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Abstract 

Classification of different cancer types is an essential step in designing a decision sup-
port model for early cancer predictions. Using various machine learning (ML) tech-
niques with ensemble learning is one such method used for classifications. In the pre-
sent study, various ML algorithms were explored on twenty exome datasets, belonging 
to 5 cancer types. Initially, a data clean-up was carried out on 4181 variants of cancer 
with 88 features, and a derivative dataset was obtained using natural language pro-
cessing and probabilistic distribution. An exploratory dataset analysis using principal 
component analysis was then performed in 1 and 2D axes to reduce the high-dimen-
sionality of the data. To significantly reduce the imbalance in the derivative dataset, 
oversampling was carried out using SMOTE. Further, classification algorithms such as 
K-nearest neighbour and support vector machine were used initially on the oversam-
pled dataset. A 4-layer artificial neural network model with 1D batch normalization was 
also designed to improve the model accuracy. Ensemble ML techniques such as bag-
ging along with using KNN, SVM and MLPs as base classifiers to improve the weighted 
average performance metrics of the model. However, due to small sample size, model 
improvement was challenging. Therefore, a novel method to augment the sample size 
using generative adversarial network (GAN) and triplet based variational auto encoder 
(TVAE) was employed that reconstructed the features and labels generating the data. 
The results showed that from initial scrutiny, KNN showed a weighted average of 
0.74 and SVM 0.76. Oversampling ensured that the accuracy of the derivative dataset 
improved significantly and the ensemble classifier augmented the accuracy to 82.91%, 
when the data was divided into 70:15:15 ratio (training, test and holdout datasets). 
The overall evaluation metric value when GAN and TVAE increased the sample size 
was found to be 0.92 with an overall comparison model of 0.66. Therefore, the present 
study designed an effective model for classifying cancers which when implemented to 
real world samples, will play a major role in early cancer diagnosis.
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Introduction
Background of study

The coding part of the genome is referred to as an exome. Any genetic abnormalities 
in the exomes are known to trigger several types of cancers. With the present prevail-
ing cancer scenario in the world on a constant uprise, extensive research is being car-
ried out to arrive at possible solutions for early diagnosis [1–3]. With possible early 
diagnosis of the disease and application of suitable treatment strategies still hazy in 
research, there is an urgent need for the design and development of alternative ways 
that provide faster and precise predictions via comprehending the huge amount of 
existing cancer data. One important approach is to develop a decision support system 
(DSS), which predicts patient specific cancer probabilities, and overcomes challenges 
that arise with wrong treatment decisions and prognosis, massive data interpretation 
and comprehending patient-specific causes [4]. As an emerging and ever-evolving 
technology, DSS systems are highly adept at improving the decision-making process, 
thereby providing support to clinicians and diagnosticians [5]. Currently, there are 
several approaches to classify the cancer types, based on the exome datasets that are 
essential for designing a decision support system (DSS) for early diagnosis of cancers 
[6–9]. With advent of technology, using artificial intelligence and machine learning 
on high-throughput data to design an improved DSS model is the premise of the pre-
sent study.

Related works

Classification algorithms such as support vector machines (SVM), K-nearest neigh-
bors (KNN), Naïve Bayes, decision trees and random forest are primarily being used 
for cancer classification using machine learning [10, 11]. Studies have previously clas-
sified cervical cancer datasets [12] using KNN and SVM, breast cancer using deci-
sion tree algorithm [13] and brain tumor classification and detection using decision 
trees and KNN [14]. Likewise, the use of conventional ML algorithms such as ran-
dom forests, decision trees, KNN, artificial neural networks, and SVMs were shown 
to produce positive results in the classification of lung, prostate, breast, colorectal 
and gastric cancers, using clinical and genomic data [15]. Despite this, more advanced 
techniques are being sought after for attaining an overall precision and reliability 
of the decision support model. Ensemble methods is one such advanced technique, 
wherein, more than one single method will be integrated to obtain a solution for the 
same problem [16, 17]. The main advantage of using this approach is that it over-
comes the drawbacks of using single algorithms and in turn, consolidates its strengths 
[18]. Due to this reason, researchers have begun to utilize this technique, particularly 
to classify various cancer types [18, 19]. Recent studies have employed this technique 
in an attempt to assist the diagnosis of cervical cancer [20], and breast cancer [21, 22]. 
Keymasi et al. [23], studied three ensembles of SVM, ANN and KNN to predict and 
classify he cervical cancer related images and Zhang et al. [24], proposed to classify 
the benign and malignant breast tumors using an ensemble machine learning model 
by combining SVM, KNN and decision tree algorithms. As is observed in these stud-
ies, ensemble learning has been used to classify depending on imaging data and for 
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specific cancer types alone. However, not many studies exist that focus on classifying 
several different cancer types, in a single ensemble-based model, as is the case in the 
present study.

Research gap

Our research work also uses previously obtained [25, 26] novel genomic data in the form 
of mutation information for each of the twenty exome datasets to classify these cancer 
types, making the study unique when compared to previously published works, where 
the focus of the model has been to use imaging and already available clinical data. Bear-
ing this in mind, our research aimed to address the problem of noise and class-imbalance 
in twenty cancer exome datasets, derived from our previous work Padmavathi et al. [25, 
26] and as an improvement of a DSS model previously designed, by employing various 
machine learning algorithms with a greater focus on the implementation of ensemble 
machine learning on the derivative datasets, alongside use of techniques such as over-
sampling to attain a balanced dataset.

Additionally, a decision support system is generally categorized into three types- 
model driven, knowledge driven, and data driven [27, 28]. The present study focused 
on developing a model-driven decision support system from previously gathered data, 
with an emphasis on reducing the high-dimensionality of the dataset, obtaining a deriva-
tive dataset and to improve upon the model training time along with reduced correla-
tion among the features of the dataset. This research work aimed to fulfill the lacunae 
of creating an all-in-one model from appropriate derivate datasets, from many differ-
ent cancer types, which has not been previously carried out. Additionally, efforts were 
also focused on obtaining an appropriate derivative dataset from the raw data, that could 
eventually help in reducing the calculation inefficiencies and provide better predictions 
on the weighted features alone.

Contribution of present study

The major contribution of our study is towards the development of a highly accu-
rate and improved decision support model, which when used in healthcare, will pro-
vide immense benefits to the diagnosis and control of cancers. Additionally, our model 
encompasses classifications and predictions for five cancer types, making it a novel study 
with huge potential for early diagnosis of five different cancer types. The reduction of 
dimensions in the datasets were covered in our study to derive an appropriate deriva-
tive dataset which is of utmost importance since they directly contribute to providing 
better and more accurate predictions on the features of importance. The present study 
also provides massive insights into the workings of our proposed model, which resulted 
in a much better overall accuracy when compared to similar such previous work, satisfy-
ing the rudimentary aim of our research work, to offer support to the management of 
healthcare.

Materials and methods
A block diagram summarizing the proposed work, from cleaning and obtaining the 
derivative exome dataset, using classification analysis by including three classifiers, 
namely, K-NN, SVM, and a multilayer perceptron network. This was then followed by 
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using majority voting-based ensemble classifier, to finally obtain the proposed results 
(Fig. 1).

Dataset analysis

A preliminary analysis of the exome datasets was carried out. These datasets were 
obtained after a careful analysis of twenty cancer exome datasets, belonging to five can-
cer types, obtained from our previous work using a standardized workflow (Table  1) 
[25]. These were human diffuse type gastric cancer, pancreatic adenocarcinoma, high-
grade serous ovarian cancer, intrahepatic cholangiocarcinoma, and non-BRCA1/BRCA2 
familial breast cancer.

The five cancer types were chosen for our initial analysis in our previous studies 
because they were the major ones affecting the Indian population, for which we aimed 
to build a model. Although other cancer types such as hepatocellular carcinoma [29, 30], 
and bone cancer [31, 32] are also significant, the present study focused on model build-
ing for the five types as continuation of our previous work. An extension of this work 
however, will include more cancer types to stabilise the model further. Additionally, vari-
ant identification was also performed in our previous work specifically for these five can-
cer types which were thought to affect the Indian population more.

Moreover, previous studies have shown that no other similar models were available 
that were built on these five different cancer types, making our method unique. Please 
refer Padmavathi et al. [25], for more information on the pipeline used and justifications 

Fig. 1 Block diagram summarizing the workflow from cleaning and obtaining the derivative exome datasets, 
using classification analysis by including three classifiers such as KNN, SVM and a multi-layer perceptron 
network. This was followed by using majority voting-based ensemble classifiers to obtain the expected 
results

Table 1 Twenty exome datasets for five cancer types that were analysed in our previous work for 
obtaining variant information that led to formation of derivative datasets

Type of cancer Selected sample files and NCBI SRA IDs

Human diffuse type gastric cancer SRR941051, SRR941052, SRR941053, SRR941054

Intrahepatic cholangiocarcinoma SRR894452, SRR900123, SRR900099

High-grade serous ovarian cancer ERR035487, ERR035488, ERR035489

Pancreatic adenocarcinoma ERR232253, ERR232254, ERR232255

Non BRCA1/BRCA2 familial breast cancer ERR166303, ERR166304, ERR166307, 
ERR166310, ERR166312, ERR166335, ERR166336
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provided for arriving at different variants. These datasets employed for the study are 
publicly available and can be downloaded from NCBI SRA (https:// www. ncbi. nlm. nih. 
gov/ sra) with their accession numbers.

Hyperlinks for the sample files that were employed in our previous work is provided.

Data clean‑up and obtaining a derived dataset

The given exome dataset consisted of 4181 sample variants, with 88 features. On initial 
analysis, most of the features were filled with NaN (missing value marker). The initial 
analysis was done using “Pandas” library module available in python modules. These fea-
tures were dropped, as they couldn’t be used. The features left were 55 in number. These 
features were still filled with a few of NaN values. Categorical features with NaN values 
were dropped as well, since these features were not distinct and filling them with the use 
of Natural Language Processing (NLP) could not have a significant improvement on the 
precision prediction of the five types of cancer [33]. These included high-grade serous 
ovarian cancer, pancreatic adenocarcinoma, human diffuse-type gastric cancer, intra-
hepatic cholangiocarcinoma and non BRCA1/BRCA2 familial breast cancer. Consider-
ing only the numerical features for the prediction model, 25 numerical features were 
obtained. The few NaN values present in the dataset were filled with probabilistic distri-
bution using probabilistic matrix factorization [34]. These 25 features after handling the 
missing data over the 4181 sample variants constituted the derived dataset.

Exploratory data analysis

Principle Component Analysis (PCA) models were trained over the derived dataset. 
The number of dimensions in which the dataset was analyzed were one dimension, and 
two-dimensional axes. The results of the PCA models, reduced the high variance in the 
dataset due to distributing the weight of the features along two dimensions. Through 
this distribution the high dimensionality of the dataset was reduced, as the features that 
would have caused overfitting were removed [35https:// colab. resea rch. google. com/ 
drive/ 1AypJ YvigG npCrh smLkO 6c3b- jSZTq qKN]. The 14 features that had the maxi-
mum weight were selected for training the subsequent classification models and were 
also trained in the ensemble models trained later. The 14 selected features are, ‘shift-
score’ (score for sorting the variants from tolerant to intolerant), ‘TLOD’ (log odds that 
the variant is present in the tumor sample relative to the expected noise), ‘Sample.AF’ 
(allelic frequency of the sample), ‘MBQ’ (median base quality of each allele), ‘MFRL’ 
(median fragment length of each allele), ‘MMQ’ (median mapping quality of each allele), 
‘Sample.AD’ (allelic depth of the sample), ‘Sample.F1R2’ (forward and reverse read 
counts for each allele), ‘Sample.F2R1’ (forward and reverse read counts for each allele), 
‘DP’ (read depth), ‘GERMQ’ (phred-scaled posterior probability that the alternate alleles 
are not germline variants), ‘MPOS’ (median distance from the end of the read for each 
alternate allele), ‘POPAF’ (population allele frequency of the alternate alleles), and ‘Sam-
ple.DP’ (approximate read depth of the sample), (https:// suppo rt. senti eon. com/ appno 
tes/ out_ fields/) [36]. These parameters provided information on the variants identified 
from our previous analysis of cancer exomes, with alleles being the alternative forms of 
the genes that result from mutations and are present on the chromosomes [37]. Since 

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://colab.research.google.com/drive/1AypJYvigGnpCrhsmLkO6c3b-jSZTqqKN
https://colab.research.google.com/drive/1AypJYvigGnpCrhsmLkO6c3b-jSZTqqKN
https://support.sentieon.com/appnotes/out_fields/
https://support.sentieon.com/appnotes/out_fields/
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these parameters were found to be most important that could point towards specific 
cancer types, these were selected for building our model.

This allowed the authors to reduce the bias-variance trade off that would have been 
caused due to the use of irrelevant features according to the two-dimensional PCA 
model [38].

Oversampling using SMOTE

Synthetic Minority Oversampling Technique, also referred to as SMOTE, is an oversam-
pling technique to reduce imbalanced datasets. In the exome dataset, it was found that 
the dataset was heavily imbalanced with the majority class of cancer being Human dif-
fuse-type cancer having the highest number of sample variant (Fig. 2). This would cause 
the classifiers to not be sensitive to the change in the features of the dataset [39]. In this 
technique the minority class types to match the number of sample variants in the major-
ity class type were increased using the SMOTE algorithm. This ensured that the imbal-
ance in the dataset was significantly reduced.

Cross validation

Cross validation is a technique used to assess the variance-bias trade-off, of a machine 
learning model, to understand if the model is overfitting or underfitting, on completely 
unseen data [40].

The approach followed for cross-validation in our proposed study was hold out cross 
validation technique. This technique follows by dividing the dataset into a training set 
and a test set (the test set can be further divided into test and validation set). The model 
is then trained on the training set, where adjustments are made to its hyper-parame-
ters to balance the variance-bias trade-off. After training the model, the model is sub-
jected to the test set, where all the results produced by the model are considered as a 
final statement to the performance metrics [40]. This approach was implemented in the 
present study to cross-validate and confirm the relevance of our model in real-world test 
scenarios.

K‑nearest neighbors classification model analysis

The K-Nearest Neighbors (KNN) machine learning algorithm is an important pat-
tern recognition-based classifier that has great importance in analyzing and predicting 
cancer types in exome datasets [41, 42]. The primary step in implementing the KNN 

Fig. 2 Bar graph representing distribution of exome dataset for types of cancer. From the plot, the cancer 
class for human diffuse type gastric cancer is in majority by a huge margin compared to other classes. This 
caused the dataset to be imbalanced
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classifier is to identify the correct number of clusters that the dataset can be divided 
into. To identify the correct number of clusters, the elbow-curve method was employed. 
In this method the KNN classifier using the default hyperparameters, for various values 
of K, i.e., the number of clusters was applied. The order in which the value of K increases 
is sequential. Then the error rate versus K-graph is plotted. Through this graph the value 
of K for which the decrement in error rate is the most significant is chosen as the opti-
mal cluster value, K [43]. After obtaining the optimal cluster value, it was used to train 
the KNN classifier.

The above formula, describes the Euclidean distance method, where N is the dimen-
sion of the feature vectors,  wk is the dimension of the k-th feature vector, and the pair  di 
and  dj, denote the feature vector of a specific text in the training set and the feature vec-
tor of another text under consideration in the training set [44].

The default hyperparameters relied on using the Euclidean distance to differentiate the 
data points into different clusters. This did not result in a better classification. To iden-
tify the correct hyperparameters, “Grid Search” module was used [45]. From the grid 
search module, the best hyperparameters were obtained on training the KNN classifier 
on different hyperparameters using a verbose of 2. The hyperparameters involved using 
Manhattan distance, reducing the number of leaf nodes, and using “Ball Tree” algorithm 
over “Brute Force” algorithm. The classification model was then obtained using these 
hyperparameters.

For two points  (x1,y1), and  (x2,y2), the Manhattan distance can be defined as:

where the absolute distance of two points in consideration are calculated. This model is 
then repeated throughout the different points under consideration for the feature vector 
present in the dataset, and the classification was carried out [46]. The grid search val-
ues are provided in https:// colab. resea rch. google. com/ drive/ 1oOBw nfbmy 9yLng PSpsJ 
yTCEE OGM_ CkmE? usp= shari ng# scrol lTo= 40STv Z9rx8 s1 for understanding the range 
values, which were kept to be a positive integer increment (from 0 to infinity) with ver-
bose of 2.

Support vector machine classification model analysis

Another popular classification model used for data that can be distinguished better 
with the use hyperplanes and kernel substitution [47]. In this model the Support Vector 
Machine (SVM) classifier was used with default hyperparameters on the oversampled 
dataset. The hyperplanes differentiation can be very well implemented for our dataset, 
due to the high dimensionality [48].

where H represents the hyperplane equation, b is the bias term of the hyperplane equa-
tion, and w is the dimension of the feature vector [49].

D(di, dj) =
1

N
( (wik − wjk)2)

|x1 − x2| −
∣

∣y1 − y2
∣

∣

H : wT (x)+ b = 0

https://colab.research.google.com/drive/1oOBwnfbmy9yLngPSpsJyTCEEOGM_CkmE?usp=sharing#scrollTo=40STvZ9rx8s1
https://colab.research.google.com/drive/1oOBwnfbmy9yLngPSpsJyTCEEOGM_CkmE?usp=sharing#scrollTo=40STvZ9rx8s1
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where the distance function d with reference to a point vector, is given in terms of the 
symbols defined before [49].

Furthermore, “Grid Search” on SVM classifier using “GridSearchCV” to identify the 
best hyperparameters on a verbose of 2 was performed, but the results of the “Grid 
Search” module based on the value ranges as follows,

where ‘C’ is the regularization, which acts as a penalty parameter, ‘gamma’ defines the 
suitable line of separation, and ‘kernel’(s) are the dimensional modifiers. Within the ker-
nels, ‘rbf’ stands for a Gaussian kernel based on standard normal distribution, and the 
rest ‘poly’ and ‘sigmoid’ retain their usual meanings.

It was found that the default hyperparameters were best suited for the classification of 
dataset used in the present study.

Implementing neural networks

Artificial Neural Networks is a complex system that is designed to function and learn 
like the human brain [50, 51]. It performs multiple iterations and learns to predict out-
put based on them; it performs backpropagation to update its weight to increase the 
accuracy of the model. Neural network is able to perform complex analysis and work out 
the non-linearity between the inputs and the predicted outputs [51–55]. We proposed 
a 4-layer MLP model with 1D batch normalization and ReLU as the activation function 
between them; Dropout layers were also added to better train the model. For the classifi-
cation Neural network criterion selected was Cross entropy loss and Adam [56] was the 
choice of optimizer.

The above equation is used to represent the simplest form of a MLP, i.e., a perceptron, 
where Yk is the output of the kth perceptron and wki is the ith element of the pre-trained 
weight matrix of kth perceptron in any layer. xi is the ith input and bk is the bias of the 
perceptron. As you go down the layer, each output will depend on the output of the pre-
vious layers [57].

Ensemble machine learning approach

Ensemble learning approach involves dividing the dataset into different potential por-
tions, these portions are then given as input to various classifiers, or the same classi-
fiers with different hyperparameters. The ensemble classifiers are stronger classifiers 

dH (�(x0)) =

∣

∣wT�(x0)+ b
∣

∣

�w�2

‘C’ : [0.1, 0.5, 1, 5, 10, 15, 100, 150, 500, 1000]

‘gamma’ : [1, 0.1, 0.01, 0.001, 0.0001, 0.00001]

‘kernel’ : [‘rbf’, ‘poly’, ‘sigmoid’]

Yk(x) = f

{

n
∑

i=1

(wkixi + bk)

}
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compared to the use of single classifiers, due to the use of weights to judge how well a 
particular classifier works on a certain or entire portion of the dataset [58]. After devel-
opment in the field of ensemble learning, the two most widely used algorithms are Bag-
ging (abbreviation for Bootstrap Aggregating) and boosting. These two algorithms have 
error-correction capabilities, due to which they are predominantly used in training 
stronger classifiers. In the present study, bagging technique, using the KNN classifier, 
SVM classifier, and the MLP classifier as the base classifiers was utilized. The weighted 
average of these three models are calculated and the weights are judged based on major-
ity voting. The ensemble estimator is then employed which calculates the weighted aver-
age using a holdout validation set [59–61].

The study was also carried upon “Extended Gradient Boosting techniques (XGBoost) 
[62]”, but the comparative results with respect to using bagging techniques instead of 
gradient boosting techniques was mathematically not suitable since, the model would 
undergo correction to bias and underfitting, instead of focusing on building parallel 
decision trees which would correct the variance and overfitting by minimizing the same 
[63]. Therefore, the ensemble estimator was preceded by bagging techniques, instead of 
utilizing Gradient Boosting Decision Tree (GBDT).

CTGAN and TVAE implementation on tabular data

Generative Adversarial Networks, or GANs for short, are an approach to generative 
modeling using deep learning methods, such as convolutional neural networks. Genera-
tive modeling is an unsupervised learning task in machine learning that involves auto-
matically discovering and learning the regularities or patterns in input data in such a 
way that the model can be used to generate or output new examples that plausibly could 
have been drawn from the original dataset. GAN contain two sub-models: the generator 
model that we train to generate new examples from noise input and the discriminator 
model that tried to classify the examples as either real or fake. These two models are 
trained together in a zero-sum game. CTGAN is a collection of Deep Learning based 
Synthetic Data Generators for single table data, which are able to learn from real data 
and generate synthetic clones with high fidelity [64].

Another type of deep generative model is the Variational Autoencoders (VAEs), as 
the name suggests autoencoder whose encodings distribution is regularized during the 
training in order to ensure that its latent space has good properties allowing us to gener-
ate some new data. The TVAE is model is based on the VAE-based Deep Learning data 
synthesizer on tabular data, similar to the GAN the VAE contains encoder and decoders 
instead of generator and discriminator [64].

Under the scheme of the samples that were currently used in the dataset, it was 
realized that the sample size was insufficient to improve upon the already proposed 
models as in “K-Nearest Neighbors Classification Model Analysis”, “Support Vec-
tor Machine Classification Model Analysis”, “Implementing Neural Networks” and 
“Ensemble Machine Learning Approach” sections. A novel technique that augments 
the dataset with increased quantity of samples, simultaneously reducing the imbal-
ance and noise in the dataset, was sought after. The main objective while augmenting 
the dataset, should be to match clinical trials in terms of correlation. Exploring this 
novel method will also help reduce the overhead costs and the expenditure on clinical 
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trials due to the expensive instruments used. This would also help in obtaining more 
conclusive classification in terms of rare types of cancer, for which the sample data 
could be very small. Although, using SMOTE as mentioned in “Oversampling using 
SMOTE” section, could be used to increase the sample size, but these augmented 
datasets are not studied under correlation to the clinical trials. This implies that we 
do not have a parameter to judge the authenticity of the generated dataset. The over-
all estimation period of clinical trials often hinders the time taken to proceed with the 
prediction model. To tackle all these issues, a novel method to augment and increase 
the sample size of exome dataset using Generative Adversarial Network (GAN) and 
Triplet based Variational Auto Encoder (TVAE) was proposed [65].

Conditional generator G(z, cond) can be formally described as

Discriminator can be formally described as

The above equations represent the network structure of CTGAN model; cond vec-
tor represents the conditional vector for all of the discrete columns from the dataset 
which end up as one-hot vectors. h0, h1 and h2 represents the output of each layer, 
while z denotes the input value for the generator. rj is the representation of outputs 
of each row which is the concatenation of discrete and continuous columns [64, 65].

To overcome the data imbalance, TGAN (Tabular GAN) was implemented on the 
dataset. But it failed to work on a multi-class classifier as the discrete columns could 
not be generated. To tackle this issue, Condition Tabular Generative Adversarial Net-
work (CTGAN) model was adopted as the base generation model, which included a 
generator and a discriminator. The generator and the discriminator were constructed 
with fully connected layers respectively. The method that was followed was proposed 
by Xu et  al. [64], TVAE stands out to the variational autoencoder (VAE), by recon-
structing the features and labels based on the loss of VAE during generating data [64, 































h0 = z ⊕ cond
h1 = h0 ⊕ ReLU(BN(FC|cond| + |z|→256(h0)))

h2 = h1 ⊕ ReLU(BN(FC|cond|+|z|+256→256(h1)))
α̂i = tanh(FC|cond|+|z|+512→1(h2) 1 ≤ i ≤ Nc

β̂i = gumbel0.2 (FC|cond|+|z|+512→mi
(h2)) 1 ≤ i ≤ Nc

d̂i = gumbel0.2 (FC|cond|+|z|+512→Di
(h2)) 1 ≤ i ≤ Nd











h0 = r1 ⊕ · · · ⊕ r10 ⊕ cond1 ⊕ · · · ⊕ cond10
h1 = drop(leaky0.2(FC10|r|+10|cond|→256(h0)))

h2 = drop(leaky0.2(FC256→256(h1)))
C(·) = FC256→1(h2)

−r1 ⊕ r2 ⊕ . . . : notation is used to define the concatenate vectors

−gumbelr(x) : apply Gumbel softmac with r on a vector on a vector x

−leakyr(x) : apply a leaky ReLU activation on x with leaky ratio r

−FCu→v(x) : apply a linear transormation on u−dum input to get a v−dim output
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65]. This method, however, stands similar to the CTGAN approach in terms of epochs 
used to generate the tabular data with discrete columns.

Performance evaluation metrics

Given the true positives (TP), false positives (FP), true negative (TN) and false negative 
(FN) counts, the following performance evaluation metrics were calculated:

The parameters, precision and recall, are based on the relevance of the results 
retrieved, and help us judge the fraction of relevant instances according to the given 
mathematical formulae. Accuracy gives us the overall true instances for every reported 
instance. Although Accuracy guides us through the overall true instances it doesn’t 
amount to the relevant instances that are important in the present study of prediction of 
cancer classes [66]. Substituting the values for β with natural numbers (1, 2, 3, … so on) 
gives us the corresponding Fβ scores, which helps us understand the imbalance in results 
of large number of actual negatives [66].

Confusion matrix:
A confusion matrix is a table that is used to define the performance of a classifica-

tion algorithm. It represents counts from the actual and predicted values. All the pri-
mary diagonal elements represent the true positives (TP) classifications and the other 
elements represents the false positives and True negatives. Accuracy can be misleading 
if used with imbalance datasets, and therefore metrics based on confusion matrix can be 
more useful and stable comparatively [67]. This concept was implemented in our study 
where confusion matrices were drawn to represent the probabilities of true and false 
positives for 5 cancer types.

Results
Comparison of KNN and SVM classifiers

After performing the elbow curve method to identify optimal number of clusters (Fig. 3), 
the models classification report obtained using KNN classifier had a weighted average of 
0.74. But, the precision, recall and f1-score for cancer types of high-grade serous ovar-
ian cancer, and pancreatic adenocarcinoma, were very low, with precision resulting in 
0.59 and 0.58 respectively. But the precision value for other three types of cancer were 
above 0.75, that lead to the understanding that the cancer types with lower precision and 
recall were affected by the high dimensionality of the dataset. The hyperparameters used 

Accuracy =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Fβ =
(

1+ β2
) Precision ∗ Recall
(

β2 ∗ Precision
)

+ Recall
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in KNN classifier as mentioned in "K-nearest neighbors classification model analysis" 
section, gives better true positives as compared with the default hyperparameters. The 
weighted accuracy using the KNN classifier with the default hyperparameters was 0.69, 
whereas with the selected hyperparameters, the weighted accuracy increased to 0.77 
(Table  2a) The results and code can be found here https:// colab. resea rch. google. com/ 
drive/ 1FNv8 jKhT9 o2zJ7 s1Utw sNO3S_ K306Z Az.

Additionally, increasing the cluster value (K) didn’t have any significant effect on the 
classification report, leading to a very small decrement in the value of weighted aver-
age to 0.68. To tackle the issue of high dimensionality and to improve the classification 
report for the cancer types, high-grade serous ovarian cancer, and pancreatic adenocar-
cinoma, the classifier was switched to SVM. As mentioned in "Support vector machine 
classification model analysis" section, the SVM classifier using the default hyperparam-
eters performed much better in overall classification report for all the five cancer types. 
The weighted average remained around 0.76 (Table  2b), with the precision for cancer 
types, high-grade serous ovarian cancer, and pancreatic adenocarcinoma, improving to 
0.66 and 0.62 respectively (Table  2b) (https:// colab. resea rch. google. com/ drive/ 1FEJB 
NzT8w YYwEK pYsaq Fuq_ Tyhzs KaA7). The value of true positives almost doubled, but 
the downfall was the value of false negatives that had slightly increased.

Neural networks performance

The trained model was experimented with under sampled and SMOTE oversampled 
dataset (Figs. 4, 5, 6, 7, 8). The model was trained for 100 epochs with a batch size of 
20 in custom balanced batches. On the under sampled, the model had a weighted aver-
age of 0.73. The precision obtained for Intrahepatic cholangiocarcinoma was 0.88 and 
for Non BRCA1/BRCA2 familial breast cancer was 0.86. The precision for three of the 

Fig. 3 Distortion (error rate) versus number of clusters (K-value) generated by elbow curve method to 
determine the best K-value for KNN. From the graph, we can see that the error rate drastically drops around 
14, thereafter the decrease in error rate is low. Therefore, the ideal cluster value should be between 11 and 13

https://colab.research.google.com/drive/1FNv8jKhT9o2zJ7s1UtwsNO3S_K306ZAz
https://colab.research.google.com/drive/1FNv8jKhT9o2zJ7s1UtwsNO3S_K306ZAz
https://colab.research.google.com/drive/1FEJBNzT8wYYwEKpYsaqFuq_TyhzsKaA7
https://colab.research.google.com/drive/1FEJBNzT8wYYwEKpYsaqFuq_TyhzsKaA7
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cancers—High-grade serous ovarian cancer, Human Diffuse Type Gastric Cancer and 
Pancreatic adenocarcinoma was 0.62, 0.66 and 0.66 respectively which was significantly 
lower. The model also showed wrong classification between High-grade serous ovarian 
cancer and Pancreatic adenocarcinoma which could be traced to less data due to under 
sampling. This model had validation accuracy of 74.31% after 100 epochs and average 
accuracy of 73% on the test set.

Table 2 Performance metrics for KNN, SVM, MLP and ensemble classifiers for five cancer types

Classifier Cancer class Precision Recall F1‑score

(a) Performance metrics for KNN

KNN High-grade serous ovarian cancer 0.56 0.61 0.59

Human diffuse type gastric cancer 0.88 0.71 0.79

Intrahepatic cholangiocarcinoma 0.79 0.85 0.82

Non BRCA1/BRCA2 familial breast cancer 0.82 0.96 0.89

Pancreatic adenocarcinoma 0.60 0.62 0.61

Weighted accuracy 0.77

(b) Performance metrics for SVM

SVM High-grade serous ovarian cancer 0.66 0.58 0.62

Human diffuse type gastric cancer 0.83 0.66 0.73

Intrahepatic cholangiocarcinoma 0.85 0.86 0.86

Non BRCA1/BRCA2 familial breast cancer 0.84 0.99 0.91

Pancreatic adenocarcinoma 0.62 0.71 0.66

Weighted accuracy 0.76

(c) Performance metrics for neural networks

Neural networks High-grade serous ovarian cancer 0.75 0.74 0.74

Human diffuse type gastric cancer 0.83 0.78 0.80

Intrahepatic cholangiocarcinoma 0.85 0.89 0.87

Non BRCA1/BRCA2 familial breast cancer 0.89 0.92 0.91

Pancreatic adenocarcinoma 0.78 0.78 0.78

Weighted accuracy 0.82

(d) Performance metrics for ensemble model

Ensemble model High-grade serous ovarian cancer 0.76 0.78 0.77

Human diffuse type gastric cancer 0.82 0.77 0.79

Intrahepatic cholangiocarcinoma 0.84 0.91 0.87

Non BRCA1/BRCA2 familial breast cancer 0.89 0.93 0.91

Pancreatic adenocarcinoma 0.83 0.77 0.80

Weighted accuracy 0.82

Fig. 4 Balanced dataset using oversampling via SMOTE. This plot shows that the all the cancer class is equally 
balanced after performing SMOTE oversampling and should make the model trained to be more stable
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On the SMOTE oversampled dataset, the individual precision of the above 3 can-
cers increased significantly; High-grade serous ovarian cancer increased to 0.75, 
Human Diffuse Type Gastric Cancer increased to 0.83 and Pancreatic adenocarci-
noma increased to 0.78. The precision obtained for Intrahepatic cholangiocarcinoma 
was 0.85 and for Non BRCA1/BRCA2 familial breast cancer was 0.89. This model 
showed 82.56% validation accuracy after 100 epochs and average accuracy of 82% 
(Table 2c) on the test set. This model showed to be more stable that the one trained 
on under sampled dataset and increased the precision and recall for all the types 
of cancer. Results and codes for the same can be found here https:// colab. resea rch. 
google. com/ drive/ 1lH2t dApkH fqF_ 6C- d9Pe3 o2ZR6 oCjp-5, https:// colab. resea rch. 
google. com/ drive/ 1KSDK oxJmb NwW_ hBElV 2DP- CIlLDA- eP0.

Fig. 5 Train-validation accuracy versus epochs and train-validation loss versus epochs for neural network 
with SMOTE oversampling. From the graph, it can be seen that the validation accuracy stalls around 40 
epochs and has only slight variation after that hence training for 40 epochs should be sufficient to provide 
same performance as training for 100 epochs. From the validation loss graph, it is noted that after around 
50 epochs the model starts to overfit for the training data and hence stopping it after that should prevent it 
from overfitting

Fig. 6 Confusion matrix heatmap of neural network with SMOTE oversampling. The primary diagonal 
elements from this graph shows the true correct positives and the rest are the false classification. Higher 
number of primary diagonal from the matrix shows that the classifier has achieved a good accuracy. 0–4 
represents the five cancer classes. 0: High-grade serous ovarian cancer, 1: Human diffuse-type gastric 
cancer, 2: Intrahepatic cholangiocarcinoma, 3: Non BRCA1/BRCA2 familial breast cancer, 4: Pancreatic 
adenocarcinoma. The light to dark color coding indicates the probabilities of true and false positives

https://colab.research.google.com/drive/1lH2tdApkHfqF_6C-d9Pe3o2ZR6oCjp-5
https://colab.research.google.com/drive/1lH2tdApkHfqF_6C-d9Pe3o2ZR6oCjp-5
https://colab.research.google.com/drive/1KSDKoxJmbNwW_hBElV2DP-CIlLDA-eP0
https://colab.research.google.com/drive/1KSDKoxJmbNwW_hBElV2DP-CIlLDA-eP0
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Weighted ensemble learning classifier

As discussed in “Ensemble Machine Learning Approach” section, the base classifiers 
identified to be ideal had to be weighted according to their performance on the clas-
sification of the cancer types. To perform this function, the “tensordot” API available in 
the “NumPy” module was used (https:// numpy. org). The tensordot API helps in calculat-
ing the tensor product of the weighted accuracy obtained from the base classifiers. The 
weighted accuracy of the KNN classifier, SVM classifier, and MLP classifier were 0.754, 
0.774, and 0.842 respectively. The ensemble classifier had a weighted accuracy of 82.91% 
(Table 2d). The dataset was divided into 70:15:15 ratio. The 70:15 was used to split into 
training and test sets. The remaining 15% was used for the holdout validation set. The 
performance metric was calculated by fitting the test set to the base classifiers, and then 

Fig. 7 Train-validation accuracy versus epochs and train-validation loss versus epochs for neural network 
with under sampling. From the graph, it can be seen that the validation accuracy stalls around 40 epochs 
and has only slight variation after that hence training for 40 epochs should be sufficient to provide same 
performance as training for 100 epochs. From the validation loss graph, it is noted that after around 40 
epochs the model starts to overfit for the training data and hence stopping it after that should prevent it 
from overfitting

Fig. 8 Confusion matrix heatmap of neural network with undersampling. The primary diagonal elements 
from this graph shows the true correct positives and the rest are the false classification. Higher number of 
primary diagonals from the matrix shows that the classifier has achieved a good accuracy but performance 
was worse compared to SMOTE oversampling. 0–4 represents the five cancer classes. 0: High-grade serous 
ovarian cancer; 1: Human diffuse-type gastric cancer; 2: Intrahepatic cholangiocarcinoma; 3: Non BRCA1/
BRCA2 familial breast cancer; 4: Pancreatic adenocarcinoma. The light to dark color coding indicates the 
probabilities of true and false positives

https://numpy.org
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measuring the true positives using majority voting. Using only KNN and SVM classifiers 
as base classifiers the weighted accuracy of the ensemble estimator still performed better 
with soft voting, resulting in 78.288%. In this case, the KNN classifier and SVM classifier 
models had weighted accuracy of 0.736 and 0.701 respectively (https:// colab. resea rch. 
google. com/ drive/ 1mFcO y-- VT1hQ em8Jh Clh5T fSK5K nLKJL). The confusion matrix 
from the resulting ensemble classifier (Table  3), had much better evaluation metrics, 
with the precision value for high grade serous ovarian cancer, and pancreatic adenocar-
cinoma reaching 0.76 and 0.83, compared to the results in "Comparison of KNN and 
SVM classifiers" section. The entire results have been depicted in Table 4, where the per-
formance parameter used for the results is precision. The justification for choosing such 
a parameter is to allow the weightage of false positives (FP), to have a greater ratio in 
determining the results as from the statistical relation in "Performance evaluation met-
rics" section, we observe precision to give us a significant ratio for the same. The weight-
age of false positives, helps us in the case of prediction of cancer classes based on exome 
dataset. Precision, has been selected as the required performance metric, as the require-
ment of having a better ratio in false positives (FP), has a greater significance in cancer 
prediction for a decision support system. The table therefore, summarizes our proposed 
models and their respective precision values. The results are presented in SOTA method.

CTGAN and TVAE generated dataset

The proposed model for CTGAN was trained for 300 epochs with a batch size of 10 
after which the generator loss was 0.2503 and the Discriminator loss was − 1.4397. The 
synthetic dataset on evaluation with real dataset with CSTest and KSTest the evaluation 
metric value was 0.92 and the overall comparison value was 0.66. The proposed TVAE 
model was also trained for 300 epochs with a batch size of 10 (https:// colab. resea rch. 
google. com/ drive/ 1mFcO y-- VT1hQ em8Jh Clh5T fSK5K nLKJL). The synthetic dataset on 

Table 3 Confusion matrix from resulting ensemble classifier

*0–4 indicate cancer classes high-grade serous ovarian cancer, human diffuse type gastric cancer, intrahepatic 
cholangiocarcinoma, non BRCA1/BRCA2 familial breast cancer, pancreatic adenocarcinoma respectively

Confusion matrix* 0 1 2 3 4

0 302 98 0 36 105

1 58 1425 92 134 93

2 0 117 630 110 14

3 3 15 22 928 3

4 79 137 21 34 544

Table 4 Results based on precision for the proposed classifiers under study

Cancer classes Classification algorithms (precision)

KNN SVM Neural network Ensemble

High-grade serous ovarian cancer 0.56 0.66 0.75 0.76

Human diffuse type gastric cancer 0.88 0.83 0.83 0.82

Intrahepatic cholangiocarcinoma 0.79 0.85 0.85 0.84

Non BRCA1/BRCA2 familial breast cancer 0.82 0.84 0.89 0.89

Pancreatic adenocarcinoma 0.60 0.62 0.78 0.83

https://colab.research.google.com/drive/1mFcOy--VT1hQem8JhClh5TfSK5KnLKJL
https://colab.research.google.com/drive/1mFcOy--VT1hQem8JhClh5TfSK5KnLKJL
https://colab.research.google.com/drive/1mFcOy--VT1hQem8JhClh5TfSK5KnLKJL
https://colab.research.google.com/drive/1mFcOy--VT1hQem8JhClh5TfSK5KnLKJL
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evaluation with real dataset with CSTest and KSTest, the evaluation metric was 0.93 and 
the overall comparison value was 0.63.

Discussion
Ensemble learning technique

In the ensemble learning algorithm used in the present study, the ensemble estima-
tor to perform soft voting on all the respective base classifiers that were used was pro-
posed. The difference between soft voting and its alternate, hard voting, is that the latter 
works on the principle of majority label that was classified by all the base classifiers. 
Whereas soft voting relies on the base classifiers generating a probability value for the 
target class. From "Weighted ensemble learning classifier" section, the use of soft vot-
ing was employed so as to allow each classifier to be judged for every class according 
to its performance, and then adding the tensor sum. The target label with the greatest 
total of the weighted probabilities gets the vote [68, 69]. In Assiri et al. [70] the ensem-
ble learning model proposed on the hard voting mechanism had shown better accuracy 
reaching 99.42%. The proposed classifiers were simple logistic regression learning, sup-
port vector machine learning with stochastic gradient descent optimization and mul-
tilayer perceptron network. This works on classification of single type of cancer class, 
i.e., the cancer class under study in Assiri et al. [70], was breast tumor classification on 
dataset taken from the Wisconsin Breast Cancer Dataset (WBCD). In the model pro-
posed in the present study, the classification of five types of cancers simultaneously was 
enhanced with ‘Non BRCA1/BRCA2 familial breast cancer’, also a class under study, 
yielding a recall value of 0.92 and precision of 0.89. From Table 5, using SVM learning 
with stochastic gradient descent (SGD) optimization the recall and precision were 0.979 
and 0.978 respectively. This leads to the inference that SVM with SGD would be a better 
parameter, but this would be inaccurate due to the fact that breast tumour classification 
in Assiri et al. [70], have parameters such as the radius of curvature, which can be cor-
rectly classified using a gradient descent in a hyperplane; but would be incapable to do 
so for features that belong only to the exome dataset, as using the same models led to a 
decrease in precision for ‘Non BRCA1/BRCA2 familial breast cancer’ in our proposed 
study. Similarly, Table 5 depicts the other 3 proposed models and their respective perfor-
mance evaluation metrics. The ensemble model based on majority voting described in 
Assiri et al. [70], plateaus around 0.994. Comparing the performance evaluation metrics 
in Table 6, from our proposed study we see from the results in "Comparison of KNN 
and SVM classifiers" section, the recall value for the cancer class ‘Non BRCA1/BRCA2 
familial breast cancer’, to be at a high 0.99 in case of SVM using the hyperparameters 

Table 5 Classification analysis by Assiri et al. [70]

Classification algorithms Accuracy (%) Precision Recall F1 score

Simple logistic regression learning 98.25 0.983 0.982 0.982

SVM learning with SGD optimization 97.88 0.979 0.978 0.971

Multilayer perceptron network 97.66 0.977 0.977 0.977

K-nearest neighbor classification 97.08 0.972 0.971 0.972

Majority based ensemble model 99.42 0.994 0.994 0.994
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discussed in "Support vector machine classification model analysis" section, i.e., the 
default hyperparameters. And has a recall value of 0.96, and 0.92 in case of K-Nearest 
Neighbour and Neural Networks respectively, as depicted in the Table  6. The major-
ity-based ensemble method developed for all the 5 cancer class in our proposed study, 
resulted in a recall value of 0.93 for the ‘Non BRCA1/BRCA2 familial breast cancer’ as 
depicted in Table 6. This, clearly leads to the conclusion that for exome dataset, our pro-
posed ensemble model had better relevant results compared to Adel S. Assiri et al. [70].

In this model, soft voting was used to counter the fact, that from "Comparison of KNN 
and SVM classifiers" section, it was clear that the five cancer types were not well distin-
guished, simultaneously by the KNN or SVM classifier. Using soft voting instead of hard, 
allowed us to predict the cancer class better by giving each of the individual classifiers 
a probability value based on their performance with the holdout validation set. From 
"Weighted ensemble learning classifier" section, the weighted accuracy of the model was 
found to be 82.91%. Furthermore, on training the ensemble estimator using hard voting, 
i.e., majority voting, the overall weighted accuracy was observed to be 76.758%.

In Li et al. [71], the reported overall accuracy was 71.46% for the classification of 14 
types of cancer class with the use of performance weighted voting ensemble on five clas-
sifiers, logistic regression, support vector machine, random forest, XGBoost and neu-
ral networks. From Table 7, the overall weighted accuracy for 8-cancer types calculated 
for the five classifiers mentioned above, was well below 70% [71]. Only the performance 
weighted voting ensemble model resulted in an overall accuracy of 71.46 [71]. This 
clearly shows that the ensemble model with performance weighted voting for greater 
number of classifiers doesn’t yield significant results, as it is necessary to define a dis-
tinguishable structure for the exome dataset by including hyperplane distinction. From 
Table 8, the weighted accuracy in all cases of different classifiers used in our proposed 
study is greater than 76%, with the ensemble model based on soft-voting resulting in 
82% weighted accuracy. Furthermore, the recall values of the models proposed in our 

Table 6 Non BRCA1/BRCA2 familial breast cancer

Classification algorithms Precision Recall F1 score

K-nearest neighbor 0.82 0.96 0.89

Support vector machine 0.84 0.99 0.91

Neural networks 0.89 0.92 0.91

Majority based ensemble model 0.89 0.93 0.91

Table 7 Performance evaluation metric, Li et al. [71], for 8 cancer types

Classification algorithms Accuracy

Logistic regression 0.68

SVM 0.63

Random forest 0.54

XGBoost 0.62

Neural network 0.68

Performance-weighted-voting 0.71
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study were significantly higher for all the 5 cancer types. Our proposed model however, 
resulted in much better overall accuracy of 83%, with the evaluation parameters outper-
forming the model based on performance weighted voting ensemble.

Furthermore, from their research soft voting model had the overall accuracy output 
comparatively lesser than that of the performance model. However, from the present 
research the soft-voting ensemble model performed much better as compared the per-
formance model, due to the three classifiers that were used (as mentioned in "Weighted 
ensemble learning classifier" section), being able to distinguish and give better prob-
ability values as compared to the five weak classifiers used in Li et al. [71]. The model 
designed in the present work also resulted in much larger true positives, and hence 
a better method for the early prediction of 5 classes of cancer as mentioned in "Data 
clean-up and obtaining a derived dataset" section.

Additionally, Tables 6 and 8, refer to soft voting classifiers in majority voting ensemble, 
which use predicted probabilities for class labels, and give almost proportional contri-
bution to predictions for all the involved models. Table 7, pertains to the performance 
weighted voting ensemble model used in Li et  al. [71], and involves a non-uniform 
weight attached to the models based on different judging parameters. Therefore, the 
model under Li et  al. [71], (Table 7) and the soft-voting models in Tables 6 and 8 are 
different.

CTGAN and TVAE on synthetic dataset

The synthetic dataset obtained from CTGAN and TVAE, was saved as a comma sepa-
rated value file (csv). The proposed ensemble learning model was carried out on the syn-
thetic dataset generated by the CTGAN method (Additional file 1) [72]. The weighted 
accuracy of the model was about 63.54%, with recall values and precision values for the 
cancer classes being low. This however was not the case with synthetic dataset generated 
through TVAE (Additional file 2). On training with the proposed ensemble model, the 
weighted accuracy was observed to be about 76.58%, with very good recall and preci-
sion values. But the main objective of the generated dataset was to be able to distinguish 
between the cancer classes with lower probability values of being classified. This was 
easily observed in the model that was trained on TVAE synthetic generated dataset, with 
very good recall values (Table 9). Clearly, using TVAE and CTGAN can be proposed for 
improving the oversampling, as well as improving the resultant true positives and false 
positives. This has a great importance in saving resources, and improving the prediction 
probability, as compared to other oversampling techniques such as SMOTE.

Table 8 Performance evaluation metric, proposed study for 5 cancer types

Classification algorithms Weighted 
accuracy

KNN 0.77

SVM 0.76

Neural networks 0.82

Majority voting ensemble 0.83
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Conclusion
The present research work has important clinical significance for identifying the origin 
of five cancer types and provides insight on obtaining better cancer risk probabilities 
for the five selected types. In this paper, various algorithms were explored on the exome 
dataset to classify the cancers. In addition, the present work presented an ensemble 
machine learning method to combine the benefits of the 3 models (KNN, SVM and Neu-
ral network) into one model to provide a more balanced cancer classifier to obtain more 
accurate predictions. When KNN and SVM models were used, the weighted accuracy 
using the KNN classifier with the default hyperparameters was 0.69, whereas with the 
selected hyperparameters, the weighted accuracy increased to 0.77. Likewise, the SVM 
classifier using the default hyperparameters performed much better in overall classifica-
tion report for all the five cancer types. The weighted average remained around 0.76. 
With the neural networks model, the model had validation accuracy of 74.31% after 100 
epochs and average accuracy of 73% on the test set. However, with SMOTE on the data-
sets, the model showed 82.56% validation accuracy after 100 epochs and average accu-
racy of 82% on the test set. This model showed to be more stable that the one trained on 
under sampled dataset and increased the precision and recall for all the types of cancer. 
With the ensemble classifier model, the accuracy upped to 82.91%, close to 83% proving 
that this model improved the overall model precision.

The trained models enabled us to understand the impact of TVAE on the generation 
of datasets, by reducing the false negatives by a considerable amount. From the reali-
zation of bagging techniques in ensemble machine learning and utilizing weighted 
ensemble learning technique using soft-voting, the cumulative results yielded a bet-
ter overall model collection consisting of the same explained throughout "Ensemble 
learning technique" and "CTGAN and TVAE on synthetic dataset" sections. The clas-
sifications obtained through Tables  8 and 9, both provide insight into the mathemati-
cal understanding of how the exome datasets can be better partitioned and studied in a 
hyperplane, as well as distributing the values of the dataset through TVAE and CTGAN, 
allows us to understand the distribution of the generated datasets as well. Hence, prov-
ing to be a vital technique to build a correction system for all types of classifications and 
reduce the bias-variance trade off which was studied throughout "Weighted ensemble 
learning classifier" and "CTGAN and TVAE generated dataset" sections.

Further enhancement is dependent on the addition of more variation data from 
other cancer types. Moreover, the model developed in this work also incorporated 
study on under sampling, over sampling for data balancing and a novel approach of 

Table 9 Ensemble model trained on TVAE generated dataset

A: High-grade serous ovarian cancer; B: Human diffuse-type gastric cancer; C: Intrahepatic cholangiocarcinoma; D: Non 
BRCA1/BRCA2 familial breast cancer; E: Pancreatic adenocarcinoma

Classifier Cancer class A B C D E
Evaluation metrics

Ensemble model Precision 0.68 0.80 0.82 0.75 0.72

Recall 0.56 0.79 0.72 0.97 0.67

F1-score 0.61 0.79 0.77 0.84 0.69

Weighted accuracy 0.765
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data augmentation using CTGAN and TVAE was added to the model which proved to 
be effective in rare cancer cases where data is not widely available, hence proving data 
similar to real world samples.

Abbreviations
DSS  Decision support system
NLP  Natural language processing
PCA  Principal component analysis
SMOTE  Synthetic minority oversampling technique
KNN  K-nearest neighbour
SVM  Support vector machine
MLP  Multi-layer perceptron
GAN  Generative adversarial networks
TVAE  Triplet based variational auto encoder
CTGAN  Conditional tabular generative adversarial networks
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