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Abstract 

Background:  Modern biomedical research is data-driven and relies heavily on the 
re-use and sharing of data. Biomedical data, however, is subject to strict data protec-
tion requirements. Due to the complexity of the data required and the scale of data 
use, obtaining informed consent is often infeasible. Other methods, such as anonymi-
zation or federation, in turn have their own limitations. Secure multi-party computa-
tion (SMPC) is a cryptographic technology for distributed calculations, which brings 
formally provable security and privacy guarantees and can be used to implement a 
wide-range of analytical approaches. As a relatively new technology, SMPC is still rarely 
used in real-world biomedical data sharing activities due to several barriers, including 
its technical complexity and lack of usability.

Results:  To overcome these barriers, we have developed the tool EasySMPC, which 
is implemented in Java as a cross-platform, stand-alone desktop application provided 
as open-source software. The tool makes use of the SMPC method Arithmetic Secret 
Sharing, which allows to securely sum up pre-defined sets of variables among different 
parties in two rounds of communication (input sharing and output reconstruction) and 
integrates this method into a graphical user interface. No additional software services 
need to be set up or configured, as EasySMPC uses the most widespread digital com-
munication channel available: e-mails. No cryptographic keys need to be exchanged 
between the parties and e-mails are exchanged automatically by the software. To 
demonstrate the practicability of our solution, we evaluated its performance in a wide 
range of data sharing scenarios. The results of our evaluation show that our approach 
is scalable (summing up 10,000 variables between 20 parties takes less than 300 s) and 
that the number of participants is the essential factor.

Conclusions:  We have developed an easy-to-use “no-code solution” for performing 
secure joint calculations on biomedical data using SMPC protocols, which is suitable for 
use by scientists without IT expertise and which has no special infrastructure require-
ments. We believe that innovative approaches to data sharing with SMPC are needed 
to foster the translation of complex protocols into practice.

Keywords:  Secure multi-party computation, SMPC, Secret sharing, GMW protocol, 
User experience, No-code, Joint calculations
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Background
Introduction

Biomedical research is becoming increasingly data-driven [1]. To create the large data-
sets needed to answer precise scientific questions, data needs to be re-used for more 
than the initial purpose of collection and shared between different actors in the health-
care system and the research community [2–7]. As a consequence, “data sharing” is 
endorsed by various funding agencies (e.g., [8–10]) and increasingly implemented in 
practice [11, 12]. The term "data sharing" is used in a variety of ways. In this paper, we 
use it to refer to joint analyses of data stored at different institutions, which does not 
necessarily require the exchange of individual-level data. In research, data sharing can 
enable the generation of new knowledge (e.g., [13]) and also lead to higher citation rates 
[14, 15]. In addition to the increasing promotion of data sharing, there are also major 
hurdles to its adoption. Here, data protection and data privacy concerns are a central 
example (e.g., [7]). However, patients and the public have a positive attitude toward data 
sharing as long as their privacy is being protected [16–18].

Important laws protecting the privacy of patients and probands include the US Health 
Insurance Portability and Accountability Act (HIPAA) [19] and the EU General Data 
Protection Regulation (GDPR) [20]. Re-using or sharing data typically requires either 
(1) obtaining informed consent or (2) anonymizing the data [21]. However, on the one 
hand, obtaining consent is often infeasible, e.g., when data is analyzed in retrospect [22]. 
Anonymization, on the other hand, requires making inherent trade-offs between the 
degree of protection and the quality and hence utility of output data [23], often render-
ing individual-level data unsuited for answering medical research questions. As a result, 
a range of alternative approaches have been developed [24]. One example are distrib-
uted data sharing networks, in which no individual-level data, but aggregated results, are 
being shared amongst the partners to perform various types of joint analyses [25–27]. 
However, also this approach has limitations, for example when very small patient popu-
lations, e.g., with rare diseases, are to be studied, whose data cannot be aggregated [28].

Secure multi-party computation (SMPC) is an emerging cryptographic technology 
[29–31], which can be used to address the shortcomings of federated data networks. On 
an abstract level, SMPC protocols provide guarantees comparable to those of a trusted 
third party, with which the participating parties share their data with [32]. This trusted 
third party performs joint analyses and sends only the results back to the participants. 
The involved parties do not directly exchange data with each other and hence no infor-
mation is being disclosed between them. SMPC can provide exactly the same guaran-
tees by following specific cryptographic protocols that exchange encrypted data between 
the parties—without a trusted third party being involved. SMPC offers provable security 
guarantees and clearly stated assumptions. Especially for extremely sensitive informa-
tion, including various types of biomedical data as targeted in this work, those strong 
guarantees provide a way to perform distributed analyses that otherwise could not be 
performed due to data protection challenges.

As a relatively new technology, SMPC has only been implemented for practical data 
sharing in the last few years [33–35] and it has been argued that this is the case in bio-
medical research as well [36, 37]. While some examples have been described in the lit-
erature, e.g., for survival analyses, genome-wide association studies [38–41], genomic 
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diagnostics, detection of adverse drug events, or infection numbers during the COVID-
19-epidemic [42] (see Section “Comparison with Prior Work”), these are mostly research 
prototypes or specific implementations of SMPC for specific analyses in the context of 
specific projects. There are several reasons for the slow adoption of SMPC technologies, 
amongst which are legal barriers, communication barriers, technical barriers and usabil-
ity challenges (see “Limitations and future work” section).

Challenges and objectives

In the work described in this paper, we addressed two important barriers—technical 
complexity and usability—to foster the adoption of SMPC technologies for biomedical 
data sharing:

1.	 Technical complexity: To enable distributed analyses of data across institutions, 
external queries against local IT solutions must be allowed and responses must be 
returned. This requires the installation of local services and an opening up of institu-
tional firewalls. Both needs to be done with great care, which can lead to high efforts 
and potentially a reluctance to participate in data sharing networks.

2.	 Usability: SMPC protocols are typically implemented as command-line applications 
or provided as programming libraries (e.g., for statistical computing environments), 
thus addressing technical specialists, data scientists or other SMPC researchers. This 
makes it difficult for scientists involved in biomedical research projects, such as clini-
cians, to engage in SMPC-based data sharing.

We tackled these challenges by developing EasySMPC, which provides a “no-code solu-
tion” for securely performing joint calculations on distributed data using an intuitive 
graphical application. Moreover, no local services need to be installed and no permis-
sive network configuration is necessary, as the application uses e-mails to exchange data 
between the participants while executing its protocol. To demonstrate the practicability 
of our solution, we evaluated its performance in a wide range of data sharing scenarios.

Implementation
Secure multi‑party computation

SMPC describes a field of cryptographic techniques concerned with joint computa-
tions while maintaining confidentiality guarantees regarding the parties’ secret inputs. 
The field emerged in the 1980s with Andrew Yao’s publication of the “Garbled Circuits” 
protocol [43]. Another widely used SMPC method is the GMW-Protocol [44], which 
describes a way to securely compute a joint (Boolean) function on the secret inputs of n 
parties. The underlying Boolean circuit uses only logical AND and XOR operations (that 
is, it states the function in algebraic normal form).

The GMW protocol can easily be extended to not only operate on Boolean circuits 
with logical values, but also on Arithmetic circuits with values of a finite ring. The idea 
of the secret sharing scheme is the same in both variants: generate shares (henceforth 
called “secret shares”) by mixing the secret value with randomness so that the combina-
tion of all shares results in the reconstructed secret. In the joint arithmetic computation, 
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additions can be evaluated locally and multiplications are evaluated using interactive 
sub-protocols, such as the Gilboa-Multiplication for the two-party case [45].

This arithmetic extension of the GMW protocol, referred to as Arithmetic Secret Shar-
ing, is the central method implemented in EasySMPC. For further information, we refer 
interested readers to Additional file  1 of this paper and to the literature (the book by 
Evans et al. provides a good starting point [46]).

Design of EasySMPC

General approach

The general idea of EasySMPC is to provide a user-friendly tool for making SMPC-based 
data sharing available through an intuitive interface. EasySMPC uses Arithmetic Secret 
Sharing over the finite ring Z 2

127
− 1  , that is a ring of integers with 2127 − 1 elements. 

This assures, that for all practical values and number of parties the computation will not 
be restricted by the size of the finite field.1 As we only employ addition in this version, 
the protocol can be evaluated with two rounds of communication: first one round of 
sending/receiving shares for the values that are to be kept secret (e.g., case numbers of 
a rare disease in a hospital), hence revealing no information, and then a second round 
of sending/receiving shares for the intermediate results which can then be recombined 
to obtain the final result. As an inherent property of this family of secure protocols, this 
can be implemented without exchanging cryptographic keys in the classical sense during 
set up or prior to a computation, which is an additional factor contributing to the usabil-
ity of the tool. Finally, we note that the scheme used by EasySMPC is a "full-threshold" 
protocol, meaning that it is robust against up to n − 1 corrupted parties, where n is the 
total number of participating parties, thus, providing a very high degree of protection.

From the user perspective, EasySMPC uses three concepts: (1) Studies are the over-
arching concept composed of participants, variables and protocol states; (2) Participants 
refer to different people or institutions, such as hospitals, who wish to engage in a com-
mon computation. Participants are identified by their name and e-mail address. Each 
study is initiated by exactly one study creator and involves two or more additional par-
ticipants; (3) Variables refer to the data items that are independently summed up in one 
data sharing process and which are identified by unique names.

Figure 1 provides an overview of the overall process implemented by EasySMPC and 
the different steps that users need go through when using the tool.

As depicted, the process consists of two rounds of data exchange: In the first round, 
meta-data and the shares for the participants’ secret values are exchanged. For this 
purpose, the study initiator creates the study, thereby providing a study name, a list 
of participants and their contact details as well as the list of (named) variables that 
will be summed up. The initiator also enters their own secret value for each varia-
ble, which will remain confidential. The sharable information is then sent to all other 
participants. Each participant receives their message, initializes the study and enters 
their own secret value for each variable, which will also remain confidential. Each 
participant (apart from the initiator) now sends a message to all other participants to 

1  We note that EasySMPC nevertheless supports the summation of decimal numbers by using a fixed-point representa-
tion.
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distribute their respective secret share. Between communication rounds, each party 
calculates their new secret share locally by summing up the secret shares from round 
1. In the second round, the same process is repeated, thereby exchanging the shares of 
the result. When a participant receives the final message, the result is reconstructed 
from the secret shares and the resulting sum for each variable across all participants 
is displayed. With n participants, each user sends and receives 2 · (n− 1) messages. 
That is, the number of messages for each participant grows linearly with the number 
of participants, implying that the overall number of messages sent during a calcula-
tion grows quadratically.

EasySMPC offers two ways of exchanging messages: (1) in the semi-manual mode the 
users exchange all messages by manually using their preferred e-mail client. The e-mails 
are, however, pre-generated by EasySMPC and can be imported automatically from the 
clipboard; (2) in the automated mode the participants receive and import the initial mes-
sage manually. All further messages are exchanged automatically by an e-mail client built 
into the software.

Architecture and implementation of the software

The architecture of EasySMPC follows the classic model-view-controller approach 
which is often used to implement applications with graphical user interfaces [47]. An 
overview of the most important modules is presented in Fig. 2.

EasySMPC is implemented in Java as a cross-platform, stand-alone application that 
was tested on Windows, MacOS and Linux. The graphical application is built on top 
of two subsystems, (1) one for cryptographic SMPC operations and (2) one for input- 
and output as well as data exchange with external applications and the other partici-
pants. The application itself consists of a module containing the different user-facing 

Fig. 1  Overview of the steps in EasySMPC

Fig. 2  General architecture of EasySMPC
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views and perspectives (described in more detail in the following section), as well as 
parts of the application controller, which is in charge of manipulating the model.

In detail, the three modules are designed as follows: (1) The Application View and 
View-Controller consists of eight different perspectives that reflect the process illustrated 
in Fig. 1 and guide users through its execution. For the perspectives, highly extendable 
components based on Java Swing were implemented. (2) The Model, Controller and 
SMPC module is two-fold: The module contains (a) the application model holding all 
data that is needed for executing the protocol and provides methods to safely switch 
between the states defined in the state machine (see below). Moreover, the module 
implements (b) the cryptographic Arithmetic Secret Sharing scheme presented in Addi-
tional file 1 of this paper. All interactions with this part of the subsystem are performed 
through the application model. (3) The Input and Output (I/O) subsystem provides func-
tionalities for importing data from Excel and CSV files and for sending and receiving 
data by e-mail. A message can either be sent semi-manually by opening the user’s default 
e-mail client with all relevant fields (recipient, name of study etc.) pre-filled or in a fully 
automated manner by the I/O subsystem. In both cases the message itself is included 
in each mail as a Base64 encoded string. Each message contains all relevant metadata 
including the participants of the calculation, the name of all variables and the current 
state of the protocol execution, as well as a checksum to detect possible corruptions. 
Note, that a corrupted message may only lead to an erroneous result but cannot com-
promise input data privacy. A message can be received semi-manually by copying and 
pasting data into EasySMPC or be retrieved automatically by the I/O subsystem. In the 
first case, the application also monitors the user’s clipboard and automatically imports 
all EasySMPC-related messages that are contained in any text copied by the user. In the 
second case, a bus specifically developed for EasySMPC is used to exchange the data 
automatically between the different e-mail accounts.

Fig. 3  High-level class diagram
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For the implementation, Java standard libraries as well as the libraries Jakarta 
Mail, Apache POI, Commons and Logging were used. Figure 3 displays a high-level 
class diagram of the software. The class Study is central to the execution of calcula-
tions through EasySMPC, as it implements the core algorithm. It makes use of fur-
ther classes in the same module representing Participants as well as various types 
of messages and data used and exchanged. Data exchange is implemented through 
an abstract Bus system of which an implementation using e-mail is included. User 
interaction is controlled through the App, which contains the various perspectives 
described. It also acts as a mediator between the perspectives, the SMPC algorithm, 
data exchange and the tool’s data import and export capabilities.

As mentioned, a finite state machine makes sure that the cryptographic protocol 
is followed as needed and that no invalid state transitions are being performed. The 
states and possible transitions are shown in Fig. 4. The state machine is also the rea-
son why the application model, which handles the current state of the software, also 
contains parts of the controller. Given the asynchronous nature of data exchange, the 
API also allows saving the current state of the application at any time, not only after 
state transitions have been finalized.

Results
Overview of the software

The different perspectives of EasySMPC are shown in Fig. 5. In the example, a com-
mon frequency distribution of co-morbidities of patients with Phenylketonuria 
(PKU), a congenital metabolic disease, is computed with four participating health 
care institutions. The figure shows the perspectives for (1) initializing a study, (2) 
sending messages, (3) receiving messages and (4) displaying the result. Similar per-
spectives that are used for the second round of the protocol have been omitted for 
brevity.

As can be seen, EasySMPC features a structured and intuitive design, in which data 
is displayed to the users in tabular form. A progress bar at the top of the applica-
tion informs the user about the current step in the execution of the protocol. Impor-
tant actions for the respective step are directly available in each perspective. Further 
operations, such as loading and saving a project, can be performed via the application 
menu.

Fig. 4  Application states
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Performance evaluation

To evaluate the performance of EasySMPC we performed a wide range of experiments 
covering realistic application scenarios. Here we quickly provide an overview of results 
obtained using the default settings of EasySMPC. For a detailed description of the exper-
imental setup and the results we refer to Additional file 2.

We varied two aspects: (1) the number of participants and (2) number of variables.
Figure 6a shows the total number of messages exchanged when processing the data of 

a varying number of participants while Fig. 6b, c show the total exchanged data volumes 
and execution times, which depend on the number of variables summed up as well as 
the number of participants.

In summary, our experiments confirm that the approach implemented by EasySMPC 
is feasible even in complex scenarios. The aggregation of 10,000 variables amongst 20 
participants can be performed in less than five minutes.

Fig. 5  Perspectives of EasySMPC for (1) initializing a study, (2) sending messages, (3) receiving messages and 
(4) displaying the result

Fig. 6  Experimental results obtained using the default settings



Page 9 of 17Wirth et al. BMC Bioinformatics          (2022) 23:531 	

The size of the messages exchanged by EasySMPC depends on the length of the names 
of the variables and the sizes of its values. The numbers obtained in our experiments 
show that, in a typical usage scenario, it can be expected that each variable-value-pair 
can be encoded in approximately 30 bytes (we used 10 random letters for each variable 
and values in the range of single-precision floating-point numbers). Many mail servers 
enforce a limit on the maximum size of messages that can be processed. Assuming a 
conservative limit of 10 Mbyte and based on the data obtained in our experiments this 
limit would be reached with about 340,000 variables. However, to support scenarios 
with even more variables, EasySMPC will split up larger messages into several smaller 
messages. The maximum message size is configurable in the software.

More details on the complexity of the algorithms involved is provided in “Computa-
tional complexity” section.

Discussion
Principal results

EasySMPC is a tool that allows summing up values of variables keeping the participants’ 
inputs confidential. To realize this, the software uses an established Arithmetic Secret 
Sharing protocol.

EasySMPC’s innovative aspects lie in the fact that it is very easy to roll out, as no addi-
tional effort for installing software services or configuring network interfaces is required 
and that it offers an intuitive user interface that addresses the needs of non-technical 
users, such as medical researchers. Through integration into the users’ desktop environ-
ments and existing e-mail infrastructures, the tool is able to leverage the most common 
communication channel that is likely to be readily available at sites wanting to engage in 
a common secure calculation. By using multiple rounds of calculations, several impor-
tant statistical analyses can be realized (see next section). We have demonstrated its 
practicability by an extensive evaluation. EasySMPC is released as open-source software 
under a permissive license and its source code is available online [48].

Supported data analyses

To make EasySMPC as easy to use as possible, the range of supported functionality has 
been kept to a minimum, focusing on the secure addition of a pre-defined set of vari-
ables. However, this basic functionality can be used to perform a range of more com-
plex statistical analyses. For this purpose, different (derived) variables can be processed 
in multiple cycles, where each cycle is defined as one execution of EasySMPC, i.e., two 
rounds of sending and receiving messages. An overview of how the most fundamen-
tal statistical methods in biomedical research, as identified by Scotch et al. [49], can be 
implemented with EasySMPC is provided in Table 1.

The table shows that a range of analyses can be performed with one cycle in 
EasySMPC. Most of these analyses are suited for variables with a nominal level of meas-
urement (indicating that the values have no natural order) and variables with an ordinal 
scale of measure (indicating that values have a natural order, but no relative distance 
between values can be expressed). Important examples include the computation of com-
mon frequency distributions (already mentioned above) and chi-square tests, where 
the cells of the relevant contingency table have to be defined a priori and cell counts 
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can be summed up with EasySMPC to derive the final chi-square statistics. For ordinal 
data, quartiles can be derived from the common frequency distribution. Moreover, an 
inferential test of two independent distributions, the Wilcoxon rank sum test, can be 
performed using two common distributions computed with EasySMPC. For variables 
with an interval scale (indicating a natural order and a relative distance between values), 
further analyses are supported. For example, a common mean can be calculated by hav-
ing each participant share a sum of a variable and the number of values, which can be 
divided with each other after computing common sums. Implementing further statisti-
cal analyses will require more than one cycle. For example, the standard deviation of a 
common distribution can be computed by calculating the mean in a first cycle. In a sec-
ond cycle, each participant can calculate the variation of its data compared to the global 
mean. By using the variance computed in the second cycle and the total number of val-
ues calculated in the first cycle, the participants can further calculate the total standard 
deviation. In a third cycle, the total covariance can be computed to investigate a correla-
tion for horizontally distributed data. Analogously, a t-test or analysis of variance can 
be performed by calculating the mean per group in a first cycle and the variance of local 
data in relationship to the global mean in a second cycle. When all those common sums 
are computed, the t-test and analysis of variance (ANOVA) statistics can be calculated.

We note that when an analysis is performed using more than one cycle, more data 
will be disclosed than when the complete process would have been performed using a 
tailored SMPC protocol. However, we would like to point out that, as already mentioned 
above, only aggregated and likely less sensitive data (cf. GDPR Recital 162 (5) [20]) is 
disclosed in the intermediate results. However, this needs to be carefully analyzed on a 
case-by-case basis before performing more complex analyses.

Computational complexity

With its actual runtime being highly dependent on the employed (networking) hard-
ware, the asymptotic complexities regarding runtime and space usage are important for 
evaluating the protocol. EasySMPC employs a SMPC protocol with a constant num-
ber of communication rounds and outside of those interactions only non-interactive, 

Table 1  Example of common statistical methods that can be implemented with EasySMPC

a All participants learn the global sum of the data entered locally. No participant learns local values of the other participants
b t-test is a special case of the analysis of variance with two groups
c Only possible if data for both variables to be correlated are available at the parties (horizontal data distribution)

Statistical method Level of 
measurement

Input dataa Cycles with 
EasySMPC

Frequency distribution Nominal Local frequencies per class 1

Chi-square test Nominal Local frequencies per cell 1

Quartiles (median, interquartile range) Ordinal Local frequencies per class 1

Wilcoxon rank sum test Ordinal Local frequencies per class 1

Mean Interval Local sum and local count of values 1

Standard deviation (SD) Interval Data for mean and local deviation of 
mean

2

t-test/analysis of variance (ANOVA)b Interval Local sum, local count of values and 
local deviation of group mean

2

Correlation coefficientc Interval SD per variable, co-variance per variable 3
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computationally inexpensive additions. This means that EasySMPC’s asymptotic runt-
ime complexity is linear in the number of network interactions. The number of mes-
sages sent by each participant in a computation with n participants is 2 · (n− 1) (see 
also “Design of EasySMPC” section). This also means that it is unlikely that limits of 
typical mail servers regarding the number of messages that can be sent within a certain 
timeframe will be reached in calculations with a reasonable number of participants. The 
overall number of messages, which determines runtime performance, is O(n2) , which 
is executed in a parallel manner over n concurrent processes (one executed by each 
participant).

Space complexity, again, is dependent on the number of messages. The messages con-
tain the variable names and values, as well as a small overhead. Each individual message 
scales linearly in the number of variables. The overall space complexity of EasySMPC 
therefore is O(v·n2) with v being the number of variables, where each participant needs 
memory of O(v · n).

Lastly, the consecutive execution of EasySMPC to create the more complex analyses 
listed in Table 1 (see “Supported data analyses” section) compose linearly, as all exam-
ples use the same number of participants and variables for each iteration. As the number 
of iterations is small in every given case, the incurred small factor can be omitted in an 
asymptotic complexity analysis.

Comparison with prior work

A number of SMPC protocols and solutions have already been described in the literature 
that can be used in different areas of biomedical research. For example, Stammler et al. 
[41] and other authors [50–52] have investigated general secure record-linkage pro-
cesses [53]. Moreover, El Emam et al. describe a protocol for the secure linkage of data 
for surveillance registries [54]. Several works describe the application of SMPC tech-
niques for specific use cases in biomedical research. Examples include methods for con-
ducting drug-target interaction assessments [55, 56], drug screening [57], genome-wide 
association studies [38, 39, 58–63] and genomic diagnostics [64]. Other works propose 
the application of SMPC techniques to realize specific statistical methods allowing bio-
medical data analyses, such as (1) the calculation of Kaplan–Meier estimators [65, 66], 
(2) linear [67] or (3) logistic [68–71] regression analyses and k-means clustering [72]. 
In addition, there are generic frameworks that can be used as a basis for implementing 
specific SMPC algorithms. Important examples include technical programming librar-
ies and environments such as Sharemind MPC [73], FRESCO [74], ABY [75], MOTION 
[76] or MP-SPDZ [77] and generic data sharing infrastructures, such as MedCo [78] or 
FAMHE [79]. Tools that specifically target usability are also a hot topic in the biomedical 
field (see, e.g., [80, 81] for recent examples).

The papers cited in the first three areas describe complex algorithms which have 
been developed for a particular purpose. EasySMPC, on the other hand, follows a dif-
ferent strategy and supports a generic functionality optimized for usability by people 
that are not IT specialists. Moreover, we note that EasySMPC is not a research proto-
type but has been designed for real-world applications. The same is true for MedCo 
and FAMHE, which provide more comprehensive functionalities than EasySMPC. 
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However, the efforts required to install, configure and maintain these solutions is rel-
atively high, while EasySMPC was designed to be as easy as possible to install and use.

Limitations and future work

The current restriction of EasySMPC to addition and subtraction is a major limita-
tion of the software. While, as we have shown, this basic functionality can be used 
to implement a range of analyses, this can be cumbersome, as several independent 
rounds need to be performed. In future versions of the tool, we plan to add support 
for additional basic operations as well as more complex data analyses. On the user 
interface level, we plan to maintain EasySMPC’s usability by using a spreadsheet-like 
approach for entering data and displaying results.

In addition to the controlled experiments presented in this paper, we have also per-
formed feasibility evaluations with EasySMPC in a real-world setting involving sev-
eral hospitals from the German CORD project for research on rare diseases. While 
EasySMPC worked very well in all of those settings, the use of e-mail as a commu-
nication infrastructure resulted in some limitations. One example is that common 
mail servers may flag communication as spam if a very large number of messages is 
exchanged due to a large number of participants being involved. To also support such 
use cases, work is currently underway to extend the bus functionality of EasySMPC to 
other common communication technologies.

On the security and privacy-side, some trade-offs had to be made. First, the dif-
ferent parties are only authenticated via access to the e-mail accounts, meaning that 
a man in the middle attack could be performed and the integrity of the calculation 
cannot be guaranteed. However, this does not affect the confidentiality of the data 
entered by the participants, since the employed protocol is proven to be secure [44]. 
Thus, in the worst case, an attacker might maliciously change the calculated results, 
but is never able to obtain the input data of other participants. Moreover, like many 
other SMPC solutions [34], EasySMPC provides a safe setting for processing data but 
does not necessarily guarantee that the output data is also protected (see also “Sup-
ported data analyses” section). In future work, we plan to address these issues by inte-
grating more comprehensive authentication mechanisms and methods for providing 
safe outputs, such as Differential Privacy [82].

Finally, there are a few general barriers to the further adoption of SMPC methods 
that are not specific to EasySMPC. For example, Tõldsepp et  al. [83] identified the 
following important challenges that also apply to our software: (1) legal frameworks 
often do not consider SMPC, methods which in turn leads to legal uncertainties 
(see also [37]), (2) it can be challenging to explain and communicate the properties 
of SMPC to relevant stakeholders (e.g., Institutional Review Boards (IRBs) or ethics 
committees; see also [37, 46, 84]), (3) users may misuse SMPC technologies leading to 
additional risks in the honest but curious attacker model typically assumed (see also 
[85]) and (4) data analysts might find it difficult to analyze data they cannot access 
directly (see also [46, 86]). By developing EasySMPC which makes such technologies 
available to a broader audience and more use cases, we hope to be able to contribute 
to overcoming these barriers.
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Conclusions
In this paper we have presented EasySMPC, a user-friendly graphical application 
supporting the secure analysis of distributed data across multiple institutions with-
out requiring IT expertise. Although SMPC methods are considered a break-through 
technology for data-driven medical research, they are not in widespread use to date 
and implementing them can be associated with major hurdles. We believe that inno-
vative no-code approaches to secure data sharing, as the one presented in this paper, 
can foster the translation of more complex protocols into practice.

Availability and requirements

Project name: EasySMPC. Project home page: https://​github.​com/​prass​er/​easy-​smpc. 
Operating system(s): Platform independent. Programming language: Java. Other 
requirements: Java 14 or higher. License: Apache 2.0. Any restrictions to use by non-
academics: none.

Abbreviations
ANOVA	� Analysis of variance
GDPR	� General data protection regulation
HIPAA	� Health Insurance Portability and Accountability Act
I/O	� Input and output
IRB	� Institutional Review Board
OT	� Oblivious transfer
PKU	� Phenylketonuria
SD	� Standard deviation
SMPC	� Secure multi-party computation
XOR	� Exclusively-OR

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​05044-8.

Additional file 1. Microsoft Word format describes the employed SMPC method in detail.

Additional file 2. Microsoft Word format contains the detailed results of the performance evaluation.

Acknowledgements
We thank our anonymous reviewers for the constructive feedback

Author contributions
TK designed and developed the cryptographic part of the software. FP designed the architecture of the non-crypto-
graphic part of the software. FNW, AM and FP implemented the Graphical User Interface, FNW and FP developed and 
evaluated the bus functionality. FNW, TK, FP, AM and KH drafted the manuscript. FP and KH revised the manuscript. All 
authors have read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work has been partially funded by the Deutsche 
Forschungsgemeinschaft (DFG, German Research Foundation)—SFB 1119-236615297 and by the German Ministry of 
Education and Research through the project CORD-MI (funding #01ZZ1911F). The funders had no role in the design of 
the study, data collection and analysis, writing of the manuscript, or the decision to publish.

Availability of data and materials
The performance evaluation dataset generated and analyzed during the current study is available in the GitHub reposi-
tory of the performance evaluation, https://​github.​com/​fnwir​th/​easy-​smpc-​perfo​rmance-​evalu​ation.

Declarations

Ethics approval and consent to participate
Not applicable.

https://github.com/prasser/easy-smpc
https://doi.org/10.1186/s12859-022-05044-8
https://github.com/fnwirth/easy-smpc-performance-evaluation


Page 14 of 17Wirth et al. BMC Bioinformatics          (2022) 23:531 

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 31 May 2022   Accepted: 8 November 2022

References
	1.	 Munevar S. Unlocking Big Data for better health. Nat Biotechnol. 2017;35:684–6. https://​doi.​org/​10.​1038/​nbt.​3918.
	2.	 Gewin V. Data sharing: an open mind on open data. Nature. 2016;529:117–9. https://​doi.​org/​10.​1038/​nj7584-​117a.
	3.	 Merson L, Gaye O, Guerin PJ. Avoiding data dumpsters-toward equitable and useful data sharing. N Engl J Med. 

2016;374:2414–5. https://​doi.​org/​10.​1056/​NEJMp​16051​48.
	4.	 Taichman DB, Backus J, Baethge C, Bauchner H, de Leeuw PW, Drazen JM, et al. Sharing clinical trial data: a proposal 

from the International Committee of Medical Journal Editors. N Engl J Med. 2016;374:384–6. https://​doi.​org/​10.​
1056/​NEJMe​15151​72.

	5.	 Carr D, Littler K. Sharing research data to improve public health. J Empir Res Hum Res Ethics. 2015;10:314–6. https://​
doi.​org/​10.​1177/​15562​64615​593485.

	6.	 Guinney J, Saez-Rodriguez J. Alternative models for sharing confidential biomedical data. Nat Biotechnol. 
2018;36:391–2. https://​doi.​org/​10.​1038/​nbt.​4128.

	7.	 Villanueva AG, Cook-Deegan R, Koenig BA, Deverka PA, Versalovic E, McGuire AL, et al. Characterizing the biomedical 
data-sharing landscape. J Law Med Ethics. 2019;47:21–30. https://​doi.​org/​10.​1177/​10731​10519​840481.

	8.	 Pilat D, Fukasaku Y. OECD principles and guidelines for access to research data from public funding. Data Sci J. 
2007;6:OD4–11. https://​doi.​org/​10.​2481/​dsj.6.​OD4.

	9.	 Walport M, Brest P. Sharing research data to improve public health. Lancet. 2011;377:537–9. https://​doi.​org/​10.​1016/​
S0140-​6736(10)​62234-9.

	10.	 Australien Government—National Health and Medical Research Council. Open Access Policy 2018. https://​www.​
nhmrc.​gov.​au/​file/​15242/​downl​oad?​token=​rgNjn​h0B. Accessed 29 July 2022.

	11.	 Institute of Medicine (US). Sharing Clinical Research Data: Workshop Summary. Washington: The National Acad-
emies Press; 2013.

	12.	 Hulsen T. Sharing is caring-data sharing initiatives in healthcare. Int J Environ Res Public Health. 2020. https://​doi.​
org/​10.​3390/​ijerp​h1709​3046.

	13.	 Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association studies of up to 1.2 million individuals yield new 
insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51:237–44. https://​doi.​org/​10.​1038/​
s41588-​018-​0307-5.

	14.	 Piwowar HA, Day RS, Fridsma DB. Sharing detailed research data is associated with increased citation rate. PLoS ONE. 
2007;2:e308. https://​doi.​org/​10.​1371/​journ​al.​pone.​00003​08.

	15.	 Piwowar HA, Vision TJ. Data reuse and the open data citation advantage. PeerJ. 2013;1:e175. https://​doi.​org/​10.​7717/​
peerj.​175.

	16.	 Kim KK, Joseph JG, Ohno-Machado L. Comparison of consumers’ views on electronic data sharing for healthcare 
and research. J Am Med Inform Assoc. 2015;22:821–30. https://​doi.​org/​10.​1093/​jamia/​ocv014.

	17.	 Aitken M, de St JJ, Pagliari C, Jepson R, Cunningham-Burley S. Public responses to the sharing and linkage of health 
data for research purposes: a systematic review and thematic synthesis of qualitative studies. BMC Med Ethics. 
2016;17:73. https://​doi.​org/​10.​1186/​s12910-​016-​0153-x.

	18.	 Kalkman S, van Delden J, Banerjee A, Tyl B, Mostert M, van Thiel G. Patients’ and public views and attitudes towards 
the sharing of health data for research: a narrative review of the empirical evidence. J Med Ethics. 2019. https://​doi.​
org/​10.​1136/​medet​hics-​2019-​105651.

	19.	 United States Congress. Health insurance portability and accountability act of 1996. Public Law. 1996;104:191.
	20.	 Regulation GDP. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the 

protection of natural persons with regard to the processing of personal data and on the free movement of such 
data, and repealing Directive 95/46. Off J Eur Union (OJ). 2016;59:294.

	21.	 Emam KE, Rodgers S, Malin B. Anonymising and sharing individual patient data. BMJ. 2015. https://​doi.​org/​10.​1136/​
bmj.​h1139.

	22.	 Williams G, Pigeot I. Consent and confidentiality in the light of recent demands for data sharing. BIOM J. 
2017;59:240–50. https://​doi.​org/​10.​1002/​bimj.​20150​0044.

	23.	 Prasser F, Eicher J, Spengler H, et al. Flexible data anonymization using ARX—current status and challenges ahead. 
Softw Pract Exp. 2020;50:1277–304. https://​doi.​org/​10.​1002/​spe.​2812.

	24.	 Wirth FN, Meurers T, Johns M, Prasser F. Privacy-preserving data sharing infrastructures for medical research: system-
atization and comparison. BMC Med Inform Decis Mak. 2021;21:242. https://​doi.​org/​10.​1186/​s12911-​021-​01602-x.

	25.	 Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational health data sciences and infor-
matics (OHDSI): opportunities for observational researchers. Stud Health Technol Inform. 2015;216:574–8. https://​
doi.​org/​10.​3233/​978-1-​61499-​564-7-​574.

	26.	 Collins FS, Hudson KL, Briggs JP, Lauer MS. PCORnet: turning a dream into reality. J Am Med Inform Assoc. 
2014;21:576–7. https://​doi.​org/​10.​1136/​amiaj​nl-​2014-​002864.

	27.	 Topaloglu U, Palchuk MB. Using a federated network of real-world data to optimize clinical trials operations. JCO Clin 
Cancer Inform. 2018;2:1–10. https://​doi.​org/​10.​1200/​CCI.​17.​00067.

	28.	 MacLeod H, Abbott J, Patil S. Small data privacy protection: an exploration of the utility of anonymized data of 
people with rare diseases. In: Mark G, Fussell S, editors. WISH’17. Proceedings of the 2017 workshop on interactive 

https://doi.org/10.1038/nbt.3918
https://doi.org/10.1038/nj7584-117a
https://doi.org/10.1056/NEJMp1605148
https://doi.org/10.1056/NEJMe1515172
https://doi.org/10.1056/NEJMe1515172
https://doi.org/10.1177/1556264615593485
https://doi.org/10.1177/1556264615593485
https://doi.org/10.1038/nbt.4128
https://doi.org/10.1177/1073110519840481
https://doi.org/10.2481/dsj.6.OD4
https://doi.org/10.1016/S0140-6736(10)62234-9
https://doi.org/10.1016/S0140-6736(10)62234-9
https://www.nhmrc.gov.au/file/15242/download?token=rgNjnh0B
https://www.nhmrc.gov.au/file/15242/download?token=rgNjnh0B
https://doi.org/10.3390/ijerph17093046
https://doi.org/10.3390/ijerph17093046
https://doi.org/10.1038/s41588-018-0307-5
https://doi.org/10.1038/s41588-018-0307-5
https://doi.org/10.1371/journal.pone.0000308
https://doi.org/10.7717/peerj.175
https://doi.org/10.7717/peerj.175
https://doi.org/10.1093/jamia/ocv014
https://doi.org/10.1186/s12910-016-0153-x
https://doi.org/10.1136/medethics-2019-105651
https://doi.org/10.1136/medethics-2019-105651
https://doi.org/10.1136/bmj.h1139
https://doi.org/10.1136/bmj.h1139
https://doi.org/10.1002/bimj.201500044
https://doi.org/10.1002/spe.2812
https://doi.org/10.1186/s12911-021-01602-x
https://doi.org/10.3233/978-1-61499-564-7-574
https://doi.org/10.3233/978-1-61499-564-7-574
https://doi.org/10.1136/amiajnl-2014-002864
https://doi.org/10.1200/CCI.17.00067


Page 15 of 17Wirth et al. BMC Bioinformatics          (2022) 23:531 	

systems in healthcare. May 6–11, 2017; Colorado. Washington: Association for Computing Machinery; 2017, p. 
3059–64. https://​doi.​org/​10.​1145/​30270​63.​31089​00.

	29.	 Berger B, Cho H. Emerging technologies towards enhancing privacy in genomic data sharing. Genome Biol. 
2019;20:128. https://​doi.​org/​10.​1186/​s13059-​019-​1741-0.

	30.	 Telenti A, Jiang X. Treating medical data as a durable asset. Nat Genet. 2020;52:1005–10. https://​doi.​org/​10.​1038/​
s41588-​020-​0698-y.

	31.	 Gartner Research. Hype Cycle for Privacy 2020. 2020. https://​www.​gartn​er.​com/​en/​docum​ents/​39879​03/​hype-​
cycle-​for-​priva​cy-​2020. Accessed 29 July 2022.

	32.	 Canetti R. Security and composition of multiparty cryptographic protocols. J Cryptology. 2000;13:143–202. https://​
doi.​org/​10.​1007/​s0014​59910​006.

	33.	 Choi JI, Butler KRB. Secure multiparty computation and trusted hardware: examining adoption challenges and 
opportunities. Secur Commun Netw. 2019. https://​doi.​org/​10.​1155/​2019/​13689​05.

	34.	 Lindell Y. Secure multiparty computation. Commun ACM. 2021;64:86–96. https://​doi.​org/​10.​1145/​33871​08.
	35.	 Hastings M, Hemenway B, Noble D, Zdancewic S. Sok: general purpose compilers for secure multi-party computa-

tion. In: Gondree M, editor. 2019 IEEE symposium on security and privacy (SP); 20–22 May 2019; San Francisco. New 
York: IEEE; 2019, p. 1220–37. https://​doi.​org/​10.​1109/​SP.​2019.​00028.

	36.	 Dankar FK, Madathil N, Dankar SK, Boughorbel S. Privacy-preserving analysis of distributed biomedical data: design-
ing efficient and secure multiparty computations using distributed statistical learning theory. JMIR Med Inform. 
2019;7:e12702. https://​doi.​org/​10.​2196/​12702.

	37.	 Veeningen M, Chatterjea S, Horváth AZ, Spindler G, Boersma E, van der Spek P, et al. Enabling analytics on sensitive 
medical data with secure multi-party computation. Stud Health Technol Inform. 2018;247:76–80.

	38.	 Tkachenko O, Weinert C, Schneider T, Hamacher K. Large-scale privacy-preserving statistical computations for dis-
tributed genome-wide association studies. In: Kim J, Ahn G-J, Kim S, editors. ASIACCS ’18: Proceedings of the 2018 
on Asia conference on computer and communications security; 4 June 2018; Incheon. Washington: Association for 
Computing Machinery; 2018, p. 221–35.

	39.	 Demmler D, Hamacher K, Schneider T, Stammler S. Privacy-preserving whole-genome variant queries. In: Capkun S, 
Chow SSM, editors. CANS 2017: cryptology and network security—16th international conference; 29 November–2 
December 2017. Berlin: Springer; 2017. p. 71–92.

	40.	 Karvelas N, Peter A, Katzenbeisser S, Tews E, Hamacher K. Privacy-preserving whole genome sequence processing 
through proxy-aided ORAM. In: Ahn G-J, Datta A, editors. WPES ’14: Proceedings of the 13th workshop on privacy 
in the Electronic Society; 3 November 2014; Scottsdale. New York: Association for Computing Machinery; 2014, p. 
1–10.

	41.	 Stammler S, Kussel T, Schoppmann P, Stampe F, Tremper G, Katzenbeisser S, et al. Mainzelliste SecureEpiLinker (Main-
SEL): privacy-preserving record linkage using secure multi-party computation. Bioinformatics. 2022;38:1657–68. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa7​64.

	42.	 Hamacher K, Kussel T, von Landesberger T, Baumgartl T, Höhn M, Scheithauer S, et al. Fallzahlen Re-Identifikation 
und der technische Datenschutz. DuD. 2022;46:143–8. https://​doi.​org/​10.​1007/​s11623-​022-​1579-6.

	43.	 Yao AC-C. How to generate and exchange secrets. SFCS ’86: proceedings of the 27th annual symposium on founda-
tions of computer science; 27–29 October 1986. Washington: IEEE Computer Society; 1986, p. 162–7. https://​doi.​
org/​10.​1109/​SFCS.​1986.

	44.	 Micali S, Goldreich O, Wigderson A. How to play any mental game. In: Aho A, editor. STOC ’87: Proceedings of the 
nineteenth ACM symposium on theory of computing; 25–27 May 1987; New York: Association for Computing 
Machinery; 1987, p. 218–29. https://​doi.​org/​10.​1145/​28395.​28420.

	45.	 Gilboa N. Two party RSA key generation. In: Wiener M, editor. CRYPTO 99: 19th annual international cryptology 
conference; 15–19 August 1999; Santa Barbara. Berlin, Heidelberg: Springer; 1999, p. 116–29. https://​doi.​org/​10.​
1007/3-​540-​48405-1_8.

	46.	 Evans D, Kolesnikov V, Rosulek M. A pragmatic introduction to secure multi-party computation. Foundations and 
trends; 2018. https://​doi.​org/​10.​1561/​33000​00019.

	47.	 Krasner GE, Pope ST. A description of the model-view-controller user interface paradigm in the smalltalk-80 system. 
J Op Prog. 1988;1:26–49.

	48.	 Wirth FN, Kussel T, Müller A, Hamacher K, Prasser F. EasySMPC implementation 2022. https://​github.​com/​prass​er/​
easy-​smpc. Accessed 29 July 2022.

	49.	 Scotch M, Duggal M, Brandt C, Lin Z, Shiffman R. Use of statistical analysis in the biomedical informatics literature. J 
Am Med Inform Assoc. 2010;17:3–5. https://​doi.​org/​10.​1197/​jamia.​M2853.

	50.	 Chen F, Jiang X, Wang S, Schilling LM, Meeker D, Ong T, et al. Perfectly secure and efficient two-party electronic-
health-record linkage. IEEE Internet Comput. 2018;22:32–41. https://​doi.​org/​10.​1109/​MIC.​2018.​11210​2542.

	51.	 Lazrig I, Ong TC, Ray I, Ray I, Jiang X, Vaidya J. Privacy preserving probabilistic record linkage without trusted third 
party. In: McCanny, John, editor. PST2018: Proceedings of the 16th annual conference on privacy, security and trust; 
28 - 30 August 2018; Belfast. Washington: IEEE Computer Society; 2018, p. 1–10. https://​doi.​org/​10.​1109/​PST.​2018.​
85141​92.

	52.	 Laud P, Pankova A. Privacy-preserving record linkage in large databases using secure multiparty computation. BMC 
Med Genomics. 2018;11:84. https://​doi.​org/​10.​1186/​s12920-​018-​0400-8.

	53.	 Fellegi IP, Sunter AB. A theory for record linkage. J Am Stat Assoc. 1969;64:1183–210. https://​doi.​org/​10.​1080/​01621​
459.​1969.​10501​049.

	54.	 El Emam K, Samet S, Hu J, Peyton L, Earle C, Jayaraman GC, et al. A protocol for the secure linking of registries for 
HPV surveillance. PLoS ONE. 2012;7:e39915. https://​doi.​org/​10.​1371/​journ​al.​pone.​00399​15.

	55.	 Hie B, Cho H, Berger B. Realizing private and practical pharmacological collaboration. Science. 2018;362:347–50. 
https://​doi.​org/​10.​1126/​scien​ce.​aat48​07.

	56.	 Ma R, Li Y, Li C, Wan F, Hu H, Xu W, et al. Secure multiparty computation for privacy-preserving drug discovery. Bioin-
formatics. 2020;36:2872–80. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa0​38.

https://doi.org/10.1145/3027063.3108900
https://doi.org/10.1186/s13059-019-1741-0
https://doi.org/10.1038/s41588-020-0698-y
https://doi.org/10.1038/s41588-020-0698-y
https://www.gartner.com/en/documents/3987903/hype-cycle-for-privacy-2020
https://www.gartner.com/en/documents/3987903/hype-cycle-for-privacy-2020
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1155/2019/1368905
https://doi.org/10.1145/3387108
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.2196/12702
https://doi.org/10.1093/bioinformatics/btaa764
https://doi.org/10.1007/s11623-022-1579-6
https://doi.org/10.1109/SFCS.1986
https://doi.org/10.1109/SFCS.1986
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1561/3300000019
https://github.com/prasser/easy-smpc
https://github.com/prasser/easy-smpc
https://doi.org/10.1197/jamia.M2853
https://doi.org/10.1109/MIC.2018.112102542
https://doi.org/10.1109/PST.2018.8514192
https://doi.org/10.1109/PST.2018.8514192
https://doi.org/10.1186/s12920-018-0400-8
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1371/journal.pone.0039915
https://doi.org/10.1126/science.aat4807
https://doi.org/10.1093/bioinformatics/btaa038


Page 16 of 17Wirth et al. BMC Bioinformatics          (2022) 23:531 

	57.	 Shimizu K, Nuida K, Arai H, Mitsunari S, Attrapadung N, Hamada M, et al. Privacy-preserving search for chemical 
compound databases. BMC Bioinform. 2015;16:S6. https://​doi.​org/​10.​1186/​1471-​2105-​16-​S18-​S6.

	58.	 Bonte C, Makri E, Ardeshirdavani A, Simm J, Moreau Y, Vercauteren F. Towards practical privacy-preserving genome-
wide association study. BMC Bioinform. 2018;19:537. https://​doi.​org/​10.​1186/​s12859-​018-​2541-3.

	59.	 Cho H, Wu DJ, Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol. 
2018;36:547–51. https://​doi.​org/​10.​1038/​nbt.​4108.

	60.	 Lu W-J, Yamada Y, Sakuma J. Privacy-preserving genome-wide association studies on cloud environment using 
fully homomorphic encryption. BMC Med Inform Decis Mak. 2015;15(Suppl 5):S1. https://​doi.​org/​10.​1186/​
1472-​6947-​15-​S5-​S1.

	61.	 Kuo T-T, Jiang X, Tang H, Wang X, Bath T, Bu D, et al. iDASH secure genome analysis competition 2018: blockchain 
genomic data access logging, homomorphic encryption on GWAS, and DNA segment searching. BMC Med 
Genomics. 2020;13:98. https://​doi.​org/​10.​1186/​s12920-​020-​0715-0.

	62.	 Kamm L, Bogdanov D, Laur S, Vilo J. A new way to protect privacy in large-scale genome-wide association studies. 
Bioinformatics. 2013;29:886–93. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btt066.

	63.	 Franz M, Deiseroth B, Hamacher K, Jha S, Katzenbeisser S, Schröder H. Towards secure bioinformatics services. In: 
Danezis G, editor. FC 2011: financial cryptography and data security—15th international conference; March 4 2011; 
Gros Islet. Berlin: Springer; 2011, p. 276–83. https://​doi.​org/​10.​1007/​978-3-​642-​27576-0.

	64.	 Jagadeesh KA, Wu DJ, Birgmeier JA, Boneh D, Bejerano G. Deriving genomic diagnoses without revealing patient 
genomes. Science. 2017;357:692–5. https://​doi.​org/​10.​1126/​scien​ce.​aam97​10.

	65.	 Vogelsang L, Lehne M, Schoppmann P, Prasser F, Thun S, Scheuermann B, et al. A secure multi-party computation 
protocol for time-to-event analyses. Stud Health Technol Inform. 2020;270:8–12. https://​doi.​org/​10.​3233/​SHTI2​
00112.

	66.	 von Maltitz M, Ballhausen H, Kaul D, Fleischmann DF, Niyazi M, Belka C, et al. A privacy-preserving log-rank test for 
the kaplan-meier estimator with secure multiparty computation: algorithm development and validation. JMIR Med 
Inform. 2021;9:e22158. https://​doi.​org/​10.​2196/​22158.

	67.	 Sadat MN, Jiang X, Aziz MMA, Wang S, Mohammed N. Secure and efficient regression analysis using a hybrid crypto-
graphic framework: development and evaluation. JMIR Med Inform. 2018;6:e14. https://​doi.​org/​10.​2196/​medin​form.​
8286.

	68.	 El Emam K, Samet S, Arbuckle L, Tamblyn R, Earle C, Kantarcioglu M. A secure distributed logistic regression protocol 
for the detection of rare adverse drug events. J Am Med Inform Assoc. 2013;20:453–61. https://​doi.​org/​10.​1136/​
amiaj​nl-​2011-​000735.

	69.	 Lu Y, Zhou T, Tian Y, Zhu S, Li J. Web-based privacy-preserving multicenter medical data analysis tools via threshold 
homomorphic encryption: design and development study. J Med Internet Res. 2020;22:e22555. https://​doi.​org/​10.​
2196/​22555.

	70.	 Shi H, Jiang C, Dai W, Jiang X, Tang Y, Ohno-Machado L, et al. Secure multi-pArty computation grid logistic regres-
sion (SMAC-GLORE). BMC Med Inform Decis Mak. 2016;16:89. https://​doi.​org/​10.​1186/​s12911-​016-​0316-1.

	71.	 De Cock M, Dowsley R, Nascimento ACA, Railsback D, Shen J, Todoki A. High performance logistic regression for 
privacy-preserving genome analysis. BMC Med Genomics. 2021;14:23. https://​doi.​org/​10.​1186/​s12920-​020-​00869-9.

	72.	 Spini G, van Heesch M, Veugen T, Chatterjea S. Private hospital workflow optimization via secure k-means clustering. 
J Med Syst. 2020;44:8. https://​doi.​org/​10.​1007/​s10916-​019-​1473-4.

	73.	 Archer DW, Bogdanov D, Lindell Y, Kamm L, Nielsen K, Pagter JI, et al. From keys to databases—real-world applica-
tions of secure multi-party computation. Comput J. 2018;61:1749–71. https://​doi.​org/​10.​1093/​comjnl/​bxy090.

	74.	 Alexandra Institute. FRESCO—a framework for efficient secure computation 2021. https://​github.​com/​aicis/​fresco. 
Accessed 29 July 2022.

	75.	 Demmler D, Schneider T, Zohner M. ABY-A framework for efficient mixed-protocol secure two-party computation. 
NDSS ’15: network and distributed system security symposium; 8–11 February 2015; San Diego. San Diego: NDSS; 
2015. https://​doi.​org/​10.​14722/​ndss.​2015.​23113.

	76.	 Braun L, Demmler D, Schneider T, Tkachenko O. MOTION—a framework for mixed-protocol multi-party computa-
tion. IACR Cryptol EPrint Arch 2020. p.1137. https://​doi.​org/​10.​1145/​34903​90.

	77.	 Keller M. MP-SPDZ: A versatile framework for multi-party computation. In: Ligatti J, Ou X, editors. Proceedings of the 
2020 ACM SIGSAC conference on computer and communications security; 9–13 November 2020; virtual. New York: 
Association for Computing Machinery; 2020, p. 1575–90. https://​doi.​org/​10.​1145/​33722​97.​34178​72.

	78.	 Raisaro JL, Troncoso-Pastoriza JR, Misbach M, Sousa JS, Pradervand S, Missiaglia E, et al. MedCo: enabling secure and 
privacy-preserving exploration of distributed clinical and genomic data. IEEE/ACM Trans Comput Biol Bioinform. 
2018;16:1328–41. https://​doi.​org/​10.​1109/​TCBB.​2018.​28547​76.

	79.	 Froelicher D, Troncoso-Pastoriza JR, Raisaro JL, Cuendet MA, Sousa JS, Cho H, et al. Truly privacy-preserving federated 
analytics for precision medicine with multiparty homomorphic encryption. Nat Commun. 2021;12:5910. https://​doi.​
org/​10.​1038/​s41467-​021-​25972-y.

	80.	 Zhou Y, Leung S-W, Mizutani S, Takagi T, Tian Y-S. MEPHAS: an interactive graphical user interface for medical 
and pharmaceutical statistical analysis with R and Shiny. BMC Bioinform. 2020;21:183. https://​doi.​org/​10.​1186/​
s12859-​020-​3494-x.

	81.	 Koile D, Cordoba M, de Sousa SM, Kauffman MA, Yankilevich P. GenIO: a phenotype-genotype analysis web server 
for clinical genomics of rare diseases. BMC Bioinform. 2018;19:25. https://​doi.​org/​10.​1186/​s12859-​018-​2027-3.

	82.	 Dwork C. Differential privacy: a survey of results. In: Agrawal M, Du D, Duan Z, Li A, editors. TAMC 2008: theory and 
applications of models of computation 5th international conference; 25–29 April 2008; Xi’an. Berlin: Springer; 2008, 
p. 1–19. https://​doi.​org/​10.​1007/​978-3-​540-​79228-4_1.

	83.	 Tõldsepp K, Pruulmann-Vengerfeldt P, Laud P. Usable and efficient secure multiparty computation—requirements 
specification based on the interviews. Deliverables in usable and efficient secure multiparty computation UaESMC) 
Research Project 2015. http://​uaesmc.​cyber.​ee/​files/​d12fi​nal.​pdf. Accessed 29 July 2022.

	84.	 Bogdanov D, Kamm L, Laur S, Pruulmann-Vengerfeldt P. Secure multi-party data analysis: end user validation and 
practical experiments. IACR Cryptol EPrint Arch. 2013. https://​eprint.​iacr.​org/​2013/​826.​pdf. Accessed 29 July 2022.

https://doi.org/10.1186/1471-2105-16-S18-S6
https://doi.org/10.1186/s12859-018-2541-3
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1186/1472-6947-15-S5-S1
https://doi.org/10.1186/1472-6947-15-S5-S1
https://doi.org/10.1186/s12920-020-0715-0
https://doi.org/10.1093/bioinformatics/btt066
https://doi.org/10.1007/978-3-642-27576-0
https://doi.org/10.1126/science.aam9710
https://doi.org/10.3233/SHTI200112
https://doi.org/10.3233/SHTI200112
https://doi.org/10.2196/22158
https://doi.org/10.2196/medinform.8286
https://doi.org/10.2196/medinform.8286
https://doi.org/10.1136/amiajnl-2011-000735
https://doi.org/10.1136/amiajnl-2011-000735
https://doi.org/10.2196/22555
https://doi.org/10.2196/22555
https://doi.org/10.1186/s12911-016-0316-1
https://doi.org/10.1186/s12920-020-00869-9
https://doi.org/10.1007/s10916-019-1473-4
https://doi.org/10.1093/comjnl/bxy090
https://github.com/aicis/fresco
https://doi.org/10.14722/ndss.2015.23113
https://doi.org/10.1145/3490390
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1109/TCBB.2018.2854776
https://doi.org/10.1038/s41467-021-25972-y
https://doi.org/10.1038/s41467-021-25972-y
https://doi.org/10.1186/s12859-020-3494-x
https://doi.org/10.1186/s12859-020-3494-x
https://doi.org/10.1186/s12859-018-2027-3
https://doi.org/10.1007/978-3-540-79228-4_1
http://uaesmc.cyber.ee/files/d12final.pdf
https://eprint.iacr.org/2013/826.pdf


Page 17 of 17Wirth et al. BMC Bioinformatics          (2022) 23:531 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	85.	 Paverd AJ, Martin A, Brown I. Modelling and automatically analysing privacy properties for honest-but-curious 
adversaries. University of Oxford 2014. https://​www.​cs.​ox.​ac.​uk/​people/​andrew.​paverd/​casper/​casper-​priva​cy-​
report.​pdf. Accessed 29 July 2022.

	86.	 Desai T, Ritchie F, Welpton R. Five safes: designing data access for research. 2016. https://​doi.​org/​10.​13140/​RG.2.​1.​
3661.​1604.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.cs.ox.ac.uk/people/andrew.paverd/casper/casper-privacy-report.pdf
https://www.cs.ox.ac.uk/people/andrew.paverd/casper/casper-privacy-report.pdf
https://doi.org/10.13140/RG.2.1.3661.1604
https://doi.org/10.13140/RG.2.1.3661.1604

	EasySMPC: a simple but powerful no-code tool for practical secure multiparty computation
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Introduction
	Challenges and objectives

	Implementation
	Secure multi-party computation
	Design of EasySMPC
	General approach
	Architecture and implementation of the software


	Results
	Overview of the software
	Performance evaluation

	Discussion
	Principal results
	Supported data analyses
	Computational complexity
	Comparison with prior work
	Limitations and future work

	Conclusions
	Availability and requirements

	Acknowledgements
	References


