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Background
Recent advances in high-throughput genomic assays have allowed for the creation of 
expansive data sets that are useful for exploring biological variation across cells. In par-
ticular, single-cell RNA-sequencing (scRNA-seq) technologies provide gene expression 
measurements at the individual cell level, allowing for the analysis of variation in tran-
scriptional activity across cells within a single sample  [1–4]. While characterizing this 
variation is useful by itself for exploratory analysis, it is also of interest to study in a more 
targeted way how variation relates to cell-specific covariates, such as cell type, genotype, 
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and cell health. Studying associations between gene expression and properties of sin-
gle cells has the potential to enrich our understanding of the relationship between these 
covariates and transcription at single-cell resolution.

While methods for association studies have been widely developed for bulk RNA-
sequencing (RNA-seq) data  [5, 6], methods for studying associations on the level of 
individual cells are much less developed. Moreover, there are several unique challenges 
in manipulating and analyzing the data generated by these single-cell assays, as com-
pared to bulk RNA-seq assays. These scRNA-seq data sets are high dimensional—there 
are tens of thousands of genes in the human genome—making  them difficult to inter-
pret gene-by-gene; furthermore, the count-based nature of the data—made up of counts 
of sequenced RNA fragments that map to a specific gene in a genome to approximate 
expression levels of that gene—presents a challenge for many standard statistical tools 
with Gaussian assumptions [7].

In this paper, we propose a statistical modeling approach based on reduced-rank 
regression that captures associations between gene expression and cell- and sample-spe-
cific covariates by leveraging low-dimensional representations of transcription. Within 
this framework, we propose two specific models: Poisson reduced-rank regression 
(PRRR), which adapts a generalized linear model to the reduced rank setting, and non-
negative Poisson reduced-rank regression (nn-PRRR), which provides interpretable non-
negative regression components. In what follows, we first review several related threads 
of research and describe our modeling approach. Then, using simulated data and single-
cell RNA-seq data, spatial gene expression data, and bulk RNA-seq data, we show that 
our models are useful for a wide range of association study types, including studying the 
transcriptional hallmarks of cell types, genes correlated with disease status, and expres-
sion QTLs.

Genome‑wide association studies

Since the completion of the Human Genome Project in 2003 [8] and the HapMap pro-
ject in 2005 [9], researchers have developed the genomic and statistical tools necessary 
to study the human genome at a large scale in order to better detect, treat, and prevent 
diseases. Genome-wide association studies (GWAS) are used to identify disease-causing 
genetic variation across complete genomes. Genetic variation often comes in the form of 
single nucleotide polymorphisms (SNPs) that can be compared between healthy patients 
and patients with a disease [10]. GWAS have found a plethora of genetic variants that 
are associated with common diseases such as asthma, type 2 diabetes, and more [11, 12].

In a similar vein, quantitative trait loci (QTL) studies identify associations between 
genetic variants and quantitative phenotypes [13, 14]. A common experimental setup 
is to use gene expression levels as the quantitative phenotype, in which case the asso-
ciation is referred to as an expression QTL (eQTL)  [15, 16]. Most eQTL studies have 
relied on bulk RNA-seq technologies to measure the gene expression levels of samples 
from tissues with heterogeneous cell types [17–19].

In this context, the statistical eQTL problem is to estimate the pairwise association 
between a set of genetic variants (the covariates or explanatory variables) and the expres-
sion level of each gene (the outcome variables). This is typically performed using a linear 
regression model. In particular, let X be an N × P matrix containing information about 
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genetic variants across P SNPs for N individuals or tissue samples, and let Y ∈ R
N×Q be 

a matrix of corresponding gene expression levels across Q genes in these individuals or 
tissues  [7]. Generically, these approaches use a model of the form

where x·p is the pth column of X , y·q is the qth column of Y , ǫ ∈ R
N is a vector of inde-

pendent zero-mean Gaussian-distributed noise terms, and bpq ∈ R is a scalar coefficient 
representing the linear relationship between SNP p and gene q for p = 1, . . . ,P and 
q = 1, . . . ,Q . Downstream tests for significance can be performed on these coefficients 
to identify associations [20–22]. Without further assumptions, this model estimates the 
marginal association between single SNPs and single genes independently. To accommo-
date polygenic contributions to phenotypes, multivariate models of the form

have been considered, where B ∈ R
P×Q is a matrix of coefficients  [23–25]. Under this 

framework, sparsity-inducing priors for B have been proposed in order to scale these 
models to high-dimensional genotype data [26, 27].

The advent of scRNA-seq technologies has opened the door for narrowing the inves-
tigation of genotype-phenotype relationships from the level of whole tissues to the level 
of individual cells. However, existing computational tools are insufficient for this pur-
pose: they typically do not accommodate count-based data, and they are seldom robust 
to high-dimensional outcome variables. It is difficult to control the hypothesis testing 
error rate in many eQTL analyses, which run millions to trillions of univariate associa-
tion hypothesis tests (one for each SNP-gene pair) [7, 18, 19, 28, 29].

Count‑based models

A further drawback of existing association testing frameworks is their assumption of 
Gaussian-distributed data. Most canonical regression models assume an independent 
normally-distributed response variable, with ǫ ∼ N (0, σ 2IN ) in Eq. (1). However, when 
the data consist of count-based measurements, as for RNA-seq data, this assumption 
may be problematic. Various transformations have been proposed to make the response 
variable approximately Gaussian  [30, 31], but these transformations are known to dis-
tort the data distribution in undesirable ways [32–34]. Count-based scRNA-seq data is 
discrete and nonnegative, with many gene expression counts having a value of zero. The 
sparsity of the data poses an additional challenge to these standard transformations [32].

An alternative to this approach is to model the gene expression data with a discrete 
distribution. A common choice is the Poisson distribution, whose support is restricted to 
the nonnegative integers and has been shown to improve the representation and inter-
pretation of scRNA-seq data when fitting statistical models [32, 35]. A recent approach 
using a Poisson data likelihood proposed a naive Bayes model that assigns cell-type iden-
tities to samples in scRNA-seq data based on reference data [36]. The model uses a Pois-
son distribution to represent the count-based data, but the high number of zeros in the 
data still poses a challenge. The sparsity of the data interferes with standard estimates 
such as maximum likelihood estimates as rates of zero can be produced for thousands of 

(1)y·q = x·pbpq + ǫ,

(2)Y = XB+ ǫ,
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genes, making the model sensitive to genes with low expression counts [36]. The model 
handles this challenge by introducing a hierarchical structure, placing posterior distri-
butions on parameters in order to recover non-zero rate estimates for genes with zero 
counts in the reference data. However, the naive Bayes model also assumes independ-
ence between genes, although this assumption does not hold in practice, as expression 
has been observed to be correlated between genes [32, 37, 38].

Modeling multiple data modalities

Latent variable modeling approaches have also been proposed for modeling multi-view 
data. The most popular approach has been canonical correlation analysis (CCA, [39]) 
and its probabilistic variants [40–42]. CCA seeks a low-dimensional linear mapping of 
two paired data matrices such that the resulting low-dimensional projections of both 
matrices are maximally correlated.

where ρ is the Pearson correlation function. The probabilistic version of this model 
projects the features of each data modality into a shared low-dimensional latent space, 
assuming heteroskedastic residual errors, maximizing the amount of variance explained 
in the data modalities by the latent subspace. The weights, or factor loadings, in CCA 
models allow us to identify covarying features across data modalities. A formal connec-
tion between CCA and reduced-rank regression has been shown [43], where the canoni-
cal subspace found by CCA is the same as the subspace of the maximum likelihood 
estimator for the reduced-rank regression model. Despite their connections, the unsu-
pervised nature of CCA does not lend itself directly to association mapping between the 
data modalities. Conversely, reduced-rank regression has a natural association testing 
framework because of its regression foundation.

Recently, a latent variable model based on latent Dirichlet allocation [44, 45] for jointly 
modeling gene expression and genotype was proposed [46]. This model projected both 
genotype data—using an equivalent of the Structure model [45]—and count-based gene 
expression data—using a telescoping LDA model  [44]—onto a shared latent subspace; 
we may then identify covarying genes and genotypes in a nonnegative latent representa-
tion. But discovering associations in this framework requires association testing in held-
out data, which is limited by existing univariate methods and population data.

Reduced‑rank regression approaches

The transcriptional states of cells tend to exhibit strong correlations between genes [47]. 
Thus, it is likely that the relationship between cell covariates and transcriptional pheno-
types in scRNA-seq data need not be modeled gene-by-gene. Rather, it is reasonable to 
assume that these associations exhibit a low-dimensional structure. Furthermore, treat-
ing each gene as independent is computationally and statistically inefficient; we would 
like to exploit these relationships to perform fewer association tests and leverage shared 
variation to improve statistical power in these often small sample sizes. These ideas 
motivate a regression model whose coefficient matrix has low rank. Several approaches 
to reduced-rank regression have been developed to take advantage of this opportunity.

max ρ(Xu,Yv) subject to u⊤u = 1, v⊤v = 1,
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Consider again the linear regression model in Eq. (2). Here, B is a P × Q matrix of regres-
sion coefficients, where P is the number of covariates, and Q is the number of genes. In 
most gene expression studies, Q (and sometimes P) is large, and min(P,Q) ≫ n . The core 
assumption of reduced-rank regression (RRR) is that the matrix B has low rank [48]. In par-
ticular, the RRR model assumes B has rank R ≪ min(P,Q) . This implies that B can be fac-
torized as an outer product of two low-rank matrices, giving us the following reduced-rank 
regression model:

where U ∈ R
P×R and V ∈ R

Q×R . In the context of gene expression studies, this low-
rank assumption implies that the relationship between cell-specific covariates and gene 
expression can be described in terms of a small set of latent factors. In other words, 
variance in gene expression is mediated by R different programs encoded in subsets of 
covariates; then B captures both the covariates of interest and their effect sizes within 
each of the R programs.

Several estimation approaches have been proposed for RRR under the assumption of 
Gaussian noise. A common method is to find the parameter values that minimize the 
squared reconstruction error [48, 49]:

This approach corresponds to finding the maximum likelihood solution of an RRR 
model with Gaussian errors ( ǫq ∼ N (0, σ 2I) for q = 1, . . . ,Q in Eq. 3 as σ 2 → 0 ). When 
B is assumed to have full rank (that is, R = min(P,Q) ) the minimization admits the ordi-
nary least squares (OLS) solution:

When R < min(P,Q) , the RRR model has an eigenvalue solution:

where XBOLS = UDV⊤ is the SVD of the fitted values, and U1:R = [u1, · · · ,uR] contains 
the leading R left singular vectors of XB̂OLS.

Sparse approaches to RRR have been proposed as well. Sparsity in the decomposi-
tion leads to greater interpretability by including nonzero weights only on a subset of 
the covariates and genes for any component. One model  [50] imposes sparsity on the 
coefficient matrix B by taking an iterative approach to estimation, solving both a sparse 
regression problem and the reduced-rank decomposition in alternating frames. The base 
algorithm solves the following optimization problem:

where U ∈ R
P×R , V ∈ R

Q×R , Up represents the pth row of U , the rank R is specified by 
the modeler, and � is a sparsity penalty parameter. The alternating minimization prob-
lem can be broken into two steps: optimizing U , and optimizing V . After parameter 

(3)Y = XB+ ǫ subject to B = UV⊤,

min
U,V

�Y − XUV⊤�22.

B̂OLS = (X⊤X)−1X⊤Y.

B̂RRR = B̂OLSU1:RU
⊤
1:R,

min
U,V

1

2
�Y − XUV⊤�22 + �

p∑

j=1

�Uj�2,
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initialization on iteration ℓ = 1 , on iteration ℓ = 2, . . . , L , the algorithm first solves an 
orthogonal Procrustes problem for V:

where U(ℓ−1) is the estimate of U from the previous iteration. The algorithm then solves 
a group lasso problem for U:

Equation (4) can be solved using a singular value decomposition, and Eq. (5) can be 
solved using techniques for group lasso [51]. These two steps are repeated for L steps or 
until convergence.

Another approach developed a Bayesian RRR framework for association mapping in 
the GWAS setting [52]. The model—called Bayesian Extendable Reduced-Rank Regres-
sion (BERRRI)—uses a nonparametric Indian Buffet Process prior for the latent factors, 
which allows the rank k to be estimated from the data. BERRRI then uses a variational 
Bayes approximation to the posterior for inference of the model parameters. However, 
BERRRI does not explicitly model count-based data, and its inference procedure is not 
computationally tractable for genome-scale analyses.

The linear RRR model has been generalized to nonlinear functions as well. The most 
popular nonlinear approaches have used neural networks with multiple inputs and 
multiple outputs  [53]. The linear RRR model is equivalent to a single-layer multi-layer 
perceptron with only linear transformations between layers  [54, 55]. This model can 
be extended to the nonlinear case by including nonlinear activation functions [54, 56]. 
However, these models typically to do not capture count data and lack the interpretabil-
ity of linear models for downstream association testing.

In this manuscript, we propose a statistical model and associated computational 
framework that addresses the problems that arise with modeling genotype-phenotype 
associations for high-dimensional phenotypes captured with count data. We propose a 
reduced-rank regression model that finds low-dimensional associations between geno-
types (or other high-dimensional covariates) and RNA-seq data (or other high-dimen-
sional count-based phenotypes). Relying on low-dimensional associations alleviates the 
problem of estimating millions of pairwise associations. Furthermore, our model uses 
count-based likelihoods that allow both single-cell RNA-sequencing data and bulk RNA-
sequencing data. We show that our approach appropriately models gene expression data 
with count-based likelihoods, leads to interpretable subsets of genes and genetic vari-
ants or other covariates in each dimension, and uses flexible, computationally tractable 
inference methods that allow for uncertainty quantification.

Methods
We propose a probabilistic reduced-rank regression model with a Poisson data likelihood—
which we call Poisson reduced-rank regression (PRRR)—for association mapping in count-
based sequencing data. Our approach takes the form of a reduced-rank regression model 

(4)V(ℓ) = arg min
V:VV⊤=I

�Y − XU(ℓ−1)V⊤�22,

(5)Uℓ = arg min
U

1

2
�YV(ℓ) − XU�22 + �

P∑

p=1

�Uj�2.
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with intermediate factors that explicitly model count-based data using a Poisson likelihood. 
These factors are interpretable and can be used to to identify and analyze the global struc-
ture of associations between cell covariates and cell phenotypes, such as gene expression 
levels. We ensure that inference is tractable and efficient in these models by using stochastic 
variational inference.

Poisson reduced‑rank regression (PRRR)

PRRR is designed to identify associations between cell-specific covariates and high-dimen-
sional gene expression profiles. The response matrix Y ∈ N

N×Q
0  is a matrix containing (in 

this application) RNA transcript counts for Q genes in N cells, where N0 = N ∪ 0 . The 
N × P matrix X is a design matrix containing covariates for each cell. For example, these 
covariates could represent cell type, genotype, or measures of cell health.

PRRR uses a Poisson likelihood to model the transcript counts for each cell as the 
response variables, conditional on observed cell-specific covariates. The Poisson rate is 
parameterized by a low-rank linear mapping from the cell covariates.

Specifically, the transcript count of gene p in cell n, denoted by ynp is modeled as a 
draw from a Poisson distribution, ynp ∼ Poisson(�np) . The Poisson rate �np is deter-
mined by a linear function of the vector of covariates for cell n, denoted as xn . We use 
a canonical link function from the exponential family to map the domain of the latent 
variables to the positive real line—similar to a GLM approach. In particular, we use a log 
link function to ensure that, when pushed through the inverse link—the exp function—
the  mapped linear predictor, or the Poisson rate parameter, lies in R+ . The likelihood 
model is then

where vp· is the pth row of V . We place Gaussian priors on columns of U and V:

for R = 1, . . . ,R . Intuitively, U and V capture the low-rank associations between X and 
Y.

Nonnegative PRRR​

In some cases, the covariates X are entirely nonnegative — possibly representing counts 
or categories—in which case it may be of interest to identify nonnegative, low-rank 
regression coefficients that explain the associations in a completely additive fashion. For 
example, in eQTL mapping, the covariates are typically the count of the minor allele for 
each SNP, where xn ∈ {0, 1, 2} , and it may be of interest to identify a nonnegative, “parts-
based” combination of SNPs that explain phenotypic variation. For these cases, we pro-
pose nonnegative Poisson reduced-rank regression (nn-PRRR), whose likelihood is given 
by

(6)ynp|U,V, xn ∼ Poisson(exp(xnUv⊤p·)),

(7)ur ∼ N (0, σ 2
1 IP), vr ∼ N (0, σ 2

2 IQ),

(8)ynp|U,V, xn ∼ Poisson(snx
⊤
n Uv⊤p·),
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where sn is a cell-specific size factor modeling the total number of transcripts in cell i. 
We fix sn to be the total number of transcript counts in cell, sn =

∑p
j=1 ynp . We place 

Gamma priors on the elements of U and V:

for p = 1, . . . ,P , q = 1, . . . ,Q , and r = 1, . . . ,R . For all experiments, we set αu = αv = 2 
and βu = βv = 1 . Thus, the structures of the PRRR and nn-PRRR models are similar 
except for the nonnegativity constraint and associated prior (Additional file 1: Fig. S1).

Choosing between PRRR and nn‑PRRR​

While the PRRR and nn-PRRR models are designed for the same goal — performing 
reduced-rank regression with high-dimensional, count-based outcomes—some care 
is required when choosing which model to apply for a particular application. The choice 
largely depends on the goal of the analysis. If a primary goal is to examine the low-dimen-
sional latent factors in a dataset, then nn-PRRR is often preferable because its nonnega-
tive factors encourage a parts-based representation, which may be easier to interpret. 
nn-PRRR also requires that the covariates are nonnegative. On the other hand, when the 
primary goal is prediction, PRRR may be preferable because its real-valued factors will be 
less constrained due to the removal of the nonnegativity constraint. However, these are only 
guidelines and not hard restrictions, and often it may be preferable to fit both PRRR and 
nn-PRRR to a dataset, when possible, and study both sets of results to select the one with 
the more appropriate behavior.

Estimation and inference

We propose two approaches to fit our model to data: 1) computing a point estimate for 
the coefficients using maximum a posteriori (MAP) methods and 2) full Bayesian posterior 
inference for the regression coefficients using an approximate inference procedure.

MAP estimation

The MAP solution in our model is the coefficient matrices UMAP ,VMAP with maximum 
posterior probability given the data X and Y . In particular,

Expanding the posterior with Bayes’ rule, we can write the MAP objective as 
maxU,V p(Y|X,U,V)p(U,V)/Z, where Z is a normalizing constant that does not depend 
on U or V . Taking a log , dropping the constant Z, and leveraging the i.i.d. assumption, 
we arrive at our final objective for the MAP estimate of the model parameters:

Although this maximization problem does not have a closed-form solution, we use gra-
dient-based methods to iteratively maximize this log posterior with respect to U and V.

(9)upr ∼ Gamma(αu,βu), vqr ∼ Gamma(αv ,βv)

UMAP ,VMAP = arg max
U,V

p(U,V|X,Y).

UMAP ,VMAP = arg max
U,V

log p(U,V)+

N∑

n=1

log p(yn|xn,U,V).
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Variational inference

A fully Bayesian approach to inference, given a set of samples with paired cell covari-
ates and transcript counts, {(xn, yn)}Nn=1 , would compute the posterior distribution of the 
parameters, U and V , given the data matrices X and Y . By Bayes’ rule,

However, the marginal likelihood, p(X,Y) , contains an intractable integral,

To circumvent this issue, we use a variational approximation to the posterior. Specifi-
cally, we use a mean-field variational approximation, p(U,V) ≈ q(U,V) = q1(U)q2(V) , 
where q1 and q2 are the variational distributions. Here, we specify the variational families 
for PRRR and nn-PRRR to be normal and log normal, respectively,

We minimize the KL divergence between the true posterior and the variational approxi-
mation, which is equivalent to maximizing a lower bound on the model evidence (called 
the ELBO). This lower bound for PRRR is given by

We maximize this lower bound with respect to the variational parameters using sto-
chastic variational inference [57] as implemented in TensorFlow Probability [58]. For all 
experiments, we use the Adam optimizer [59] with a learning rate of 0.01.

Results
Simulation experiments

We first demonstrate the use cases of PRRR and test the robustness and accuracy of our 
model using simulated data.

PRRR identifies low‑dimensional association maps

We first sought to confirm that PRRR identifies the low-dimensional relationships 
between covariates and outcomes.

To start in a setting that can be visualized, we generated a synthetic dataset in which 
the covariates and outcomes are both two-dimensional. Specifically, we sampled data 
from the generative model (Eqs. 8, 9), setting R = 1 . We forced a correlation between the 
covariates and outcomes. We found that PRRR could reliably detect the one-dimensional 
association between X and Y (Fig. 1). Moreover, we are able to recover a quantification 

p(U,V|X,Y) =
p(X,Y|U,V)p(U,V)

p(X,Y)
.

(10)p(X,Y) =

∫

U×V

p(X,Y,U,V)dUdV.

(11)q(upr) = N (µ1, σ
2
1 ), q(vqr) = N (µ2, σ

2
2 ), (PRRR)

(12)q(upr) = LogN (µ1, σ
2
1 ), q(vqr) = LogN (µ2, σ

2
2 ). (nn-PRRR)

p(X,Y) ≥ L := Eq(U)q(V)

[
p(X,Y,U,V)

q(U)q(V)

]
.
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of the relationship between the covariates and outcomes, and visualize this relationship 
in the low-dimensional space.

We next extended this simulation study and visualization to a small-scale synthetic 
eQTL study. We generated N = 200 synthetic genotypes based on minor allele counts, 
xn ∈ {0, 1, 2} , and sampled synthetic RNA transcript counts using the PRRR genera-
tive model, with P = Q = 2 for visualization. We fit PRRR to these data and inspected 
the fitted coefficients. We found that PRRR recovered these genotype-expression rela-
tionships, and allowed for both inspection of the low-dimensional structure of these 
relationships, as well as investigating univariate relationships (Fig. 2). This experiment 
suggests that PRRR may be useful to perform eQTL mapping.

PRRR identifies the optimal rank and is robust to misspecification

PRRR, like other reduced-rank regression approaches, requires selecting the rank 
R of the coefficient matrix. A common approach is to evaluate the goodness-of-fit 
of the model at varying values of R, and select the one with the best fit to the data. 
To test whether this is feasible with PRRR, we use synthetic data that was generated 
from PRRR’s generative model with true rank R⋆ = 3 . We then fit the model with 
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Fig. 1  Illustration of PRRR. We fit PRRR to a toy dataset containing two cell-specific covariates and two 
genes. The two covariates showed negative correlation, and the two genes were jointly associated with 
the covariates (panel A). PRRR identifies the low-rank structure of these multivariate relationships by 
decomposing the full coefficient matrix into two low-rank matrices, U and V (panels B and C)

Fig. 2  eQTL mapping in simulated single-cell data with PRRR. Toy example demonstrating eQTL mapping 
with PRRR for two genetic variants and two genes. a Genotype data, shown as the number of copies of 
the minor allele for variant 1 (x-axis) and variant 2 (y-axis) and colored by each sample’s corresponding 
expression of gene 1. b Gene expression values. The red line represents the fitted value for V with r = 1 in 
this toy example for gene 1 (x-axis) and gene 2 (y-axis). c Relationship between genotype (x-axis) and gene 
expression (y-axis) for the two genes
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R ∈ {1, 2, . . . , 10} and compute the ELBO for each fit. We repeated this experiment 30 
times for each value of R.

We find that the PRRR ELBO peaked at the true value of R = 3 (Fig. 3a), demon-
strating that the model’s fit to the data was best at the true rank R⋆ . Moreover, we 
found that, while the goodness-of-fit sharply degraded for models with R < R⋆ , the 
goodness-of-fit declined more slowly for models with R > R⋆ . This finding confirms 
similar observations from previous studies [50], and suggests that setting the rank to 
be higher than anticipated is protective against model misspecification.

PRRR is robust to data dimension

We next sought to validate the robustness of PRRR in the presence of higher-dimen-
sional data. To do so, we generated three datasets from the PRRR model, each with 
a different number of response features (genes), Q ∈ {10, 50, 100} . We set the sample 
size to N = 200 , and we randomly selected 80% of these samples to fit the model and 
held out the remaining 20% to test the model. We fit PRRR on the training data using 
our MAP estimation procedure and used the estimated parameters to compute the 
predicted Poisson rate for the held-out data, �̂np = exp(xnÛv̂⊤p· . We then computed 
the goodness-of-fit R2 measure between our predictions and the held-out dataset’s 
counts. To benchmark these predictions, we compared PRRR’s predictive perfor-
mance to two competing methods: a full-rank version of PRRR and a multi-output 
LASSO model, as implemented in the R package glmnet [51]. We repeated this exper-
iment ten times for each method and each data-generating condition.

We found that PRRR reliably achieves good predictive performance across all values 
of the outcome dimension Q (Fig. 3b). In contrast, the full-rank and LASSO models 
performed worse.

To further validate PRRR and nn-PRRR on different data types, we conducted a 
similar experiment with synthetic data generated using Splatter [60], a data simulator 
designed specifically for single-cell count data. We generated data for N = 200 sam-
ples, each belonging to one of 10 groups, and used Q = 100 genes. We used the one-
hot encoded group labels as the covariates and the synthetic gene expression as the 
response. We fit PRRR and nn-PRRR with R = 5 , along with Gaussian RRR and full-
rank Poisson regression, and we reserved a hold-out set for evaluating predictions. 

Fig. 3  PRRR identifies optimal rank and is robust to data dimension. a Using synthetic data generated under 
the PRRR model with a true rank of R⋆ = 3 , we fit PRRR with a range of rank specifications on the x-axis, 
where R⋆ = 3 . The y-axis shows the ELBO values for each model rank. Vertical ticks represent 95% confidence 
intervals. b Goodness-of-fit R2 values for predictions from PRRR, a full-rank version of PRRR, and a multi-output 
LASSO model [51] for outcome data with dimension Q ∈ {10, 50, 100} . c Goodness-of-fit R2 values for 
predictions from PRRR, nn-PRRR, and competing models for outcome data generated from Splatter [60]



Page 12 of 22Fitzgerald et al. BMC Bioinformatics          (2022) 23:529 

We found that PRRR and nn-PRRR outperformed competing models in terms of their 
predictive R2 values (Fig. 3c).

These results suggest that accounting for the count-based data and the low-rank 
structure of associations is vital, and that the PRRR model successfully captures this 
structure.

PRRR predictions are robust to rank misspecification

To further explore the role of rank specification in our model, we performed a prediction 
experiment for varying settings of the rank. We generated synthetic data as before with 
R⋆ = 3 and fit the model on 80% of the data while reserving 20% for testing. For a range 
of ranks, R ∈ {1, 2, 3, 4, 5, 10, 20} , we fit PRRR, used the fitted model to make predictions 
for the held-out data, and computed the R2 coefficient of determination for these predic-
tions. We performed this experiment using both maximum a posteriori (MAP) estima-
tion and variational inference to fit the model, repeating the experiment ten times for 
each rank in both cases.

We found that the predictive performance was strongest when the model was cor-
rectly specified ( R = 3 in this case; Fig. 4a, b). However, we observed that performance 
was strong across a range of misspecified ranks as well. Similar to our previous experi-
ment, we observed that predictions were more robust for models with R > R⋆ as com-
pared to models with R < R⋆.

To benchmark these predictions, we compared PRRR’s predictive performance to two 
competing methods: a reduced-rank regression that assumes a Gaussian likelihood [48] 
and the multi-output LASSO model  [51]. We performed a similar prediction experi-
ment as above, computing the R2 for each model under a range of rank specifications. 
We found that PRRR outperformed the two competing methods in a range around the 
true rank R⋆ = 3 (Fig. 4c).

Characterizing transcriptional hallmarks of pancreatic cell types

It has been widely observed that cell type is a major driver of transcriptional varia-
tion between cells in a variety of tissue types  [4, 61–63]. Given these observed differ-
ences between cell types, it is of interest to identify the gene expression patterns that 
are characteristic of each cell type. Our PRRR models present a principled approach 

Fig. 4  PRRR is robust to rank misspecification. Using synthetic data generated from the PRRR model with a 
true rank of R⋆ = 3 , we fit PRRR with a range of rank specifications (x-axis). We made predictions for a held-out 
dataset and computed the R2 coefficient of determination, repeating this ten times for each rank. The y-axis 
shows the R2 value between the predicted values and the true values on held-out samples. Boxes show the 
median and upper and lower quartiles, and whiskers extend to 1.5 times the interquartile range. a Maximum 
a posteriori estimates (MAP); b Variational inference (VI); c Comparison with Gaussian RRR [48] and LASSO [51]
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for identifying these transcriptional hallmarks of cell type by finding a low-dimensional 
mapping from cell type to expression.

To test this, we fit PRRR to an scRNA-seq dataset containing 1,578 cells that span 
C = 14 unique cell types in the human pancreas [64]. For cell n, we encode its cell type 
as a one-hot vector xn ∈ {0, 1}C , and we treat the response variable yn as the vector of 
RNA transcript counts in this cell. We extracted the coefficient matrices U and V and 
studied their properties. For comparison, we also fit BERRRI  [52] and a multi-layer, 
multi-output neural network [54, 55]. For BERRRI, we set an upper limit of 13 latent fac-
tors, and set the rest of the parameters to their default settings. For the neural network, 
we included two hidden layers and used the Adam optimizer [59].

We found that PRRR was able to identify transcriptional markers in each cell type. 
Among the 14 unique cell types present in the dataset, there are five that belong to the 
family of islet cells (alpha, beta, gamma, delta, and epsilon cells). Given their functional 
relatedness, these cell types are expected to show similar gene expression patterns com-
pared to patterns found in other cell types. The competing methods, BERRRI and a neu-
ral network, were unable to separate islet and non-islet cell types in their latent spaces 
(Additional file 2: Fig. S2).

Indeed, inspecting PRRR’s estimated coefficients, we find that the model captures the 
low-dimensional gene expression patterns in islet cells (Fig. 5). We performed a hierar-
chical clustering on the PRRR coefficients, which revealed that the islet cells clustered 
together (Fig. 5). We found a similar clustering after fitting nn-PRRR on the same dataset 
(Additional file 3: Fig. S3). Moreover, we observed that the models separated islet cell 
types from non-islet cell types in the low-dimensional space (Fig. 6). Examining the fac-
tor loadings for each cell type, we found that specific factors were especially enriched for 
islet or non-islet cell types (Fig. 7). The islet-related factors were enriched for pancreatic 
gene pathways, such as pancreas beta cells.

We also extracted the top genes for each cell type from the full PRRR coefficient 
matrix; these genes can be viewed as “marker genes” whose expression is correlated 
with certain cell type identities. We found that these marker genes correspond to 

Fig. 5  PRRR coefficients for pancreatic cell types. Heatmap showing the full coefficient matrix UV⊤ , with cell 
types on the rows and genes on the columns
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cell-type-specific transcription patterns, such as REG1B being the top marker gene for 
acinar cells (Additional file 4: Fig. S4, Additional file 5: Fig. S5).

These findings imply that the low-dimensional space may be used to compare and con-
trast existing classifications within the data, and to discover possible new relationships 
among covariates and phenotypes. They also show that PRRR is able to identify the dis-
tinct transcriptional characteristics of specific cell types and groups of cell types, and 
that PRRR could be used to identify marker genes for cell types.

Fig. 6  PRRR identifies similar expression patterns in islet cell types. Shown here is the latent encoding of 
each cell type for each pair of latent variables in U , where PRRR was fitted with R = 5 Each point in each 
subplot represents a cell type, and cell types are colored by whether they are classified as islet cells or not. 
The densities on the diagonal show the distribution of U values for islet and non-islet cell types in each latent 
dimension

Fig. 7  PRRR factors identify subgroups of cell types. a shows each cell type’s loading onto each of the five 
latent factors in the U matrix. b shows a gene set enrichment analysis of the gene loadings onto factors 2 and 
4 in the V matrix
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Analyzing gene expression patterns in spatial datasets

Along with cell type, the physical organization of cells within a tissue has a strong impact 
on gene expression due to tissue organization structure and cell-cell communication. 
The rise of spatial gene expression profiling technologies provides an opportunity to 
study how gene expression levels vary spatially across a tissue  [65–68]. In particular, 
given gene expression data at the individual cell level with appropriate spatial context, it 
is of interest to identify how the expression of specific genes varies across the expanse of 
a tissue.

To study this with our modeling framework, we fit PRRR with rank R = 1 to a two-
dimensional spatial dataset containing 2,063 mouse brain sagittal anterior cells [69]. The 
X matrix is an N × 2 matrix containing two-dimensional spatial coordinates for each 
cell n, and we treat the response variable Y as the matrix of RNA transcript counts. After 
fitting PRRR, we extracted the model coefficients to inspect the spatial trends in gene 
expression that it identified.

Fig. 8  PRRR identifies directional patterns in spatial gene expression data. We applied PRRR to a Visium 
spatial gene expression readout from the sagittal anterior region of a mouse brain, using each spot’s spatial 
coordinates as the covariates and each spot’s gene expression levels as the outcome. Left: Spatial gene 
expression data for the gene TTR​ and PRRR’s estimated spatial pattern for this gene. Right: Spatial gene 
expression data for the gene FABP7 and PRRR’s estimated spatial pattern for this gene
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We found that PRRR is able to identify trends in gene expression along one latent 
dimension. While the model is constrained to only identify linear changes in gene 
expression across space, it is able to identify a general trend in increased gene expression 
for individual genes such as TTR​ and FABP7 (Fig.  8). This result demonstrates the utility 
of our model in the context of spatial genomics and further demonstrates the versatility 
of PRRR.

eQTL mapping

eQTL mapping is a common approach to finding associations between genotypes and 
gene expression profiles. However, this type of association mapping requires fitting a 
regression between millions of genotype variants and the expression of tens of thou-
sands of genes, resulting in billions of univariate models  [18]. The large number of 
univariate tests can cause these approaches to be prohibitive computationally and to 
lack sufficient statistical power.

We hypothesized that our reduced-rank regression model could alleviate these 
issues of computational tractability and statistical power. To test this, we applied 
PRRR to an eQTL mapping setting to find a set of low-dimensional factors that cap-
ture the relationships between genotype and gene expression. To do so, we used data 
from the Genotype Tissue Expression (GTEx) Consortium [19]. For this experiment, 
we focused on data collected from liver tissues from 227 donors. For each donor, the 
data consist of paired genotype (as encoded by minor allele count xn ∈ {0, 1, 2} ) and 
bulk gene expression profiles. For our analysis, we used genotype data from chromo-
some 1 ( p = 18, 892 ) and expression levels for the top q = 5, 000 most variable genes.

We fit PRRR with R = 10 latent dimensions and extracted the low-rank regres-
sion coefficient matrix (Fig. 9a, b). Within each factor, we can examine associations 
between individual genetic variants and the expression of individual genes. For factor 
number r, we do this by taking the outer product of the corresponding columns of U 
and V , respectively. That is, we compute urv⊤r  and examine the strongest SNP-gene 
relationships (Fig. 10). Investigating the latent factors more closely, we found several 
meaningful associations. For example, after performing a gene set enrichment analy-
sis (Table 1), we found that the gene expression loadings for factor 9 were enriched 

Fig. 9  PRRR loadings matrices for the GTEx eQTL experiment. a A heatmap representation of the matrix U, 
showing SNPs on the rows and latent dimensions on the columns. b A heatmap representation of the matrix 
V, showing genes on the rows and latent dimensions on the columns. c Gene set enrichment analysis (GSEA) 
of component 9 in V
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for genes related to interferon gamma response and inflammatory response (Fig. 9c), 
two major functional roles of liver cells [70, 71]. We find similar results for nn-PRRR, 
although the V matrix is much more sparse (Additional file 6: Fig. S6). The additional 
sparsity in the nn-PRRR results aligns well with the parts-based representation of 
the low-dimensional space known with nonnegative matrix factorizations  [72–74]. 
This experiment suggests that the PRRR and nn-RRR framework may be useful for 
studying associations between genotypes and phenotypes, especially when there is 
low-dimensional correlation structure between the datasets and within each dataset 
individually.

Table 1  Gene set enrichment results for GTEx eQTL experiment

EMT stands for epithelial mesenchymal transition

Factor Pathway Adjusted p-val NES Leading edge

1 ALLOGRAFT REJECTION 7.16e-05 1.15e+00 FLNA,KRT1,RPS3A

1 APICAL JUNCTION 1.13e-03 1.13e+00 ACTB,MYL9,ACTG1

1 EMT 5.32e-07 1.18e+00 FN1,FLNA,TAGLN

1 HYPOXIA 1.29e-03 1.12e+00 DCN,ANXA2,FOS

1 MYC TARGETS V1 1.80e-03 1.12e+00 RPLP0,RPS6,RPS2

1 MYOGENESIS 3.91e-06 1.17e+00 MYH11,TAGLN,GSN

1 P53 PATHWAY​ 2.61e-03 1.12e+00 PERP,RACK1,TXNIP

1 TNFA SIG. VIA NFKB 6.57e-03 1.11e+00 FOS,DUSP1,CD44

7 APICAL JUNCTION 1.79e-05 1.20e+00 MYL9,MYH9,ACTB

7 APOPTOSIS 8.01e-06 1.23e+00 DCN,GPX3,GSN

7 COAGULATION 3.60e-07 1.27e+00 A2M,FN1,SPARC​

7 COMPLEMENT 3.83e-04 1.17e+00 FN1,CSRP1,CLU

7 EMT 7.22e-12 1.29e+00 ACTA2,TAGLN,FN1

7 HYPOXIA 2.62e-05 1.19e+00 MYH9,DCN,BGN

7 IL2 STAT5 SIGNALING 7.48e-03 1.13e+00 COL6A1,AHNAK,TGM2

7 MITOTIC SPINDLE 1.39e-03 1.15e+00 FLNA,MYH9,GSN

7 MYC TARGETS V1 1.20e-03 1.15e+00 HSP90AB1,RPS6,RPLP0

7 MYOGENESIS 2.45e-11 1.29e+00 TAGLN,MYH11,COL6A2

7 TNFA SIG. VIA NFKB 1.39e-03 1.15e+00 NR4A1,RHOB,ZFP36

7 UV RESPONSE DN 1.91e-03 1.17e+00 COL1A2,IGFBP5,COL3A1

Fig. 10  Three eQTL associations found in one latent factor of PRRR applied to GTEx liver samples
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Discussion
In this paper, we present two reduced-rank regression models and associated vari-
ational inference approaches—Poisson RRR (PRRR) and nonnegative Poisson RRR 
(nn-PRRR)—to jointly model associations within two high-dimensional paired sets 
of features where the response variables are counts. In simulations, PRRR and nn-
PRRR are able to effectively capture associations between paired high-dimensional 
data. Moreover, we show that these models can identify the optimal rank for the 
parameter matrix. In the context of sequencing data, we find that PRRR and nn-
PRRR may be used for robust identification of cell types, quantifying the relation-
ships between cell types, and performing association mapping of genetic variants to 
correlated genes.

There are several limitations of our proposed model. First, PRRR and nn-PRRR only 
model linear associations between inputs and outputs and are unable to account nonlin-
ear relationships. Second, we observe that the time complexity for fitting PRRR and nn-
PRRR is somewhat slower than competing models (Additional file 7: Fig. S7), although 
the fitting time is not prohibitive. Third, a limitation of our variational inference (and 
any variational inference) is that the variational posterior distribution is an approxima-
tion to the full posterior and not the exact posterior. Finally, our model requires the user 
to specify the number of latent dimensions, which may be difficult in practice; often the 
user will run the method with different latent dimension values and use the results that 
are the most interpretable (Additional file 8).

Several extensions of the model could be considered. A nonparametric prior could 
allow for flexibly learning the rank of the parameter matrix, rather than requiring the 
rank to be pre-specified, as in related work  [52]. Additionally, the generalized model 
could be extended to different likelihood distributions. Furthermore, additional struc-
ture could be added to the latent variables, such as sparsity or a gene network [75, 76], to 
encode additional known structure in the covariates.

Conclusions
We present a Poisson reduced-rank regression (PRRR) model, along with a nonnegative 
counterpart called nn-PRRR, for association mapping in count-based sequencing data. 
PRRR is able to detect associations between a high-dimensional response matrix and 
a high-dimensional set of predictors by leveraging low-dimensional representations of 
the data. Using principled Bayesian modeling, PRRR is able to properly account for the 
count-based nature of RNA sequencing data using a Poisson likelihood. We ensure that 
inference is tractable and efficient in these models by applying a fast variational infer-
ence approach.

Abbreviations
RRR​	� reduced-rank regression
PRRR​	� Poisson reduced-rank regression
nn-PRRR​	� nonnegative Poisson reduced-rank regression
eQTLs	� expression quantitative trait loci
MLE	� Maximum likelihood estimate
MAP	� Maximum a posteriori
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Additional file 1. Fig. S1 Graphical model for PRRR and nn-PRRR.

Additional file 2. Fig. S2 BERRRI and a neural network approach fail to identify expression patterns in islet celltypes. 
Shown here is the latent encoding of each cell type for each pair of latent variables. Eachpoint in each subplot rep-
resents a cell type, and cell types are colored by whether they areclassified as islet cells or not. The densities on the 
diagonal show the distribution of latent variablevalues for islet and non-islet cell types in each latent dimension. The 
left panel shows the latentvariables for BERRRI and the right plot shows the latent variables from a neural network.

Additional file 3. Fig. S3 nn-PRRR coefficients for pancreatic cell types. Heatmaps showing the full coefficientma-
trix UV⊤ for nn-PRRR (left is original, and right is on a log scale). Cell types are shown onthe rows and genes on the 
columns. In the left panel, white cells indicate values near zero,implying that this coefficient matrix is highly sparse.

Additional file 4. Fig. S4 Marker genes identified by PRRR for pancreatic cell types. For each cell type, the tengenes 
with the highest coefficients in the matrix UV⊤ were extracted for each cell type. Somecell types share the same ten 
marker genes, which corresponds with our observation that the celltypes are largely overlapping in a PCA plot of the 
gene expression data (Fig. S4).

Additional file 5. Fig. S5 PCA plot of pancreas scRNA-seq data. The first two principal components (PCs) areplotted. 
Each point corresponds to a single cell and is colored by its annotated cell type.

Additional file 6. Fig. S6 nn-PRRR coefficients for GTEx eQTL mapping. Left: U matrix showing SNPs on therows and 
latent factors on the columns. Right: V matrix showing genes on the rows and latentfactors on the columns.

Additional file 7. Fig. S7 Time complexity. Left: Time to fit each of the four models with varying sample sizes n.Right 
Left: Time to fit each of the four models with varying outcome dimensions q.

Additional file 8. Fig. S8 The optimization problem for reduced-rank regression (RRR) and description of GTEx 
experiments.
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