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Background
Genome-scale metabolic reconstructions (GSMRs) are essential tools in system biol-
ogy [1]. Over the last 30  years, GSMRs provided researchers with the necessary tools 
to gain insight into microbial evolution, network interaction, genetic engineering, 
drug discovery, prediction of phenotypes, and model-driven discoveries [2]. However, 
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the generation of a precise genome-scale metabolic model can be very complex and 
time-consuming, requiring several steps [3]. The process starts with genome annota-
tion and assembly of all associated known metabolites and reactions, which creates an 
initial metabolic reconstruction to build a draft model. Several rounds of manual cura-
tion and evaluation of the present genes, reactions, and compounds are necessary to 
create a high-quality metabolic model. After these steps, one needs to set a biological 
objective function in the model (e.g., biomass function) followed by the conversion to 
a mathematical formulation known as the stoichiometric matrix (S-matrix), which is a 
computer-readable core part of the model. The S-matrix is used to simulate the models 
performing flux balance analysis (FBA) and growth predictions [3]. Other steps, such as 
gap-filling and stoichiometric balance, may also be necessary, increasing the complexity 
of the process.

Recently, several tools such as AureMe [4], Pathway Tools [5], RAVEN [6], Model 
SEED [7] and Merlin [8] were developed to assist with model creation [9]. A few of 
those tools were designed to handle specific processes. CarveMe [10] is a command-
line tool that deals with the initial phase of model creation and gap-filling. Cobrapy [11] 
can convert draft models into an S-matrix and perform FBA analysis using optimized 
algorithms. Escher [12] offers a fully customizable suite for pathway visualization. How-
ever, the latter tools require familiarity with command-line interfaces and programming 
[13]. They also have their peculiarities, demanding time and knowledge from users to 
perform the analysis. Therefore, the use of those tools by non-bioinformaticians can be 
challenging, and the number of steps required to build initial models precludes their 
usage in large-scale projects, which may include the development of models for hun-
dreds of genomes.

Here we present a novel tool named ChiMera, which compiles widely used tools for 
genome-scale metabolic modeling in a single pipeline. ChiMera uses a protein sequence 
as input (*.faa file) and creates a model based on a highly curated universal model [10]. 
The resulting draft model can be used for FBA and growth predictions, knockout simu-
lations, and pathway visualizations (Fig. 1). To evaluate models generated by ChiMera, 
using CarveMe algorithm, we compared several aspects of model completion with man-
ually curated models from the literature. We also compared the predicted growth values 
with experimental data to ensure model accuracy.

Implementation
General ChiMera structure

ChiMera uses automation algorithms to combine three main steps in GSMR, i.e. model 
creation and gap-filling, FBA, and pathway visualization. The tool also includes a sub-
module that enables users to perform in silico gene and reaction essentiality screening 
based on FBA. All these functions are modular and compatible with further expansions 
of ChiMera. (Fig. 2).

Model creation and gap‑filling

We use CarveMe (v1.5.1) in the reconstruction module of ChiMera. The initial draft 
model is created based on the protein sequence file (*.faa file) provided by the user. Dur-
ing the reconstruction process, ChiMera uses the CarveMe gap-filling algorithm to add 
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missing reactions based on a given growth media. This process uses genomic evidence 
to ensure that the model will be able to predict growth in the condition. CarveMe uses a 
top-down approach in a pre-built reference and manually curated universal model [10]. 
It applies a pruning algorithm that removes reactions not supported by genomic evi-
dence, generating an organism-specific model based on highly curated data [10].

CarveMe utilizes five predefined media: LB, anaerobic LB, M9, anaerobic M9, and 
M9 using glycerol as a carbon source [10]. A tab-separated file, containing a new media 
composition can also be used to reconstruct the model.

S‑matrix construction and initial FBA

We used COBRApy (v0.22.1) to convert the initial draft into an S-matrix and perform 
FBA analysis [11]. Growth, uptake, and secretion metrics are displayed in the command 
line for the user and stored in a file. The tool is also used in the knockout module, ena-
bling users to perform targeted single or double gene/reaction knockout. A file with the 
gene name or reaction name needs to be provided by the user. Additionally, we included 
an option to perform a single gene/reaction knockout in the whole model. This provides 
the resulting growth upon knockout for each gene/reaction in the organism.

Visualization of the metabolic maps

ChiMera converts the initial SBML model to 2 different model formats: JSON, and 
YAML. These model formats are compatible with the majority of currently available 
tools.

We performed transformations in the JSON model to enable compatibility 
between Escher maps and the user model. We developed in-house algorithms to 
automate the generation of metabolic maps based on Escher (v1.7.3) [12]. Ten pre-
defined pathway maps are pre-loaded in this module. Users can also provide custom 

Fig. 1  Schematic of processes automated by ChiMera. We use automation to compile several tasks and 
create an organism specific model based on the genomic data. A Model creation using CarveMe pruning 
algorithm requires the user to provide only a protein annotation file based on the genome. B Model 
conversion to a stoichiometric matrix to perform flux balance analysis and gene and reaction knockouts. C 
Representation of pre-defined Escher maps, reactions depicted in blue were detected in the model, red ones 
were absent. D Users can use the Cytoscape search bar to select specific pathways
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JSON maps of desired pathways to check if they are present in the target organism. 
A video demonstration is provided for users’ benefit to understand how to add new 
Escher maps to ChiMera [14, 15]. The pipeline uses the model data to evaluate reac-
tions and compounds present in the organism, creating customizable HTML maps 
that can be edited by the user.

Furthermore, we developed a second visualization module that creates files com-
patible with graphical visualization tools. ChiMera automated the use of PSAMM 
(v1.1.2), converting the model to a graphical representation [16]. The graphi-
cal representation only contains information about the connection between nodes 
(compounds) and edges (reactions). Users can use the "harvest path" submodule to 
convert BiGG ids to KEGG ids. This submodule collects information on the path-
ways that the compounds participate in. This approach creates a graphical repre-
sentation file with pathway information that can be loaded into Cytoscape [17]. The 
pathway information can be used to select specific maps from the whole network 
[18].

Fig. 2  Flow chart of ChiMera processes. ChiMera has 3 submodules that can be used separately. The 
ones signed with “C” are part of the core module, which performs model creation, evaluation and creation 
of visualization files. “T” represents the translator module that adds KEEG pathway information to the 
compounds in the edges file. The file can be loaded into Cytoscape or Gephi for visualization. “K” represents 
the knockout module, which performs gene and reaction knockouts. “V” represents the use of outputs 
created by ChiMera to create custom maps by third-party tools based on user needs
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Genome selection and model generation

For demonstrating functionality of ChiMera, we selected two well-studied Gram-
negative bacteria (Pseudomonas putida KT2440 and Escherichia coli) and one Gram-
positive bacterium (Bacillus subtilis). Protein sequence files were downloaded from 
NCBI under the accession numbers NC_002947.4, NZ_CP020543.1, and AL009126.3. 
These genomes were used to generate the models, visualizations and knockouts. Fur-
ther, these ChiMera models were compared with manually curated models from the 
BiGG database, iJN1463 (P. putida), iEC1344_C (E. coli), and iYO844 (B. subtilis).

Model evaluation

We performed basic tests to check the correctness of the models using MEMOTE, 
which benchmarks the model by applying consensus tests based on model annota-
tion, biomass composition, network topology, stoichiometry, and biomass composi-
tion and consistency [19]. We also performed gene essentiality benchmarking to assay 
the effect of a single-gene deletion. The media composition was defined as M9 mini-
mal medium for all organisms. To calculate the performance metrics we measured 
the reconstruction module ability to correctly assign a gene as non-essential or essen-
tial. Predicted outcomes were compared to the curated models (Additional file  2: 
Table  S1). Published experimental mutant knockout data was used to evaluate the 
predictions [20–22] (Additional file 2: Table S2). To examine the prediction capabili-
ties of produced models and curated ones, we simulated their behavior using different 
carbon sources that were previously experimentally tested in the laboratory for grow-
ing B. subtilis, E. coli, and P. putida [23–28]. Except for the carbon source, the uptake 
rates of other nutrients were kept constant in each simulation. Each carbon source 
was constrained using lower and upper bounds of -10 and 0. A list of carbon sources 
is provided in Additional file 2: Tables S3, S4, and S5.

We also compared the sets of compounds for each organism in automated and man-
ual reconstructions. The unique compounds of each organism-specific model were 
selected, and their metabolic role was inferred using the ChiMera path harvest sub-
module. The metabolic profile from curated and automatically generated models was 
compared using Principal Component Analysis and Hierarchical Clustering of the 30 
most frequently detected pathways.

Performance metrics

We used 6 different performance metrics to compare the gene essentiality predic-
tions, the experimental data was used as ground thruth.

Precision : TP/(TP+ FP)

Sensitivity : TP/(TP+ FN)

Specificity : TN/(TN+ FP)

Accuracy : (TP+ TN)/(TP+ FP+ FN+ TN)

Negative Predictive Value(NVP) : TN/(TN+ FN)

F score : 2 ∗ Precision ∗ Sensitivity / Precision+ Sensitivity
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where TP = True Positive, TN = True Negative, FP = False positive and FN = False Nega-
tive predictions.

ChiMera environment and user interface

ChiMera is a portable command-line-based tool. The source code, along with complete 
documentation of its utilization and examples of inputs are available at https://​github.​
com/​tamas​cogus​tavo/​chime​ra, https://​sourc​eforge.​net/​proje​cts/​chime​ra-​gsmr/ [29].

Results
Key capabilities of ChiMera

ChiMera was implemented in python v3.7 and its dependencies are freely available. 
There are four main functions of ChiMera: model creation, flux balance analysis and 
growth prediction, metabolism visualization, and knockout evaluation. ChiMera relies 
on CarveMe to create an organism-specific model. A curated model is pruned to pro-
duce a draft model containing thermodynamic balanced reactions and elemental bal-
anced metabolites using a protein sequence file as input (Fig.  3A). The draft model 
has three compartments, i.e. the cytosol, periplasm, and extracellular space. During 
the reconstruction, the user can select one of the five predefined media, or can build 
a specific media composition. Subsequently gap-filling based on the genomic evidence 
is performed to ensure that the organism-specific model can grow under the provided 
or experimentally-tested growth conditions. If the model is not able to grow in the 
given medium, a message is displayed, informing that the gap-filing has failed to enable 
growth. We recommend M9 minimal media as the base of new formulations, avoiding 
missing precursors that lead to gap-filling errors (Fig. 3B).

Fig. 3  ChiMera results example for the model reconstruction of P. putida. A Schematic representation 
of initial protein sequence file required for ChiMera to perform reconstruction, model evaluation, and 
visualization. B SBML model representation. C Partial output of Flux Balance Analysis simulation for the GSMR. 
D Metabolic maps generated by Escher during ChiMera visualization module execution. Here we highlighted 
the TCA cycle. Blue reactions were detected in the model, the red ones indicate absence. E ChiMera enriched 
pathways result. Only the ten most frequently detected pathways are displayed. F Barplot of ChiMera single 
reactions knockout module. ChiMera was used to evaluate the impact of reaction knockout. The units are in 
g[CDW]/h

https://github.com/tamascogustavo/chimera
https://github.com/tamascogustavo/chimera
https://sourceforge.net/projects/chimera-gsmr/
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Next, the organism-specific model is automatically converted to a S-matrix, using 
COBRApy. The biomass-producing reaction, which contains the precursors like carbo-
hydrate, protein, lipids, and energy molecules balanced for producing one gram of bio-
mass, is set as the biological objective function for performing FBA (Fig. 3C). The fluxes 
of uptake and secretion based on the media, along with growth value are displayed to the 
user (Additional file 1: Fig. S1). Subsequently, the model is converted to a JSON format, 
used to produce predefined metabolic maps based on Escher (Fig. 3D) (Additional file 1: 
Fig. S2). However, users can design specific maps and add them to ChiMera pipeline 
(Additional file 1: Fig. S3). The model is also converted to YAML format, which is used 
by the PSAMM findprimalpairs algorithm to break down the GSMR into connections 
between metabolites (nodes) and reactions (edges).

The output of PSAMM can be directly loaded into Cytoscape [30], producing a visu-
alization of the entire reconstruction. Users can also use the ChiMera translator sub-
module, to add pathway information to the file, enabling a targeted search of pathways in 
Cytoscape (Additional file 1: Fig. S4).

ChiMera also produces a broader view of the target metabolism (Fig. 3E). The com-
pounds detected in the model have their metabolic association collected from the KEGG 
database, and the information of the most frequently detected pathways is used to create 
an interactive plot (Additional file 1: Fig. S5).

To allow ChiMera’s flexibility and modularity, users can also provide a pre-built model 
with the protein sequence file, which should hold the same prefix, directly perform-
ing FBA analysis and construction of the pathway maps. Documentation is provided 
to ensure that the annotations of the model or the presence of extra compartments are 
compatible with PSAMM, to generate the Cytoscape compatible file. We provide tuto-
rials on how to use ChiMera output files to build custom maps for any organism (see 
Materials and Methods).

The knockout module of ChiMera is dependent on COBRApy [11]. Here, we imple-
mented a function that enables the user to provide a file containing a list of genes or 
reactions to be silenced. This module can perform single or double targeted deletions 
(Fig. 3F). Results are displayed in the command line (Additional file 1: Fig. S6). The user 
can also perform gene essentiality analysis for the whole model, identifying the impact of 
silencing the genes/reactions on the growth under given growth conditions (Additional 
file 2: Table S6).

Comparison with manually curated models

We compared sets of metabolites and reactions included in the models with those pre-
sent in manually curated models. ChiMera1716 (P. putida) and iJN1463 models shared 
68% of their metabolites and 60% of their reactions. Similar values were observed for 
iChiMera1657 (E. coli) and iEC1344_C models. iChiMera1182 (B. subtilis) shared 50% of 
its metabolites and 44% of its reactions with iYO844 (Fig. 4 A).

We further investigated the presence of exclusive compounds in manually curated 
models and automatically generated models. The first component of the PCA analysis 
separated the dataset into gram-positive and gram-negative reconstructions, in the sec-
ond component, the models were divided based on the reconstruction method. Hierar-
chical Clustering of the 30 most frequently detected pathways produced similar results, 
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except for the gram-positive reconstructions, which swapped. These results suggest that 
the reconstruction method has more impact on the model draft. (Additional file 1: Fig. 
S7).

We also performed a more comprehensive comparison of model features based on 
MEMOTE metrics [19]. The overall score of ChiMera models is comparable to the man-
ually curated models. Moreover, models produced by CarveMe algorithm have a lower 
number of blocked reactions, orphan and dead-end metabolites. Curated models had a 
higher presence of missing essential precursors in the biomass function, which can lead 
to unrealistic growth predictions (Table 1).

Next, we examined the prediction capabilities of models by comparing predicted 
growth with experimentally measured growth rates. Curated and non-curated models 
shared a close resemblance. Both sets of models were simulated using 46, 50, and 70 
different carbon sources for B. subtilis [27, 28], E. coli [23, 24], and P. putida models 
[25], respectively (Additional file 2: Tables S4, S5 and S6). This analysis suggested that 
ChiMera models were able to perform comparably to manually-curated models. In com-
parison with manually-curated models, they predicted 96 to 100% accurate growth on 
different carbon sources (Fig. 4B).

Fig. 4  Comparison between ChiMera and manually curated models of B. subtilis, E. coli, and P. putida. A Venn 
diagram of reactions and metabolites sets. Reactions and compound sets from ChiMera (iChiMera1182, 
iChiMera1657, and iChiMera1716) and manually curated models (iYO844, iEC1344_C, and iJN1463) were 
compared to identify the intersection of the model features. Model-specific information is also depicted. 
B Heatmap illustrates predicted growth using ChiMera and manually curated models on different 
experimentally tested growth environments. The models of B. subtilis, E. coli, and P. putida were used to 
simulate growth on 46, 50, and 70 carbon sources, respectively. These carbon sources and in silico growth 
rates can be seen in Additional files 2: Tables S4, S5, and S6. The data in heatmap was clustered based on rows 
and columns
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Gene essentiality metric evaluation

Before we evaluate the predictions of each model, gene datasets for each organism 
were normalized based on the weighted average of hits in the model (Fig. 5B). Model 
performance statistics were calculated by the ability to detect essential genes and 
non-essential genes, respectively (Additional file 2: Table S1).

ChiMera knockout module was used to perform the evaluation. The gene essential-
ity predictive metrics were higher in manually curated models. Comparing P. putida 
models, iChiMera1716 and iJN1463, we observed that the curated model had worse 
specificity and precision and better performance at the sensitivity and negative pre-
dictive value. For E. coli, the iEC1344_C had a perfect prediction on the dataset. The 
iChiMera1657 model was outperformed in sensitivity, negative predictive value, accu-
racy, and F1 score. For B. subtilis, we observed a better performance at specificity, 
negative predictive value, accuracy, and F1 score for iYO844 (Fig.  5A). ChiMera’s 
models were outperformed in sensitivity and negative predictive value in all the com-
parisons. Metadata indicates that our models had a higher mislabeling of essential 
genes (Additional file 2: Table S1).

Table 1  MEMOTE evaluation metrics

Parameters that can influence the precision of the predictions were selected to assay Chimera and BiGG curated models. 
Values in the range of 1±10−3 in Biomass Constitution are necessary to indicate a realistic biomass function

Model ID Balance metrics Biomass constitution Network topology

Stoichiometric Mass Charge Biomass 
constitution

Missing 
precursors 
in biomass

Blocked 
reactions

Orphan 
metabolites

Dead-end 
metabolites

P. putida 
iChi‑
Mera1716

99.8 99.9 80.2 1.00 1 19 0 0

iJN1463 0 99.6 99.7 0.98 2 247 56 85

E. coli iChi‑
Mera1657

99.6 99.9 83.2 1.00 1 18 0 1

iEC1344_C 100 100 74 1.54 30 0 0 1

B. 
subtilis iChi‑
Mera1182

100.0 99.9 82.1 1.03 1 54 1 1

iYO844 100.0 94.4 98.9 1.04 6 50 122 21

Fig. 5  Gene essentiality metrics. Six metrics were selected to compare prediction capability from ChiMera 
and manually curated models. A Radarplot of Gene Essentiality metrics. B Stacked bar plot of gene 
essentiality classification according to presence in the genome
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Discussion
We introduce ChiMera, an automated, well-documented and easy-to-use command-line 
tool that enables researchers with limited knowledge of bioinformatics and computa-
tional biology to produce GSMRs. These reconstructions can be great tools to explore 
the metabolic potential of the target organisms. Gene essentiality modules within Chi-
Mera can help researchers to understand the behavior of the organisms under diverse 
experimental conditions. The visualization modules facilitate the exploration of essen-
tial pathways, as well as the identification of unique pathways for non-model organisms. 
Collectively, the outcome provided by ChiMera assists researchers in understanding 
non-model organism metabolism and developing metabolic engineering approaches for 
model organisms.

ChiMera has similar goals to AuReMe and Merlin. These tools offer a custom work-
space for the user, hence facilitating the construction of genome-scale models. AuReMe 
has its own data structure based on PADMet, and focuses on traceability of the recon-
struction process, performing at its best if highly curated models are available [4]. There 
are several steps that the user can process, but it lacks visualization and knockout mod-
ules (Additional file 2: Table S7). AureMe performance was comparable to CarveMe in 
model creation [9]. Merlin offers a vast workspace for its users. Its graphical interface 
allows users to re-annotate genomes using BLAST or HMMER, and also integrate data 
from NCBI and KEGG to its draft model [8]. This tool is preferable for those focusing on 
manual curation of single organisms with expertise in metabolic engineering and model 
creation [9].

ChiMera inherits some pros and cons from CarveMe. The top-down approach based 
on a universally curated model generates draft reconstructions that share coverage of 
reactions and metabolites above 60% compared to highly curated models, suggesting 
a great alternative for the first model draft, before manual curation (Fig. 4A). ChiMera 
models are also valuable assets for those working with hundreds of genomes due to 
the easiness and speed of a draft construction, enabling researchers to evaluate multi-
ple candidate models and choosing the best option for a manual curation if needed. We 
demonstrated that the ChiMera models can predict phenotypes comparable to manually 
curated models (Fig. 4B). We also observed good agreement in gene essentiality detec-
tion between ChiMera and manually curated models. Manually curated models mostly 
had higher prediction capabilities compared to ChiMera models (Fig. 5A). However, the 
differences were more accentuated for sensibility and negative predictive value where the 
metrics between ChiMera models and curated ones agreed 76% and 61%, respectively. 
For accuracy, ChiMera achieved 84% of the curated model predictions. Specificity and 
precision metrics were similar, with marginal advantage to ChiMera predictions. These 
inferences are held with a F-score of 91%. These results demonstrate that the choice to 
use CarveMe in the reconstruction module was advantageous in several aspects, ranging 
from draft models with resemblance to manually curated models, gap-filling based on 
higher genetic evidence, to fast performance [9].

ChiMera complements the reconstruction module based on CarveMe by adding 
a new visualization module that allows the user to have a comprehensive overview of 
the organism’s metabolism. One can rely on the predefined maps or design specific 
maps using ChiMera outputs to suit their research needs [14, 15, 18]. We also provide 



Page 11 of 13Tamasco et al. BMC Bioinformatics          (2022) 23:512 	

models in different formats that enable compatibility with most of the tools used to cre-
ate GSMR.

Finally, the implementation of FBA and knockout modules can help to elucidate eco-
logical niches and the planning of knockout strategies (Fig. 3F). These modules can also 
assist in pathway engineering, identifying the best silencing strategies to deflect the 
metabolic flux to the desired metabolite. ChiMera archives all these functionalities in a 
modular and easy-to-use pipeline.

Conclusion
ChiMera is a novel command-line tool that automatizes the usage of state-of-art GSMR 
tools, enabling biologists with little experience in model reconstruction to create ready-
to-simulate genome-scale models. ChiMera contains submodules that enable users to 
investigate the metabolic pathways present in the target organism. Furthermore, the tool 
performs gene or reaction knockout simulations, facilitating the development of engi-
neering strategies. To demonstrate the benefits of ChiMera, we compared gene essenti-
ality and growth prediction capability of ChiMera models against well-curated models. 
As a result, ChiMera provides automatization of a unique set of tools, for biologists who 
are interested in genome-scale models, as well as for those interested in a more compre-
hensive understanding of an organism’s metabolism.

Availability and requirements

Project name: ChiMera.
Project homepage: https://​github.​com/​tamas​cogus​tavo/​chime​ra, https://​sourc​eforge.​

net/​proje​cts/​chime​ra-​gsmr/
https://​pypi.​org/​proje​ct/​ChiMe​ra-​Model​Build​er/
Operating System(s): Mac Os, Linux.
Programming language: Python.
Other requirements: The tool has dependence on other thirst party software. 

All dependencies are handled during the installation and creation on an virtual 
environment.

License: GNU GLP 3.
Any restrictions to use by non-academic: ChiMera has no restriction, however 

CarveMe rely on IBM ILOG CPLEX Optimization Studio, that demands an academic 
license.

Abbreviations
FBA	� Flux balance analysis
GSMR	� Genome scale metabolic reconstruction
S-matrix	� Stoichiometric matrix
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