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Abstract 

Background:  Accurate annotation of protein function is the key to understanding life 
at the molecular level and has great implications for biomedicine and pharmaceuti-
cals. The rapid developments of high-throughput technologies have generated huge 
amounts of protein–protein interaction (PPI) data, which prompts the emergence of 
computational methods to determine protein function. Plagued by errors and noises 
hidden in PPI data, these computational methods have undertaken to focus on the 
prediction of functions by integrating the topology of protein interaction networks and 
multi-source biological data. Despite effective improvement of these computational 
methods, it is still challenging to build a suitable network model for integrating multi-
plex biological data.

Results:  In this paper, we constructed a heterogeneous biological network by initially 
integrating original protein interaction networks, protein-domain association data 
and protein complexes. To prove the effectiveness of the heterogeneous biologi-
cal network, we applied the propagation algorithm on this network, and proposed 
a novel iterative model, named Propagate on Heterogeneous Biological Networks 
(PHN) to score and rank functions in descending order from all functional partners, 
Finally, we picked out top L of these predicted functions as candidates to annotate 
the target protein. Our comprehensive experimental results demonstrated that PHN 
outperformed seven other competing approaches using cross-validation. Experimental 
results indicated that PHN performs significantly better than competing methods and 
improves the Area Under the Receiver-Operating Curve (AUROC) in Biological Process 
(BP), Molecular Function (MF) and Cellular Components (CC) by no less than 33%, 15% 
and 28%, respectively.

Conclusions:  We demonstrated that integrating multi-source data into a heteroge-
neous biological network can preserve the complex relationship among multiplex 
biological data and improve the prediction accuracy of protein function by getting rid 
of the constraints of errors in PPI networks effectively. PHN, our proposed method, is 
effective for protein function prediction.

Keywords:  Protein function prediction, Heterogeneous biological network, Network 
propagation
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Background
Proteins are the basic organic matter that constitutes all cells and tissues of the living 
body. Accurately and automatically annotation of protein function is one of the funda-
mental tasks of bioinformatics, and it has become very hot in recent years. Methods for 
experimentally determining protein function such as gene expression inhibition [1], tar-
geted mutation [2] and gene knockout [3] require considerable time and cost, and can 
only deal with one gene or protein at a time. With the increasing number of functional 
proteins to be labelled, such low-throughput experimental techniques cannot meet 
practical needs. Consequently, the computational method serves as a more suitable solu-
tion for determining protein function.

The rapid developments of high-throughput technologies have generated huge 
amounts of high-quality, large-scale protein interaction data, which provide funda-
mental and abundant data for network-based approaches to deduce protein functions. 
Schwikowski et  al. [4] found that proteins interacting with each other generally share 
the same function, and proposed a method named NC for function prediction based on 
interacting neighbour voting. Chua et al. [5] proposed a functional similarity measure-
ment method to recalculate the interaction strength of proteins by comprehensively uti-
lizing the global structure of the protein interaction network characterized by direct and 
indirect neighbours, and improved the NC method on this basis. Since PPI networks can 
be represented by graph models, graph-theoretic algorithms were naturally applied to 
protein function prediction as well. Functions were deduced by the global connectivity 
pattern of the protein physical network, which was determined by minimizing the num-
ber of protein interactions between different functional categories [6]. The GLIDER [7] 
method predicted protein functions from a new graph-based similarity network instead 
of the PPI network. It can infer missing connections in PPI networks based on local and 
global graph properties.

Considering the incompleteness of the protein–protein interaction network, research-
ers combined multiple biological data with the protein interaction network to establish 
functional similarity networks for function annotation. Through statistical analysis, 
Liang et al. [8] found that two proteins are likely to perform the same or similar func-
tion if they have the same domain composition. Consequently, they constructed the 
Protein Overlap Network (PON) for protein function annotation. Peng et al. established 
the protein interaction network, domain co-occurrence network and functional inter-
relationship network and ran the random walk algorithm on these networks to deduce 
the function of proteins [9]. Sarker et al. reconstructed the protein interaction network 
using protein-domain association data and proposed the GrAPFI [10, 11] method to 
predict functions for the target protein by using the label propagation algorithm on this 
network. Generally speaking, if two genes or genes products have similarities in some 
context, we can conclude that they have the same or similar annotation terms. Song 
et al. determined the functions of the unknown protein by exploring its functional part-
ner with the highest domain context similarity derived from their direct neighbours [12]. 
The DCS (Domain Combination Similarity) [13] calculated domain context similarity by 
adding domains of the protein itself and improved the performance of prediction of pro-
tein function. DeepGOPlus [14] deduced protein functions for the target protein based 
on the sequence similarity with known functions using deep learning techniques.
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Despite effective improvement of these computational methods for function annota-
tion, it is still a challenge to build an appropriate network model for the integration of 
multiplex biological data and PPI networks. The most prevalent way is to merge multi-
plex biological data into a single and unique network, in which the role of different types 
of data is reflected in the form of setting weights or parameters. Therefore, the param-
eter is an important factor that affects the performance of methods for function predic-
tion, which generally depends on experience or the result of association analysis. Even if 
the parameter setting model is optimized, different species and even different data sets 
have different settings. So, how to set the parameter value will become one of the biggest 
barriers to the application of these prediction models. In addition, the construction of 
a single network ignores the differences among multiplex biological data and covers up 
the inherent attributes of different types of biological data. In this paper, we constructed 
a heterogeneous biological network with the integration of PPI networks and multiple 
biological data, including protein complexes and protein-domain association data. On 
this basis, we design a novel protein function prediction method named PHN (Propa-
gate on Heterogeneous Networks) by applying the propagation algorithm [15] on the 
heterogeneous biological network. To evaluate the performance of PHN, we apply our 
method on the Saccharomyces cerevisiae PPI network. Experimental results show that 
the PHN method outperforms seven competing methods for prediction of protein func-
tion: NC [4], Song [12], DCS [13], DSCP [13], NPF [15], PON [8] and GrAPFI [10].

Methods
The outline for the proposed PHN method includes (1) constructing a heterogeneous 
biological network by integrating the topology of PPI networks, protein-domain associa-
tion data, and protein complex information, (2) running the propagation algorithm on 
the heterogeneous biological network to generate a functional similarity partners list for 
the given target protein, and (3) scoring and ranking functions from the partners list in 
descending, and picking out top L of them to annotate the unknown protein. The flow-
chart for the PHN method is provided in Fig. 1.

Construction of a heterogeneous biological network

Protein–protein interaction network

It has been observed that more than 70% of proteins perform at least one function 
with their direct neighbours in networks [16]. We make a statistical analysis of yeast 
PPI data and observe that 21.3% of proteins share no functions with their direct 
neighbours, and they display enormous function similarity with some of their level-2 
neighbours. In this paper, we evaluate functional similarity between a protein and its 
neighbours from the two different levels. Given a protein u, S1 and S2 denote the set 
of direct neighbours and level-2 neighbours of u, respectively. We classify all proteins 
except u into four categories: direct neighbours that are also level-2 neighbours (i.e. 
S1 ∩ S2), direct neighbours that are not level-2 neighbours (i.e. S1-S2), level-2 neigh-
bours that are not direct neighbours (i.e. S2-S1) and protein that are not direct neigh-
bours or level-2 neighbours (i.e.S1 ∪ S2 ). In this work, the parameter α (0 < α < 1) is 
adopted to evaluate the importance of direct neighbours in functional analysis based 
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on network topology. Accordingly, the functional similarity between nodes of the sets 
S1-S2 and u is defined asα. In particular, if a protein appears in both S1 and S2 (S1 ∩ S2), 
it is considered to have a necessary functional association with u and the functional 
similarity between them was set to 1. So, the functional similarity between a node in 
the sets S2-S1 and u is assigned 1 − α. Given a protein v in the network, the functional 

Fig. 1  The flowchart of PHN method. 1 Constructing the heterogeneous biological network based on 
original PPI network, domain annotation and protein complex information. 2 Given a testing protein u, 
running the propagation algorithm on the heterogeneous biological network to obtain the functional 
similarity score vector pr between u and the other proteins. 3 Scoring and ranking functions in descending 
order coming from all functional partners and selecting the first L of them as candidates to annotate the 
target protein
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similarity between u and v based on the local topology of PPI networks can be defined 
as follow:

Figure 2 illustrates these four sets of protein pairs. We are able to calculate the functional 
similarity between these neighbours and the target protein u according to Eq.  1: fs(u, 
P1) = α, fs(u, P2) = 1, fs(u, P3) = 1, fs(u, P4) = α, fs(u, P5) = 1 − α, fs(u, P6) = 0.

Protein complexes are functional units of macro-molecular organization consisting of 
interacting proteins that perform cellular biological functions [17]. Considering the fact 
that associated experimental techniques may cause a false positive result in protein–pro-
tein interaction assays, we apply protein complex data to evaluate the module similarity 
between proteins for the construction of a more reliable protein interaction network. Let 
ms(u, v) denote the module similarity of the interaction between u and v. Then, the mod-
ule similarity of interaction (u, v) is calculated using the following equations:

where Cu and Cv denote the set of protein complexes containing u and v, respectively. 
Cu ∩ Cv denotes the set of protein complexes containing both u and v. Finally, we con-
struct a weighted protein–protein interaction network with high confidence by integrat-
ing the topology of PPI networks and protein complexes. The weight between protein u 
and v in the newly constructed protein–protein interaction network is the linear combi-
nation of their functional similarity and module similarity, and is defined as:

Protein‑domain association network

Domain refers to the dense spherical region of protein subunit structure, which is com-
posed of 100–200 amino acid residues, each with unique spatial conformation and dif-
ferent biological functions. If protein u contains domain d, u connects domain dn with 

(1)fs(u, v) =

1, if v ∈ S1 ∩ S2
α, if v ∈ S1 − S2
1− α, if v ∈ S2 − S1
0, otherwise

(2)ms(u, v) =
|Cu ∩ Cv|

2

|Cu| × |Cv|

(3)mpp(u, v) = β ∗ fs(u, v)+ (1− β) ∗ms(u, v).

Fig. 2  Example to illustrate four sets of protein pairs. Exhibition four sets of neighbour pairs of the target 
protein u, including S1 ∩ S2, S1–S2, S2–S1 and S1 ∪ S2
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an edge in the protein-domain association network and mpd(u, dn) = 1, otherwise, there 
is no edge between them and mpd(u, dn) = 0.

Domain‑domain similarity network

In this work, we evaluate the similarity between domains through their associated pro-
tein interaction information. The domain-domain similarity network is constructed 
based on the above constructed weighted protein–protein interaction network and 
the protein-domain association network. Let PL(dn) represents the list of proteins that 
contain the domain dn. We quantitatively analyse the association between protein u 
and PL(dn) of the domain dn according to weighted protein interaction data, which is 
expressed as follows:

Then, for a given pair of domain dni and domain dnj, the similarity between them can 
be calculated as follows:

where PL(dni) and PL(dnj) are the protein set containing domain dni and domain dnj, 
respectively and S_PD(pnx,PL(dni)) denotes the association between protein pnx and 
the set of protein PL(dni).|PL(dni)| and |PL(dnj)| is the size of PL(dni) and PL(dnj) , 
respectively.

Based on the newly established protein–protein interaction network, protein-domain 
association network and domain-domain similarity network, a heterogeneous biological 
network is constructed and formally expressed by the adjacency matrix as follows:

where MPP, MPD and MDD is the adjacency matrix corresponding to the protein–pro-
tein interaction network, protein-domain association network and domain-domain sim-
ilarity network, respectively. MPDT is a transport matrix of the matrix MPD.

Heterogeneous biological network propagation

Restricted to the small-world and scale-free features of the protein–protein interaction 
network, existing distance measures such as shortest distance and Euclidean distance 
are not suitable for evaluating the functional similarity between proteins [18, 19]. In 
order to prioritize functional partners in the network for a target unknown protein, the 
propagation algorithm is run on the heterogeneous biological network. Firstly, we estab-
lished a transition probability matrix HBM_T based on the matrix MPD by normalized 
operation, which is formalized as follows:

(4)S_PD(u,PL(dn))= max
pni∈PL(dn)

(mpp(u, pni))

(5)

mdd(dni, dnj) =

∑

pnx∈PL(dni)S_PD(pnx,PL(dni))+
∑

pny∈PL(dnj)S_PD(pny,PL(dnj))

|PL(dni)| + |PL(dnj)|

(6)HBM=

[

MPP MPD

MPDT MDD

]

(7)HBM_T=

[

MPP_T MPD_T

MPD_TT MDD_T

]
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The transition probability from protein pni to protein pnj is expressed as:

The transition probability from domain dni to domain dnj is expressed as:

The transition probability from protein pni to domain dnj is expressed as:

The transition probability from domain dni to protein pnj is expressed as:

The parameter λ is the moving probability of the movement from the weighted pro-
tein–protein interaction network to the domain-domain similarity network and is 
assigned as 0.2 [20]. And then, we perform an iteration operation to calculate aggregated 
functional similarity scores between the given target protein u with other proteins by the 
following equation:

The parameter γ ∈ [0, 1][0, 1] is balanced between the propagation information and 
initial scores, which is set to 0.5 [21, 22]. pr0=[h(P); h(D)] denotes the initial functional 
similarity score vector, which is derived from the protein–protein interaction network 
corresponding to the matrix MPP and protein-domain association network. For a given 
protein pi, its initial functional similarity score between the target protein u is expressed 
by the weight of interaction between pi and u in the protein–protein interaction net-
work, that is:

As for domains, their initial functional similar scores are derived from scores of their 
relevant proteins. Given a domain dj, its initial score is computed by the following 
formula:

where PL(di) is the protein set of domain di. In Eq.  (12), if 
∥

∥prt+1 − prt
∥

∥

1
≥ ε , then 

t = t + 1 and return to the previous step to continue the iteration, otherwise, the iteration 
end. When the propagation converges, we can obtain an aggregated scores vector pr, in 
which proteins are arranged in descending according to their functional similarity to the 
target protein u.

(8)

mpp_t(i, j) = p(pnj|pni) =

{

mpp(i, j)/
∑

jmpp(i, j), if
∑

jmpd(i, j) = 0

(1− �)mpp(i, j)/
∑

jmpp(i, j), otherwise

(9)

mdd_t(i, j) = p(dnj|dni) =

{

mdd(i, j)/
∑

jmdd(i, j), if
∑

jmpd(j, i) = 0

(1− �)mdd(i, j)/
∑

jmdd(i, j), otherwise

(10)mpd_t(i, j) = p(dnj|pni) =

{

�mpd(i, j)/
∑

jmpd(i, j), if
∑

jmpd(i, j) �= 0

0, otherwise

(11)mpd_t(j, i) = p(pnj|dni) =

{

�mpd(j, i)/
∑

jmpd(j, i), if
∑

jmpd(j, i) �= 0

0, otherwise

(12)prt+1 = (1− γ ) ∗HBM_T ∗ prt + γ ∗ pr0

(13)h(pi) = mpp(u, pi)

(14)h(dj) = max
px∈PL(dj)

(h(px))
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Determining protein function

MethodS typified by Song et al. [11] assigned all functions of the protein with the high-
est similarity value to the target protein with unknown functions. However, our statisti-
cal results on recent PPI data indicate that the function overlaps of more than half of 
protein pairs fell into [0.4, 0.6] and that of only 11.99% of protein pairs is above 0.6. So, 
functions are scored and ranked in descending order coming from all functional part-
ners and the top L of them are picked out as candidates to annotate the target protein in 
this work. Let FN = {fn1, fn2,…, fnm} be a list of distinct functions of proteins in pr that 
have a functional similarity score greater than 0 to the target protein u. For a given func-
tion fni in FN, its ranking score is obtained using the following formula:

In Eq. (15), if pni contains function fni, then tij = 1, otherwise tij = 0. The parameter L is 
assigned the number of functions of the protein within pr, which has the highest func-
tional similarity score to the target protein u. Algorithm 1 gives the overall framework of 
the proposed PHN method.

Results and discussion
Experimental data

The Saccharomyces cerevisiae (yeast) protein interaction networks are widely used in 
the research of network-based function prediction algorithms as a gold standard data 
because of their completeness and convincement. Here, we apply PHN and seven 

(15)S(fni) =

n
∑

j=1

pr(j) ∗ tij
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competing methods on yeast interaction networks to test the performance of our new 
method. The original protein interaction data used in this work is downloaded from the 
BioGRID (Biological General Repository for Interaction Datasets) database [23], com-
piled on Aug. 25, 2022. The BioGRID PPI network contains 3145 proteins and 15,070 
experimentally detected interactions with self-interactions and repeated interactions 
removed. The experimentally detected protein complex set for construction of the 
weighted PPI network is obtained from the CYC2008 database [24], which consists of 
408 complexes involving 1408 proteins in the BioGRID database. The function annota-
tion of proteins used for validation is downloaded from the Gene Ontology Consortium 
(GOC) [25]. The GO terms maintain three structured controlled vocabularies, which 
describe gene products in terms of their associated biological processes (BP), cellular 
components (CC) and molecular functions (MF). In the BioGRID network, 2957, 2250 
and 2130 out of 3145 proteins are annotated by BP, MF and CC, respectively. The gold 
standard GOC consists of 518, 219 and 174 GO terms for BP, MF and CC respectively. 
Figure 3 depicts the distribution of GO terms in BP, MF and CC, respectively. We obtain 
4936 protein-domain association data with invalid and duplicate relationships removed 
from the PFAM [26] database. It involves 906 distinct domain types related to 2044 
proteins of the PPI networks. Figure  4 shows the distribution of Domain types in the 
BioGRID network. Figure 4 reveals that more than 63% of the domain types are associ-
ated with less than 5 proteins.

Evaluation criteria

In this work, the performance of PHN is evaluated by two cross validations, including 
leave-one-out cross validation and ten-fold cross validation. To measure the quality of 
predicted functions by our method, we adopt the ROC (Receiver-Operating Curve) [27, 
28] as an assessment. The ROC curve is plotted with FPR (False Positive Rates) and TPR 
(True Positive Rates) [29], which is widely used in performance evaluation for protein 
function prediction. In addition, we also calculate the Precision, Recall and F-measure 
of the proposed PHN method. Precision is the fraction of predicted functions that are 
matched with benchmark functions while Recall is the fraction of benchmark functions 
that are matched with predicted functions. As the harmonic mean of precision and 

Fig. 3  Distribution of GO term in the BioGRID dataset. This Figure shows the distribution of GO term in the 
BioGRID dataset. X-axis represents the number of annotated protein. Y-axis represents the number of GO 
terms. a Biological process, b molecular function, c cellular component
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recall, F-measure is another assessment to evaluate the performance of the protein func-
tion prediction method synthetically.

Effect of parameter β

On the construction of the weighted protein–protein interaction network, we employ 
a user-defined parameter β to balance functional similarity and module similarity in 
Eq. 3. With different values of parameter β, the performances of prediction might differ 
greatly. As a result, we investigate the effect of parameter β on the PHN method by run-
ning 11 times with equal intervals of β from 0 to 1. The corresponding values of Recall, 
Precision and F-measure at different values of β are calculated. Table 1 shows how these 
performance evaluation criteria of our method fluctuate under various values of β based 
on GO terms in BP, MF and CC. From Table 1, we can easily see that the comprehen-
sive evaluation criteria F-measure of PHN in BP reached the maximum value when β is 
assigned to 0.8. Similarly, the PHN method obtains optimal performance in MF and CC 
when β is set to 0.7 and 0.9, respectively. Therefore, we set the default value of parameter 
β in BP, MF and CC to 0.8, 0.7 and 0.9 respectively in all the following experiments.

Leave‑one‑out cross‑validation

In this part, we use leave-one-out cross validation to evaluate the quality of the functions 
predicted by PHN and seven other competing methods. In each round, there is only one 
protein in the testing set and the rest in the training set. Firstly, we evaluate the compre-
hensive performance of PHN and seven other competing algorithms, such as NC, Song, 
DCS, DSCP, NPF, PON and GrAPFI by the average Precision, Recall and F-measure. Fig-
ure 5 shows the overall performance of the above eight methods in the matter of Preci-
sion, Recall and F-measure. PHN is the only method with F-measure above 50% in BP, 
MF and CC. Compared with NC, a classic network-based function prediction method, 
the F-measure of PHN for MF, CC and BP category is improved by 36.98%, 74.14% and 

Fig. 4  Distribution of domain in the BioGRID dataset. This Figure shows the distribution of domain in 
the BioGRID dataset. X-axis represents the number of associated protein. Y-axis represents the number of 
domains
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38.44% respectively. While compared with NPF which is the latest proposed function 
prediction algorithm with protein domain and complex information integrated, PHN 
also shows remarkable performance. Particularly, for GO terms in CC, the F-measure 
of PHN is 20% higher than that of NPF. Figure 5 indicates that PHN obtains the high-
est prediction precision of all the methods and the second-highest recall after NC. The 
recall of PHN is inferior to that of NC, due to the functions annotation strategy that 
PHN only selects the top part of the predicted functions to annotate the unknown pro-
tein, while the NC method assigns all the functions of neighbours to the target protein. 
This treatment of the NC method causes a lot of noise to emerge in its predicted func-
tions, resulting in a sharp drop in precision. In this experiment, the recall of NC for the 
BP, MF and CC category is 32.31%, 6.11% and 20.38% higher than that of PHN, respec-
tively. While its precision in BP, MF and CC is 95.83%, 154.1% and 92.49% lower than 
that of PHN.

The choice of the number of functions predicted by various methods is an impor-
tant factor affecting their performance. We try our best to select a unified candidate 
functions selection strategy for each method to comprehensively and objectively com-
pare and analyse the performance of different methods. The predicted functions are 
arranged in descending order based on the functional similarity score values derived by 
PHN, NPF, NC, PON and GrAPFI, respectively. And then top L of candidate functions 

Table 1  Effect of parameter β on the performance of HPN

Bold values represent the optimal value of parameter β set in BP, MF and CC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BP

 Recall 0.301 0.511 0.514 0.518 0.521 0.525 0.529 0.530 0.536 0.537 0.135

 Precision 0.309 0.492 0.494 0.497 0.501 0.508 0.510 0.512 0.516 0.513 0.104

 F-measure 0.305 0.501 0.504 0.507 0.511 0.516 0.519 0.521 0.526 0.525 0.118

MF

 Recall 0.441 0.547 0.549 0.550 0.554 0.552 0.555 0.556 0.549 0.545 0.238

 Precision 0.446 0.551 0.553 0.554 0.556 0.557 0.558 0.561 0.561 0.561 0.239

 F-measure 0.443 0.549 0.551 0.552 0.555 0.554 0.557 0.559 0.555 0.553 0.238

CC

 Recall 0.556 0.588 0.589 0.592 0.599 0.604 0.606 0.607 0.607 0.612 0.175

 Precision 0.551 0.576 0.579 0.584 0.590 0.593 0.592 0.595 0.596 0.598 0.181

 F-measure 0.554 0.582 0.584 0.588 0.594 0.598 0.599 0.601 0.602 0.605 0.178

Fig. 5  The predicted results of various methods using leave-one-out cross validation. Numbers of each 
bar are the values for each score, including average Precision, Recall and F-measure. a Biological process, b 
molecular function, c cellular component
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are picked out to annotate the target protein. For the three methods of Song, DCS and 
DSCP, the top M (M ≤ L) of proteins with the highest function similarity to the target 
protein are selected, and the top L of functions from these M proteins are selected as 
predicted functions. A more valuable comparison between algorithms is presented by 
plotting F-measure curves as the value of L (L ≤ 50) varies. Figure 6 shows the F-measure 
of our method and other competing methods fluctuates under various values of L in BP, 
MF and CC. From Fig. 6, we can see that the setting of L in the interval [2, 5] is the opti-
mal solution for all methods. The experimental results also show that PHN achieves the 
best performance of all methods, regardless of the value of L.

Moreover, we also employ Receiver-Operating Curve (ROC) curves and the corre-
sponding areas under the ROC curve (AUROC) values to evaluate the overall perfor-
mance of each method. Firstly, functions are ranked in descending order according to 
the functional similarity scores to the target proteins computed by each method. After 
that, the top K functions are picked out and put into positive data set as candidate func-
tions, and then the remaining functions are stored in negative data set. The upper limit 
values of K in BP, MF and CC are 518, 219, and 174, respectively. With different values 
of K selected, the values of TPR (False Positive Rates) and FPR (True Positive Rates) are 
computed for each method, respectively. Then, the values of TPR and FPR are plotted 
in ROC curves with different cut-off values. The experimental results are illustrated in 
Fig. 7. From Fig. 7, we can see intuitively that the ROC of PHN in BP, MF and CC is 
clearly above those of all other methods.

Fig. 6  F-measure curves as the number of selected functions L varies. This Figure depicts the F-measure 
of our method and other competing methods fluctuate under various value of the parameter L. The X-axis 
and Y-axis represents of the curve are the values of the parameter L and average F-measure, respectively. a 
Biological process, b molecular function, c cellular component

Fig. 7  ROC curves of eight methods using leave-one-out cross validation. The figure denotes the ROC 
(receiver-operating) curves of PHN and other seven competing methods (NC, Song, DCS, DSCP, NPF, PON 
and GrAPFI) based on the average prediction performance over all testing proteins. The X-axis and Y-axis of 
the ROC curves are the values of false positive rate and true positive rate, respectively. a Biological process, b 
molecular function, c cellular component
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For further comparison, we calculate the AUROC of all these methods. For the BP cat-
egory, the AUROC of PHN is 154.03%, 75.33%, 75.91%, 40.29%, 28.06%, 548.92% and 
209.91% larger than that of Song, DCS, DSCP, NPF, NC, PON and GrAPFI, respectively. 
Compared with NC which has the best performance in ROC curves among seven com-
peting methods, the AUROC of PHN for the MF and CC category is improved by 123.4% 
and 23.56%, respectively.

Ten‑fold cross validation

TO avoid the possible deviation caused by leave-one-out cross validation, we further 
evaluate the prediction performance of the PHN method using the ten-fold cross valida-
tion. The entire set of proteins is divided into ten equal sets randomly, nine of which are 
used for training and the remaining part is used for testing. The process is repeated 1000 
times, each time using another testing set. The results of ten folds are averaged to gener-
ate the final performance. Table 2 lists the prediction results of eight methods, including 
the average Precision, Recall and F-measure. Table 2 shows that PHN still performs the 
best, in terms of precision and F-measure. Taking the BP category as an example, the 
F-measure of PHN is 55.93%, 21.28%, 14.51%, 8.69%, 37.17%, 180.33% and 72.73% higher 
than that of Song, DCS, DSCP, NPF, NC, PON and GrAPFI, respectively. In addition, 
we plot ROC curves of all methods for the MF, CC and BP category as shown in Fig. 8. 
The AUROC of PHN in BP is 152.21%, 77.71%, 76.27%, 35.47%, 33.10%, 570.28% and 

Table 2  The results of PHN and seven competing methods using ten-fold cross validation

Categories Methods Recall Precision F-measure

BP PHN 0.523 0.504 0.513

Song 0.335 0.323 0.329

DCS 0.431 0.415 0.423

DSCP 0.450 0.446 0.448

NPF 0.470 0.475 0.472

NC 0.678 0.259 0.374

PON 0.175 0.192 0.183

GrAPFI 0.289 0.306 0.297

MF PHN 0.547 0.553 0.549

Song 0.266 0.259 0.263

DCS 0.522 0.519 0.520

DSCP 0.536 0.536 0.536

NPF 0.507 0.509 0.508

NC 0.563 0.217 0.313

PON 0.261 0.273 0.267

GrAPFI 0.444 0.455 0.449

CC PHN 0.604 0.584 0.594

Song 0.398 0.394 0.396

DCS 0.428 0.418 0.423

DSCP 0.458 0.442 0.449

NPF 0.503 0.555 0.520

NC 0.706 0.304 0.425

PON 0.160 0.175 0.167

GrAPFI 0.237 0.251 0.244
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199.27% larger than that of Song, DCS, DSCP, NPF, NC, PON and GrAPFI, respectively. 
As for the MF and CC category, PHN increases the AUROC by no less than 15% and 
28%, respectively, compared with other competitive comparison methods.

Conclusions
ProteinS are one of the most important and diverse macromolecules in cell life activi-
ties. Precise labelling of protein function information is important for promoting the 
research and development of protein mechanism analysis, disease mechanism analy-
sis and control, new drug research and development, crop production promotion, 
bio-energy development and so on. The rapid developments of high-throughput tech-
nologies have generated large quantities of protein–protein interaction (PPI) data, 
which prompts the emergence of computational methods to determine protein function. 
Despite the effective improvement of these computational methods, building a suitable 
network model to integrate multiplex biological data remains a challenge due to the 
incomplete and error-prone raw PPI data. How to construct an effective network model 
that integrates multiplex biological data and network topology remains a challenge. Cur-
rent methods aggregated multiple biological data into a single network, in which the role 
of different types of data is reflected in the form of setting weights or parameters. The 
choice of weighting parameters and the inherent properties of different biological data 
restrict the further development of these methods. In this work, we construct a hetero-
geneous biological network with two categories of nodes: protein and domain. To shake 
off the bound of the small-world and scale-free of PPI networks, innovatively, we use the 
propagation algorithm on the heterogeneous biological network and obtain a functional 
partners list with aggregated similarity to the target protein. Finally, we score and rank 
functions from the partners list in descending order. The number of candidate functions 
we selected is equal to the number of functions of the neighbour most similar to the 
target protein. To assess the overall performance of PHN, we use the leave-one-out cross 
validation and ten-fold cross validation. The F-measure and AUROC of our method 
improved by more than 17% and 15%, respectively, compared with other approaches. 
The experimental results also indicate that PHN is a specific and effective method that 
can predict protein function.
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