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Background
Ever since the first 454/Solexa sequencers broke the dawn of the next-generation 
sequencing revolution, the rate of increase in sequencing data has been growing expo-
nentially at a pace exceeding Moore’s law. The number of nucleotide base pairs (bp) in 
public repositories is estimated to reach the exabase scale ( 1018 bp) before 2025 [20]. 

Abstract 

Background:  The assembly of metagenomes decomposes members of complex 
microbe communities and allows the characterization of these genomes without 
laborious cultivation or single-cell metagenomics. Metagenome assembly is a process 
that is memory intensive and time consuming. Multi-terabyte sequences can become 
too large to be assembled on a single computer node, and there is no reliable method 
to predict the memory requirement due to data-specific memory consumption pat-
tern. Currently, out-of-memory (OOM) is one of the most prevalent factors that causes 
metagenome assembly failures.

Results:  In this study, we explored the possibility of using Persistent Memory (PMem) 
as a less expensive substitute for dynamic random access memory (DRAM) to reduce 
OOM and increase the scalability of metagenome assemblers. We evaluated the execu-
tion time and memory usage of three popular metagenome assemblers (MetaSPAdes, 
MEGAHIT, and MetaHipMer2) in datasets up to one terabase. We found that PMem can 
enable metagenome assemblers on terabyte-sized datasets by partially or fully substi-
tuting DRAM. Depending on the configured DRAM/PMEM ratio, running metagenome 
assemblies with PMem can achieve a similar speed as DRAM, while in the worst case 
it showed a roughly two-fold slowdown. In addition, different assemblers displayed 
distinct memory/speed trade-offs in the same hardware/software environment.

Conclusions:  We demonstrated that PMem is capable of expanding the capacity 
of DRAM to allow larger metagenome assembly with a potential tradeoff in speed. 
Because PMem can be used directly without any application-specific code modifica-
tion, these findings are likely to be generalized to other memory-intensive bioinformat-
ics applications.

Keywords:  Metagenome assembly, Persistent memory, Out-of-memory

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

Sun et al. BMC Bioinformatics          (2022) 23:513  
https://doi.org/10.1186/s12859-022-05052-8

BMC Bioinformatics

*Correspondence:   
zhongwang@lbl.gov

1 MemVerge Inc, Milpitas, CA 
95035, USA
2 Department of Energy Joint 
Genome Institute, Berkeley, CA 
94720, USA
3 School of Natural Sciences, 
University of California at Merced, 
Merced, CA 95343, USA
4 Environmental Genomics 
and Systems Biology Division, 
Lawrence Berkeley National 
Laboratory, Berkeley, CA 94720, 
USA

http://orcid.org/0000-0002-8937-8266
http://orcid.org/0000-0002-6307-0458
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-05052-8&domain=pdf


Page 2 of 9Sun et al. BMC Bioinformatics          (2022) 23:513 

Metagenomics is one of the main contributors to this rapid growth of data. Metagen-
omics, the study of microbial genomes isolated directly from their natural habitat, frees 
researchers from the need for laborious and time-consuming isolating and culture of 
microbes [21, 22]. Powered by next-generation sequencing, metagenomics offers an 
unprecedented opportunity to gain a deep understanding of the microbial communi-
ties around us or within us and to harness their genetic and metabolic potential for our 
health and environmental safety.

However, the construction of individual microbial genomes from a complex micro-
bial community with thousands of species from billions of short reads faces both data 
and algorithmic challenges (reviewed in [2]). It was initially thought impossible until 
pioneering work demonstrated its feasibility [5, 8]. At that time, assemblers developed 
for single genome assembly were used for metagenome assembly because there were no 
metagenome-specific assemblers available. Since then, metagenome assemblers have 
been developed that consider the specific characteristics of metagenomic datasets, such 
as uneven sequencing depth for different member species. These assemblers include 
meta-IDBA [15], metaSPAdes [13], MEGAHIT [9], and many others. Several recent 
studies have provided a comprehensive comparison of the computational performance 
and accuracy of these assemblers [12, 18, 23]. While most of these assemblers can effi-
ciently take advantage of the modern CPU’s multiple processing capabilities, they are 
limited on a single computer node and, therefore, are not able to assemble very large 
datasets due to the limited memory capacity. For terabase-scale metagenome datasets, 
researchers have very few options. Swapping memory using fast disks or even from mul-
tiple machines over a fast network running JumboMem [14] can help if the extra mem-
ory required is minimal, but this significantly extends runtime. meta-RAY [3] uses MPI 
to distribute a large metagenome assembly to multiple computer nodes. To overcome 
its limitation that it only assembles very abundant species, hybrid strategies have been 
developed to first use meta-RAY in a computer cluster to assemble abundant species 
(which often comprise most of the sequencing data), followed by MEGAHIT or metaS-
PAdes in a single node to assemble unassembled reads [24]. Recently, MetaHipMer used 
UPC++ to assemble very large metagenome datasets with high accuracy and efficiency 
[6], but it runs best on a supercomputer that is not readily available to most researchers.

New algorithms have the potential to dramatically reduce the memory requirement 
for metagenome assembly. For example, MEGAHIT uses a data structure called the suc-
cinct de Bruijn graph that significantly reduces memory consumption [9]. Since new 
algorithms take a long time to develop, a more straightforward strategy is to expand the 
memory capacity of a single system, which does not involve application-specific soft-
ware development and can be generically applied to other memory-intensive applica-
tions. The XSEDE large shared memory system, Blacklight, contains 16  TB of shared 
memory that allows extremely large-scale genome assemblies [4]. A drawback of this 
system is that it costs tens of millions of dollars to build. As the price of PC DRAM 
(DDR4) becomes more affordable, many computer systems are built with several tera-
bytes of DRAM. Intel® Optane™ Persistent Memory (PMem) is a new type of RAM that 
is packaged in DDR4-compatible modules of 128 GB, 256 GB, and 512 GB capacities, 
much larger than typical DDR4 modules currently available (16 GB, 32 GB, and 64 GB) 
[7]. Intel’s Persistent Memory is twice the capacity of the current largest available DDR4 
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module (256 GB). And at each DIMM capacity point, PMEM is half to one-third the cost 
of DRAM [11] , which is promising for memory-intensive applications such as metagen-
ome assembly.

PMem can be configured in one of two modes. “Memory Mode” is volatile and uses 
the DRAM in the system as a cache to improve the performance of the PMem, which 
has a random access latency approximately four times higher than that of DRAM. This 
effectively decreases the total RAM available. For example, if a machine is equipped with 
192 GB DRAM and 1 TB PMem, software tools can only address 1 TB available memory 
in the “Memory Mode”. The 192 GB DRAM will be ‘hidden’ and will be used exclusively 
as a cache for the PMem. Another limitation of “Memory Mode” is that it provides a 
fixed DRAM/PMem ratio for all applications without flexibility. An application can use 
PMem in Memory Mode without code modification. In “AppDirect Mode”, the PMem 
is nonvolatile, and both DRAM and PMem are addressable as system memory. In the 
above example, “AppDirect Mode” enables users to use the 192 GB DRAM plus the 1 TB 
PMem. It also enables resuming from software crashes as data on PMEM is persistent. 
However, applications must be refactored to be able to use this mode, which is time-con-
suming and expensive. MemVerge’s Memory Machine™ is a software tool that runs in 
the user space on Linux systems to virtualize system memory. It is based on the “AppDi-
rect Mode” but has two main advantages over the “AppDirect Mode”. First, it allows users 
to configure specific DRAM/PMem ratios for each individual application. For example, 
applications accessing a larger amount of “hot data”, or frequently accessed data, can 
benefit from a larger DRAM/PMem ratio so that hot data are cached in DRAM. Second, 
it enables any application to access PMEM without code modifications by automatically 
remaps memory pages so that “hot” data is moved to DRAM and “cold” data are moved 
to PMem, which may also result in overall performance.

PMem has been successfully applied to many memory-intensive applications, such as 
databases [1, 10, 16, 17]. This work reports its first application on metagenome assem-
blies on a server configured with DRAM and PMem. We evaluated the feasibility and 
performance of the running time and memory consumption of several common metage-
nome assemblers.

Results and discussion
Detailed memory usage and CPU profiling of metagenome assembly with metaSPAdes

Modern metagenome assemblers take a “multi-k” approach to assemble species of vari-
ous abundances in the microbial community. For example, the metaSPAdes pipeline 
first constructs an initial de Bruijn graph, then iteratively simplifies it one k-mer size at 
a time. Then it transforms the graph into the assembly graph, followed by graph simpli-
fication and graph traversal to obtain contigs [13]. To profile its use of computational 
resources, we ran metaSPAdes on the 233  GB Wastewater metagenome dataset and 
record its CPU, memory  utilization. As expected, each phase of de Bruijn graph con-
struction is computationally and memory intensive, as well as the final assembly graph 
phase (Fig. 1). In any phase where the memory consumption of metaSPAdes is greater 
than the available DRAM, an Out-of-Memory (OOM) failure occurs. To ensure the 
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success of the pipeline, a workstation must have sufficient memory that is larger than the 
peak (maximum) memory.

To test whether or not enabling PMem leads to changes in CPU or memory utiliza-
tion, we used the Memory Machine to configure 32 GB of DRAM while supplying the 
rest with PMem. We saw an increase in peak memory consumption from (250  GB to 
370 GB), which is likely due to the overhead incurred by the Memory Machine software, 
as the page size was increased from 4 KB to 2 MB. The general pattern of memory uti-
lization was the same. Furthermore, CPU utilization increases due to additional hot-
swapping options (Fig. 1).

PMem can effectively satisfy the requirement of metaSPAdes for large amount of DRAM 

at a small cost of running speed

The maximum memory consumption to run metaSPAdes on the Wastewater Metage-
nome dataset with only DRAM was approximately 250 GB, and the run was finished in 
26.3 hours. To test whether or not PMem can be used to substitute DRAM for metaS-
PAdes, we used the Memory Machine to configure decreasing amounts of DRAM and 
measured PMem usage and running time. We found that PMem can substitute DRAM 
in all tested memory configurations, resulting in savings in DRAM of up to 100% 
(Fig.  2A, top). Meanwhile, increasing DRAM savings also led to a longer execution 
time of metaSPAdes due to the slower performance of PMem compared to DRAM. As 
shown in Fig. 2A, top, substituting up to 30% of the total memory with PMem led to 
no appreciable slowdown, but after that the slowdown became apparent. When 100% 
PMem is used to replace DRAM, the run time of the metaSPAdes on the Wastewater 
Metagenome dataset was approximately twice as long ( 2.17× ). In all configurations, the 

Fig. 1  System metrics for metaSPAdes execution on the Wastewater Metagenome dataset using DRAM-only 
(left) or using PMem with 32 GB DRAM tiering (right). System metrics were recorded for the period that 
metaSPAdes was running. The CPU utilization timeline (in percentage), memory usage (in MB) are shown. The 
horizontal axis shows the wall clock time in seconds. The running time of DRAM + PMem was 2.04 times that 
of DRAM-only
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total amount of memory consumption (DRAM + PMEM) is largely the same at 372 GB, 
except in the DRAM-only case (250 GB).

The longer running time in PMem is probably caused by a combination of slower 
PMem writing performance and the cost of swapping data between DRAM and PMem. 
Memory Machine does provide a software development kit (SDK) to precisely allocate 
memory on DRAM or PMem based on each application  to reduce the data migration 
cost, but doing so would require additional software engineering effort.
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Fig. 2  A Memory (red) and speed (blue) metrics of running metaSPAdes (top) and MEGAHIT (bottom) on 
the Wastewater metagenome dataset. The percentage of PMem of the total memory (DRAM+PMem) is 
shown on the horizontal axis, while the speed cost in folds is shown on the left vertical axis, whereas the 
amount of PMem used in GB is shown on the right vertical axis. For each memory configuration, we ran the 
pipeline twice and showed the average results (speed and PMem amounts). B Comparison of MetaHipMer2, 
MEGAHIT, and metaSPAdes running on the Wastewater metagenomics dataset. All three assemblers were run 
using 100% PMem. The total time of the wall clock (in minutes) is shown in blue, and the maximum memory 
consumption (in GB) is shown in red
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Running metaSPAdes on the larger 1.2 TB Antarctic Lake Metagenome Dataset with 
only DRAM led to an OOM error, as the required memory exceeds the total amount of 
DRAM (768 GB). When running with Memory Machine with 550 GB DRAM tiering, 
the peak memory reached 1.8 TB, and the run was completed successfully in 11.15 days.

PMem supports other metagenome assemblers including MetaHipMer2 and MEGAHIT

In addition to metaSPAdes, we also tested MetaHipMer2 [6] and MEGAHIT [9] on the 
Wastewater Metagenome dataset. As shown in (Fig.  2A, bottom), with 100% PMem, 
the run time of MEGAHIT on the Wastewater Metagenome dataset was 1.75× that on 
DRAM, and the run time increases as PMem to total memory ratio increases. In con-
trast, the run time of MetaHipMer2 on the Wastewater Metagenome dataset for differ-
ent PMem ratios were roughly the same: 807.6 (min), 792.97 (min), 788.45 (min), and 
675.85 (min) for 97%, 98%, 99%, and 100% PMem to total memory ratio, respectively. The 
slightly better performance with more Pmem is probably due to the slightly decreased 
data migration cost. When the amount of DRAM is a small fraction of total memory 
(MetaHipMer2 used 4.16 TB of memory), more DRAM leads to more data migration.

MetaHipMer2 consumed the most memory (peaked at 4.2 TB), while it took the least 
time (647 min). MEGAHIT used the least memory (peaked at 124 GB), but took almost 
twice as long and finished the assembly in 1191 min. metaSPAdes used a peak memory 
of 372 GB and took the longest time (3423 min). The comparison of the three assemblers 
is shown in Fig. 2B.

We did not attempt to compare the three assemblers using the Antarctic Lake Metage-
nome Dataset because MetaHipMer2 would likely run into OOM. It required 13 TB of 
RAM distributed across multiple nodes on a supercomputer to complete this dataset in 
a previous experiment.

Conclusions
For terabyte-scale metagenome assembly projects, existing solutions are either expen-
sive (a fat shared-memory machine) or have limited hardware availability (supercom-
puters). We demonstrated the feasibility of running a large-scale metagenome assembly 
on commodity hardware by substituting DRAM with persistent memory (PMem). If a 
running time is not a critical factor, we showed that PMem is a cost-effective option to 
extend the scalability of metagenome assemblers without requiring software refactoring, 
and this likely applies to similar memory-intensive bioinformatics solutions.

Methods
Hardware environment

The MEGAHIT and MetaHipMer2 experiments in the first paragraph in Section  2.3 
were carried out on a single server with 2 Intel(R) Xeon(R) Platinum 8260L 2.40 GHz, 
each with 24 cores. Its memory includes a total of 192  GB DDR4 DRAM and 12 × 
512 GB PMem 100 series (6 TB total). One 2.5 TB SSD were used. The server was run-
ning CentOS 8 Linux with a 4.18.0-193.19.1.el8_2.x86_64 kernel. The rest of the experi-
ment were carried out on a single server with 2 Intel(R) Xeon Gold 6248 3.0  GHz 
(Turbo 3.9 GHz), each with 24 cores (48 threads). Its memory includes a total of 768 GB 
DDR4 DRAM and 12 × 512  GB PMem 100 series (6  TB total). Six 2  TB SSDs were 
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configured as a single 12 TB volume. The server was running CentOS 8 Linux with a 
4.18.0-305.7.1.el8_4.x86_64 kernel. It is worth noting that PMem requires newer Intel 
CPUs, and a full list of supporting CPUs can be found at https://​www.​intel.​com/​conte​nt/​
www/​us/​en/​suppo​rt/​artic​les/​00005​8038/​memory-​and-​stora​ge/​intel-​optane-​persi​stent-​
memory.​html.

Software environment

Memory Machine Release 2.1 by MemVerge Inc. was used to provide memory virtualiza-
tion. The normal memory page size in the Linux kernel is 4KB. Transparent HugePages 
(THP) is a memory management system in the Linux kernel that tries to use HugePages 
(2MB) greater than the default. Using large page sizes can improve system performance 
by reducing the amount of system resources required to access page table entries. Mem-
ory Machine implements its own management of HugePages, and thus the default THP 
was disabled. Memory Machine can be launched by running the command mm before 
other commands.

The DRAM, and CPU usage was monitored by the unix commands “free”, and “ps”, 
respectively. The DRAM tiering and PMEM usage was obtained by “mvmcli show-
usage” (a tool provided by MemVerge Memory Machine Release 2.1).

Metagenome assemblers

SPAdes (Saint Petersburg Genome Assembler) version 3.15.3 was used. For using with 
Memory Machine, the source code was compiled using dynamic linking by turning off 
the options SPADES_STATIC_BUILD and SPADES_USE_MIMALLOC in the make file. 
Furthermore, the OpenMP scheduling was changed from dynamic to static (Line 255 
in /src/common/utils/kmer mph/kmer index builder.hpp). The following metaSPAdes 
command line options were used “-only-assembler”, “-k 33,55,77,99,127”, “-meta”, “-t 96”.

MetaHipMer2 (MHM2) version 2.1.0.37-g01c2b65 was used. The source code for 
MHM2 was compiled with UPC++[upcxx-ipdps19] version 2021.3.0, which in turn was 
built using the included ‘install_upcxx.sh’ script that builds UPC++ using the default 
‘smp’ conduit for Symmetric Multi-Processor and shared-memory for communica-
tion between processes. MHM2 was executed using the default options on the dataset: 
‘mhm2.py -r filtered_wgs_fastq.fastq’

MEGAHIT version v1.2.9 was used. The source code was downloaded and compiled 
following the instructions on https://​github.​com/​voutcn/​megah​it.

Abbreviations
OOM	� Out-of-memory
Pmem	� Persistent Memory
DRAM	� Dynamic random access memory
THP	� Transparent HugePages
SSD	� Solid state disk
MHM2	� MetaHipMer v2
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