside of protein-coding genes were filtered out 
of the set. All remaining variants were then scored with CADD, SpliceAI, SQUIRLS, 
and regional constraint. Any variant that did not have a score from CADD, SpliceAI, 
SQUIRLS, and regional constraint was removed from the set. The relative exonic 
position was added to each variant using the canonical transcripts in GENCODE v34. 
This benign set is available in Additional file 3: Table S5.

The ConSpliceML model

The ConSpliceML model is deployed using a Random Forest (RF) ensemble machine 
learning approach, a supervised classification machine learning algorithm based on a 
collection of decision trees, implemented using the scikit-learn [149] python API. The 
RF uses the regional constraint, SpliceAI, and SQUIRLS scores as a feature vector with 
a pathogenic or benign label for each variant to create the decision trees that make up 
the model. ConSpliceML is made up of 1000 decision trees. The ConSpliceML model 
provides a prediction at a per-base resolution on a range from 0.0 to 1.0, describing the 
probability that a variant is a pathogenic splice-altering variant. The model used in this 
manuscript can be found in the manuscript GitHub repository at https://​github.​com/​
mikec​ormier/​ConSp​lice-​manus​cript and is implemented as a python module found at 
https://​github.​com/​mikec​ormier/​ConSp​lice. The precomputed ConSpliceML scores in 
the vcf file we provide were generated using the ConSpliceML python module at https://​
github.​com/​mikec​ormier/​ConSp​lice, where the model was trained using the full collec-
tion of pathogenic and benign variants in the truth set.

https://github.com/quinlan-lab/ceph-dnm-manuscript
https://github.com/quinlan-lab/ceph-dnm-manuscript
https://github.com/mikecormier/ConSplice-manuscript
https://github.com/mikecormier/ConSplice-manuscript
https://github.com/mikecormier/ConSplice
https://github.com/mikecormier/ConSplice
https://github.com/mikecormier/ConSplice
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Scoring variants

We used CADD v1.6, also known as the splicing version of CADD called CADD-
Splice, for the CADD scores used in our dataset. GRCh38 CADD v1.6 scores for all 
possible SNVs were downloaded from the CADD website at https://​cadd.​gs.​washi​
ngton.​edu/​downl​oad. Variants were assigned a CADD score based on the genomic 
position, reference allele, and alternative allele.

GRCh38 SpliceAI v1.3.1 pre-computed scores for SNVs in protein-coding genes 
were downloaded following the instructions found on SpliceAI’s GitHub page at 
https://​github.​com/​Illum​ina/​Splic​eAI. Variants were assigned a SpliceAI score using 
the genomic position, reference allele, alternative allele, and gene name.

SQUIRLS version 1.0.0 was downloaded following the instructions outlined in the 
SQUILRS documentation at https://​squir​ls.​readt​hedocs.​io/​en/​latest/. Variants were 
scored using the GRCh38 SQUIRLS CLI.

The regional splicing constraint score was assigned to each variant using the Con-
Splice CLI: https://​github.​com/​mikec​ormier/​ConSp​lice.

ConSpliceML scores were generated using the trained RF with the ConSplice, Max 
SpliceAI, and Max SQUIRLS scores from each test variant as the input feature vector. 
ConSpliceML then provides a pathogenic probability score that ranges from 0.0 to 
1.0.

Training and testing ConSpliceML

We used 60% of the truth set for training the ConSpliceML model and 40% for testing. 
The test set was excluded from all training of the ConSpliceML model and represents 
an independent set of variants for testing. We eliminated possible overfitting based 
on variants in the training and test set not falling in the same splicing constraint 
region. The variants within a region that containes multiple variants in the truth set 
were randomly assigned to either the training set or tests set using the 60/40% split. 
This approach eliminates any variants in the training set falling in the same splic-
ing constraint region as those in the test set. With the training set, we used a strati-
fied five-fold cross-validation approach to train and validate the training accuracy of 
the ConSpliceML model. Each of the five folds had a distinct 20% of pathogenic and 
benign variants not shared by any of the other folds used for validation. The variants 
used to train each fold used the 80% remaining variants in the training set not found 
in the validation set for that fold. The number of pathogenic and benign variants in 
each fold was consistent across all folds. Pathogenic and benign variants were labeled 
as such. Due to a large difference in the number of pathogenic to benign variants, 
Precision-Recall (PR) was assessed, as it is more suitable for imbalanced datasets. 
PR curves were generated and compared across each of the five folds to evaluate the 
training accuracy, stability, and consistency of the ConSpliceML model (Additional 
file  1: Fig. S14). The combined average performance across all five folds was also 
assessed in the same plot.

Finally, the ConSpliceML model was trained using the training set, and the per-
formance of CADD, SpliceAI, SQUIRLS, and ConSpliceML was assessed using the 
hold-out test set. The area under the precision-recall curve (PR AUR) and the average 

https://cadd.gs.washington.edu/download
https://cadd.gs.washington.edu/download
https://github.com/Illumina/SpliceAI
https://squirls.readthedocs.io/en/latest/
https://github.com/mikecormier/ConSplice
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precision score (Ave. PR Score) are provided for each PR curve. The Ave. PR Score is 
a weighted mean of precision occurring at each threshold weighted by the difference 
in recall from the previous threshold and is a more accurate measure of performance.

Pi = The precision at the ith threshold.
Ri = The recall at the ith threshold.

The dotted horizontal baseline in each PR plot represents the random chance predic-
tion and is calculated as follows:

P = The number of pathogenic variants
B = the number of benign variants

Odds ratio enrichment

To measure the enrichment of pathogenic to benign variants along the ConSpliceML 
score range, we measure the ratio of pathogenic variants to benign variants in a Con-
SpliceML decile divided by the ratio of pathogenic to benign variants not in the decile. 
That is, we calculate the odds ratio (OR) of pathogenic to benign variants at each Con-
SpliceML decile.

ORi = The odds ratio of pathogenic to benign variants for the ConSpliceML decile i.
Ai = The number of pathogenic variants in the ConSpliceML decile i.
Bi = The number of benign variants in the ConSpliceML decile i.
Cnot i = The number of pathogenic variants not in the ConSpliceML decile i.
Dnot i = The number of benign variants not in the ConSpliceML decile i.

We calculate the 95% confidence interval (CI) for each OR as follows:

Ave. PR Score =
∑

i

(Ri − Ri−1)Pi

PR baseline =
p

P + B

ORi =
Ai/Bi

Cnoti/Dnoti
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OR by decile was plotted as bar plots with whiskers as the 95% CI. The OR values for 
each decile are indicated above each bar. The dotted line at an OR of 1 indicates no dif-
ference in the ratio of pathogenic to benign variants.
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ing constraint model were downloaded using the GGD [140] CLI under the GGD data package name “grch38-canonical-
transcript-features-gencode-v1”. (https://​goget​data.​github.​io/​recip​es/​genom​ics/​Homo_​sapie​ns/​GRCh38/​grch38-​canon​
ical-​trans​cript-​featu​res-​genco​de-​v1/​README.​html). The segmental duplications and self-chain genomic repeat bed files 
used to create the splicing constraint model were downloaded using the GGD cli under the GGD data package names 
“grch38-segmental-dups-ucsc-v1” and “grch38-self-chain-ucsc-v1”, respectively. (https://​goget​data.​github.​io/​recip​es/​
genom​ics/​Homo_​sapie​ns/​GRCh38/​grch38-​segme​ntal-​dups-​ucsc-​v1/​README.​html, https://​goget​data.​github.​io/​recip​
es/​genom​ics/​Homo_​sapie​ns/​GRCh38/​grch38-​self-​chain-​ucsc-​v1/​README.​html). The GGD [140] documentation can 
be found at https://​goget​data.​github.​io/. Gene sets used to test the genic splicing constraint model were obtained 
from the following resources: Gene 2 Phenotype [90]: https://​github.​com/​macar​thur-​lab/​gene_​lists/​blob/​master/​lists/​
homoz​ygous_​lof_​toler​ant_​twohit.​tsv. Haploinsufficient Genes [141]: https://​github.​com/​macar​thur-​lab/​gene_​lists/​blob/​
master/​lists/​cling​en_​level3_​genes_​2018_​09_​13.​tsv. Autosomal Dominant Genes [142, 143]: https://​github.​com/​macar​
thur-​lab/​gene_​lists/​blob/​master/​lists/​berg_​ad.​tsv. Autosomal Recessive Genes [142, 143]: https://​github.​com/​macar​
thur-​lab/​gene_​lists/​blob/​master/​lists/​all_​ar.​tsv. Olfactory Receptor Genes [144]: https://​github.​com/​macar​thur-​lab/​
gene_​lists/​blob/​master/​lists/​olfac​tory_​recep​tors.​tsv. CRISPR Essential Genes [84]: https://​github.​com/​macar​thur-​lab/​
gene_​lists/​blob/​master/​lists/​CEGv2_​subset_​unive​rse.​tsv. CRISPR Non-essential Genes [84]: https://​github.​com/​macar​
thur-​lab/​gene_​lists/​blob/​master/​lists/​NEGv1_​subset_​unive​rse.​tsv. Homozygous LoF Genes from supplemental Table S7 
of the gnomAD paper [80]: https://​static-​conte​nt.​sprin​ger.​com/​esm/​art%​3A10.​1038%​2Fs41​586-​020-​2308-7/​Media​Objec​
ts/​41586_​2020_​2308_​MOESM4_​ESM.​zip. VG values created from GTEx data were downloaded from Additional file 1: 
Table S1 in the Mohammadi et al. [92] paper. Splicing Outliers from Ferraro et al. [95] were obtained from the GTEx portal 
https://​www.​gtexp​ortal.​org/​home/ within the version 8 data release file named “gtexV8.sOutlier.stats.globalOutliers.
removed.txt.gz” under the “Outlier Calls” heading: https://​stora​ge.​googl​eapis.​com/​gtex_​analy​sis_​v8/​outli​er_​calls/​GTEx_​
v8_​outli​er_​calls.​zip. The GRCh38 constitutive and cassette exons were downloaded from the HEXEvent website http://​
hexev​ent.​mmg.​uci.​edu/​cgi-​bin/​HEXEv​ent/​HEXEv​entWEB.​cgi.
The manually curated noncanonical pathogenic splicing variants are available in Additional file 2: Table S4 of this 
manuscript. SQUIRLS v1.0.0 was downloaded following the instructions outlined in the SQUIRLS documentation: https://​
squir​ls.​readt​hedocs.​io/​en/​latest/. The disease-causing, splice-altering variants from HGMD were downloaded from the 
HGMD website http://​www.​hgmd.​cf.​ac.​uk/ under the HGMD commercial license using version Q1 of 2021. Due to HGMD 
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commercial licensing, we are not allowed to share these variants publicly, but we provide the following SQL command 
for reproducibility if you obtain an HGMD commercial license. Variants were downloaded using the following MySQL 
command from the MySQL import of HGMD 2021q1 SQL dump: SELECT*FROM splice INNER JOIN hgmd_hg38_vcf ON 
acc_num = hgmd_hg38_vcf.id. The set of benign variants used in this manuscript are available in Additional file 3: Tables 
S5 of this manuscript. Scripts, data requirements, and other information that can be used to reproduce the results in this 
manuscript can be found at the ConSplice manuscript GitHub repo https://​github.​com/​mikec​ormier/​ConSp​lice-​manus​
cript.
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