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Abstract 

Background:  Glaucoma can cause irreversible blindness to people’s eyesight. Since 
there are no symptoms in its early stage, it is particularly important to accurately 
segment the optic disc (OD) and optic cup (OC) from fundus medical images for the 
screening and prevention of glaucoma. In recent years, the mainstream method of OD 
and OC segmentation is convolution neural network (CNN). However, most existing 
CNN methods segment OD and OC separately and ignore the a priori information that 
OC is always contained inside the OD region, which makes the segmentation accuracy 
of most methods not high enough.

Methods:  This paper proposes a new encoder–decoder segmentation structure, 
called RSAP-Net, for joint segmentation of OD and OC. We first designed an efficient 
U-shaped segmentation network as the backbone. Considering the spatial overlap 
relationship between OD and OC, a new Residual spatial attention path is proposed to 
connect the encoder–decoder to retain more characteristic information. In order to fur-
ther improve the segmentation performance, a pre-processing method called MSRCR-
PT (Multi-Scale Retinex Colour Recovery and Polar Transformation) has been devised. 
It incorporates a multi-scale Retinex colour recovery algorithm and a polar coordinate 
transformation, which can help RSAP-Net to produce more refined boundaries of the 
optic disc and the optic cup.

Results:  The experimental results show that our method achieves excellent segmen-
tation performance on the Drishti-GS1 standard dataset. In the OD and OC segmenta-
tion effects, the F1 scores are 0.9752 and 0.9012, respectively. The BLE are 6.33 pixels 
and 11.97 pixels, respectively.

Conclusions:  This paper presents a new framework for the joint segmentation 
of optic discs and optic cups, called RSAP-Net. The framework mainly consists of a 
U-shaped segmentation skeleton and a residual space attention path module. The 
design of a pre-processing method called MSRCR-PT for the OD/OC segmentation task 
can improve segmentation performance. The method was evaluated on the publicly 
available Drishti-GS1 standard dataset and proved to be effective.
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Background
Glaucoma is a chronic progressive optic neuropathy and one of the main causes of irre-
versible vision loss in the world  [1]. According to the World Vision Report published 
by the World Health Organization in October 2019  [2], an estimated 64 million peo-
ple worldwide have glaucoma, of which 6.9 million (10.9%) have moderate or severe dis-
tance vision impairment or blindness caused by more serious eye diseases.Glaucoma has 
no apparent symptoms in the early stages of its onset, and the resulting loss of vision is 
irreversible. Therefore, early screening and diagnosis of glaucoma are essential to pre-
vent vision loss caused by glaucoma.

Currently, three common diagnostic modalities for glaucoma are optic nerve head 
(ONH) assessment [3], function-based visual field examination [4], and intraocular pres-
sure (IOP) assessment  [5]. IOP assessment is usually measured by a tonometer, but a 
high IOP is not usually a direct diagnosis of glaucoma. Visual field inspection measures 
the range of a person’s visual field when his sight is focused on the central point. The 
problem with this diagnostic method is that the level of equipment in each hospital is 
uneven, and not every hospital has visual field measuring instruments, which makes it 
Unable to popularize. Therefore, in clinical practice, ophthalmologists generally manu-
ally measure the cup-to-disc ratio (CDR) of fundus images for ONH assessment. CDR 
is the ratio of the vertical optic cup diameter (VCD) to the vertical optic disc diameter 
(VDD), and a CDR above 0.5 usually indicates a higher risk of glaucoma [6]. As shown 
in Fig.  1a, b show the complete fundus image of a normal eye and its magnified OD 
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Fig. 1  a Normal eye fundus image, b Normal eye’s enlarged OD and OC structure, c Glaucoma eye fundus 
image, d Glaucoma’s enlarged OD and OC structure
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and OC structure, respectively, and Fig. 1c, d show the fundus image glaucoma patient 
and its magnified OD and OC structure, respectively. However, the manual method of 
evaluating ONH consumes many labour costs and is not suitable for large-scale screen-
ing. In addition, due to the uneven global medical level, manually evaluating ONH is 
too subjective and too dependent on the clinical experience of doctors. Therefore, 
there is an urgent need for an automated screening method to assist doctors in diag-
nosis. At present, many methods for automatically segmenting OD and OC have been 
proposed, mainly based on model matching methods  [7–11] and superpixel based 
methods [12–15].

Most of these approaches treat the segmentation of OD and OC as two separate prob-
lems, ignoring the relationship between OD and OC. In recent years, the success of deep 
learning (DL) and convolutional neural networks (CNN) in computer vision has led 
to rapid breakthroughs in the automatic segmentation of OD and OC [16–19]. In fun-
dus image segmentation, the research on OD/OC segmentation is the most complete.
Architectures such as Fully Convolutional Network (FCN) [20], U-Net [21], Generative 
Adversarial Network (GAN) [22], and Region Generative Network (RPN) [23] are used 
and also tried methods such as multi-scale transformation and polar coordinate trans-
formation. Below we will respectively elaborate on the methods derived from the several 
above architectures in recent years.

FCN‑based network model

Edupuganti et al. [24] used FCN-8S to segment OD/OC and later improved the network 
by assigning higher weights to the edges in the loss function. Pohlen et al. [25] proposed 
a full-resolution residual network (FRRN), using full-resolution residual units (FRRU) to 
improve the fully convolutional network. Inspired by FRRN, Mohan et al. [26] proposed 
a Fine-Net with a symmetrical encoder–decoder structure and introduced FRRU. Their 
subsequent work proposed the P-Net structure  [27], which combines DenseBlock and 
Arous convolution into Dense Arous blocks and cascades Fine-Net to generate high-res-
olution feature maps. Chen et al. [28] proposed using dilation convolution with different 
rates to capture multi-scale features and extended it to the Atrous Spatial Pyramid Pool-
ing (ASPP) module. Liu et al.  [29] proposed an end-to-end spatially-aware neural net-
work. Spatially dense features are first extracted using Arous CNN, then spatially-aware 
multi-scale features are obtained using a pyramidal filtering module, and finally, the fea-
tures are passed to a spatially-aware segmentation module to obtain prediction results.

The above methods all use Arous convolution. Arous convolution can accurately adjust 
the network receptive field to obtain richer features in the image segmentation task.

U‑Net‑based network model

Since U-Net  [21] was proposed, it has been widely used in medical image segmenta-
tion tasks. It has also inspired researchers to think about U-shaped networks, and many 
researchers use it as the baseline of segmentation models. Fu et al. [18] proposed M-Net 
for OD/OC segmentation. They added multi-scale input and output to U-Net and used 
a multi-label loss function to solve the problem of data imbalance. In addition, they 
introduced a polar transformation to transform the original fundus image into polar 
coordinates to improve segmentation accuracy further. Meyer et  al.  [30] reformulated 
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the segmentation task as a pixel-by-pixel regression task and proposed a pixel-by-pixel 
multi-task learning method that can combine a U-shaped network model to learn a 
globally consistent distance distribution across the image and detect the location of both 
the OD and the central concave. Shah et  al.  [31] proposed two segmentation models 
based on parameter sharing branch network (PSBN) and weak region of interest model 
(WROIM). PSBN includes OD and OC split branches, and the encoder ends of the two 
split branches share parameters. WROIM consists of two U-shaped networks. First, 
a small U-shaped network is used to obtain a rough OD area, and then the extracted 
region of interest (ROI) is input to another U-shaped network for fine segmentation. 
Gu et al.  [32] using pre-trained ResNet blocks as feature encoding blocks, introducing 
a dense atrous convolution block and residual multi-kernel pooling to capture more 
high-level features. They applied CE-Net to different 2D medical image segmentation 
tasks, and all obtained good segmentation performance. Zhang et  al.  [19] proposed a 
transferable attention U-net model that uses two discriminators and attention modules 
to locate and extract invariant features in the dataset, improving the model’s generaliza-
tion capability. Wang et al. [33] proposed a two-stage neural network that first extracts 
coarse-level OD regions using a U-shaped prediction network, and then performs fine 
segmentation using a fine segmentation network that integrates a multi-task learning 
mechanism and an adversarial learning module. This method improves OD segmenta-
tion accuracy, but has less improvement for the more difficult OC segmentation.

Skip connections in U-shaped networks allow features to be passed from the encoder 
to the decoder to retain some dissipated spatial features and thus improve network per-
formance. However, there may be feature differences between the two sets of merged 
features, which can still result in the loss of some spatial information. Most of the above 
U-Net-based methods ignore this problem, which makes it difficult for them to achieve 
good segmentation performance on OD/OC segmentation.

GAN‑based network model

GAN  [22] adopts the idea of gaming, composed of a generator and discriminator, 
through the confrontation and game between the two to optimise the model to output 
better results. Wang et al. [34] proposed a patch-based output space adversarial learning 
framework (POSAL), using MobileNetV2 [35] as the backbone network to extract ROIs 
and then passing the extracted ROIs to a patch discriminator for adversarial learning. 
Finally, morphology-aware segmentation loss is proposed to guide the network to gen-
erate accurate and smooth results. In subsequent work, they proposed a Boundary and 
Entropy-Driven Adversarial Learning (BEAL) method [36], consisting of two branches 
of boundary segmentation and entropy graph segmentation. They introduced adversar-
ial learning to improve the prediction results of both branches.

RPN‑based network model

RPN is derived from Faster-RCNN [23] and is often applied to target detection tasks. 
Inspired by RPN, Wang et al. [37] used elliptical proposal networks (EPNs) to detect 
elliptical regions of OD and OC. They used two EPN branches to detect OD and OC 
separately and added spatial attention between them to guide OC detection. Jiang 
et al. [38] proposed an end-to-end deep learning framework called JointRCNN. They 
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pass the extracted features to a disc proposal network (DPN) and a cup proposal 
network (CPN), respectively, and then use a disc attention module to connect the 
DPN and CPN to determine the location of the OC.

In summary, all methods have contributed significantly to the accurate segmen-
tation of OD and OC. However, most of these segmentation methods ignore the a 
priori information that the OC is wrapped within the OD. They also deal poorly with 
the problems of spatial information loss and encoder–decoder feature discrepancies 
caused by multiple downsampling. Therefore, we propose a residual spatial attention 
path network (RSAP-Net) to segment OD and OC jointly. The backbone of RSAP-
Net is a U-shaped convolutional network. We replace the skip connections of the 
U-shaped network with a residual path with spatial attention (RSAP), which consists 
of a residual convolutional block and a spatial attention block to mitigate feature 
differences between encoders–decoders and aggregate global contextual informa-
tion. Considering that the partitioning of OC is more difficult than the partition-
ing of OD, in most cases the partitioning of OC is difficult to define limits [39]. To 
improve the model segmentation performance further, we also designed a preproc-
essing data method combining a multi-scale Retinex colour restoration algorithm 
(MSRCR)  [40] and a polar transformation (PT), called MSRCR-PT. M-Net’s use of 
PT inspired us [18]. After carefully studying the characteristics of PT, we found that 
since PT is a pixel-direction mapping, the data enhancement on the original fun-
dus image is equivalent to the data enhancement in polar coordinates. Therefore, we 
first used the MSRCR algorithm for the original fundus image’s colour restoration 
and then processed the enhanced image for polar coordinate transformation based 
on the equivalent enhancement characteristics. This fusion of MSRCR and PT pre-
processing can enhance the OD and OC edge parts while equalising the CDR, thus 
improving the segmentation performance of the model.

The main contributions of this article are as follows: 

1.	 We propose a residual spatial attention path network for automatic joint segmenta-
tion of OD and OC, named RSAP-Net.

2.	 We propose a new residual path with spatial attention (RSAP) to replace skip con-
nections in conventional U-shaped networks to mitigate feature differences between 
encoders–decoders while also improving the segmentation performance of OD and 
OC. We verified the effectiveness of RSAP through ablation experiments.

3.	 Given the a priori condition that OC is always wrapped in OD, the boundary seg-
mentation of OC is more challenging. For this reason, we designed a data preproc-
essing method, MSRCR-PT, that integrates MSRCR and PT, which can enhance the 
edge of OD and OC while equalizing CDR to improve model segmentation perfor-
mance further. We verified the effectiveness of MSRCR-PT through ablation experi-
ments.

4.	 Finally, we evaluated our method on the Drishti-GS1 dataset. Compared with exist-
ing methods, this method has achieved outstanding segmentation results. In the seg-
mentation effect of OD and OC, F1 is 0.9752 and 0.9012, respectively. BLE is 6.63 
pixels and 11.97 pixels, respectively.
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Results
In this part, we will describe the data sets used in the experiment, the experimental 
settings, and the evaluation indicators used in this article. At the end of this part, we 
designed a large number of comparative experiments to evaluate the segmentation 
performance of the model.

Data preparation

Dataset

The DRISHTI-GS1 standard dataset [41] has 101 full eye fundus images, including 50 
training images and 51 test images, including 70 glaucomatous lesions and 31 images 
of normal eyes.

The original images for the dataset were provided by Aravind eye hospital, Madurai, 
who selected an approximately equal number of men and women, aged 40–80 years, 
with glaucoma and non-glaucoma patients for fundus image acquisition. All images 
were acquired with dilated pupils and captured according to the following data collec-
tion protocol: OD-centred High-resolution fundus images of 2896× 1944 pixels were 
acquired with a field of view of 30°. Finally, by removing the surrounding non-fundus 
black area, the image area with the retinal structure is extracted from the original 
image, thereby obtaining a fundus image with a resolution of about 2047 × 1760. As 
shown in Fig. 2, each image was manually labelled by four glaucoma specialists with 3, 
5, 9 and 20 years of experience, respectively.

Data augmentation

For the problem of the small number of images in the data set, we first use the 
YOLOv2 [42] model to extract OD images and then intercept images of different sizes 
according to the OD centre point, including 400 × 400, 500 × 500, 550 × 550, 600 × 
600, 650 × 650, 700 × 700, 750 × 750, 800 × 800, 850 × 850, 900 × 900. Then the fun-
dus image is randomly flipped horizontally, vertically, and rotated within the range 
of [0° 360°]. Before training the network, the size of the input image is scaled to the 
standard 512 × 512. This method can expand the number of training samples and 
increase the diversity of training samples.

(a) (b) (c)
Fig. 2  a Retinal fundus image, b OC area labelled by four experts, c OD area labelled by four experts
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Experimental setup

As shown in Table 1, all training and testing for this work were carried out in the follow-
ing hardware environment: CPU type Intel® Xeon® Glod 5218 Processor 2.30 GHz, run-
ning memory 187G, GPU type NIVIDA Quadro RTX 6000 and video memory size 24G. 
The operating system used for the experiments was Linux Ubuntu 16.04. We use the 
Pytorch  [43] deep learning framework to implement RSAP-Net, the programming lan-
guage used to build the network model was Python 3.7. The main library packages used in 
the programming process were Pytorch 1.8, openCV 4.1.2, Numpy 1.18.1, etc. During the 
training period, the learning rate was set to 0.001, the weight decay coefficient to 0.0005, 
the momentum to 0.9 and the Stochastic gradient descent (SGD) algorithm were used as 
the optimiser of the network. The training is iterated for a total of 400 epochs, and the out-
put segmented image size is 512 × 512.

Evaluation metrics

In order to quantify the experimental results, we evaluate the performance of the different 
methods, mainly using F1 and boundary distance localization error (BLE), which are widely 
used by the research community. In the ablation experiments, we also compared specificity 
(SPC), sensitivity (SEN) and accuracy (ACC). Among them, the definition of F1 is:

Precision and Recall are defined as:

The definitions of SPC, SEN and ACC are:

(1)F1 = 2×
Precision× Recall

Precision+ Recall

(2)Precision =
TP

TP+ FP

(3)Recall =
TP

TP+ FN

(4)SPC =
TN

N

(5)SEN =
TP

P

Table 1  Experimental hardware and software information

Category Hard/software environment

CPU Inte®Xeonl®®Glod 5218 Processor 2.30 GHz

GPU NIVIDA Quadro RTX 6000 Video memory 24G

RAM 187G

OS Linux Ubuntu 16.04

Frame Pytorch1.8 openCV4.1.2 Numpy1.18.1

Language Python3.7
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In the above formula, TP, TN, FP and FN represent true-positive, true-negative, false-
positive and false-negative cases, respectively, while P and N represent positive and 
negative samples. Since BLE can better represent the segmentation effect of the bound-
ary, this paper introduces BLE to evaluate the boundary distance (in pixels) between the 
edge C0 of the model segmentation result and the edge Cg of the labelling result. The 
definition of BLE is:

where dθg  and dθ0 represent the Euclidean distance from the centre point of OD in the θ 
direction to Cg and C0 , and 24 equidistant points ( N = 24 ) are set in the evaluation. The 
smaller the BLE, the better the segmentation effect. BLE is smaller means better seg-
mentation performance.

Model performance improvement

A simple encoder–decoder network and an MBCE module are used to form the base-
line network. First, to verify the effectiveness of the MBCE module, we set up ablation 
experiments to demonstrate the efficacy of MBCE, and the experimental results are 
shown in Table 2.

In order to verify the effectiveness of the MSRCR-PT method and the RSAP mod-
ule, we designed a set of ablation experiments and evaluated them on the Drishti-GS1 
dataset. The combination method is as follows: 

1.	 Baseline: consists of an encoder, a contextual feature extraction module and a 
decoder. The input is the original fundus image, and the loss function is the cross-
entropy loss function.

2.	 Baseline+PT: On the basis of (1), use polar transformation on the original fundus 
image.

3.	 Baseline+MSRCR-PT: On the basis of (1), the original fundus image is first pro-
cessed with the MSRCR algorithm, and then the processed image is subjected to 
polar coordinate transformation.

4.	 Baseline+RSAP: The network structure is shown in Fig. 5a, based on (1) , the resid-
ual spatial attention path module is added between the encoder–decoder.

(6)ACC = SPC×
N

(P+N)
+ SEN ×

P

(P+N)

(7)BLE C0, Cg =
1

N

N−1

θ=0

dθg
2
− dθ0

2

Table 2  MBCE ablation experiment results on the Drishti-GS1 dataset

Method F1(mean/std)

OD OC

Encoder–decoder 0.9517/0.018 0.8531/0.11

Baseline (encoder–decoder+MBCE) 0.9541/0.062 0.8678/0.13
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5.	 Baseline+RSAP+MSRCR-PT: On the basis of (4), the original fundus image is first 
processed with the MSRCR-PT method, and then the processed image is used as 
input to the model.

The experimental results are shown in Table 3. It can be seen that both MSRCR-PT 
and RSAP can effectively improve the segmentation performance of the model. When 
Baseline+MSRCR-PT is applied, since the MSRCR algorithm adaptively enhances the 
original fundus image, and the polar transformation helps balance the cup-to-disk 
ratio, the segmentation performance of the model has been significantly improved. 
The performance of OD and OC in F1 is 1.27% and 1.25% higher than the Baseline, 
respectively. When Baseline+RSAP+MSRCR-PT is applied, RSAP helps the model 
retain more spatial feature information while aggregating global context information, 
which further improves the segmentation performance of the model. The perfor-
mance of OD and OC in F1 is 2.11% and 3.34% higher than Baseline respectively.

Figure  3 shows a visualisation example of RSAP-Net’s ablation experiment results 
on the Drishti-GS dataset. It can be seen that compared with Baseline, the use of 
MSRCR-PT significantly improves the accuracy of OD and OC segmentation, making 
the edge of the segmentation result more smooth. The segmentation results achieved 
using both MSRCR-PT and RSAP are also the closest to GroundTruth, proving that 

Table 3  RSAP-Net ablation experiment results on the Drishti-GS1 dataset

Method Parament 
(KB)

OD OC

F1(mean/std) ACC​ SPC SEC F1(mean/std) ACC​ SPC SEC

Baseline 77081 0.9541/0.062 0.9655 0.968 0.8249 0.8678/0.13 0.9689 0.9694 0.8768

Baseline+PT 77081 0.9649/0.049 0.9683 0.9701 0.8266 0.8764/0.11 0.9712 0.9735 0.8794

Baseline+MSRCR-
PT

77081 0.9668/0.026 0.9756 0.9778 0.8567 0.8803/0.09 0.9766 0.9781 0.9036

RSAP-Net 
(Basline+RSAP)

89659 0.9633/0.031 0.9764 0.9775 0.8458 0.8742/0.09 0.9772 0.9788 0.8959

RSAP-
Net+MSRCR-PT

89659 0.9752/0.012 0.977 0.9781 0.8564 0.9012/0.08 0.9775 0.9796 0.9154

Fig. 3  A visual example of RSAP-Net ablation experiment results on the Drishti-GS dataset
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both methods help the model segment the boundaries of OD and OC, eliminate noise 
and reduce the negative impact of background.

Compare with state‑of‑the‑art methods

To demonstrate the segmentation performance of RSAP-Net, we compared the experi-
mental results with those of FCN  [20], U-Net  [21], M-Net  [18], POSAL  [34], Join-
tRCNN  [38], CE-Net  [32], Stack-U-Net  [44], BGA-Net  [45] and DCGAN‘[46]. All 
experiments were evaluated on the Drishti-GS1 [41] dataset.The comparison results are 
shown in Table 4. Fu et al. [18] uses U-Net as the Baseline, uses polar transformation to 
balance the ratio between OD, OC and background, and adds multiple input and out-
put operations to the model. This method can obtain multi-scale feature information, 
but due to the main body’s relatively simple structure, the model’s segmentation perfor-
mance is relatively low. The F1 scores of the optic disc and optic cup are only 0.959 and 
0.866. The POASL [34] framework enhances the robustness of the deep network in order 
to cope with the domain drift problem, ignoring the spatial overlap relationship between 
OD and OC, and is unable to segment the OC boundary accurately, which also leads to 
its lack of segmentation accuracy. JointRCNN [38] treats the OD and OC segmentation 
problem as a target detection problem, using an optic disc attention module to connect 
two improved fast-RCNNs: DPN and CPN. Although this method achieves joint OD and 
OC segmentation, it is susceptible to fundus vascular interference and does not segment 
boundary contours well. CE-Net [32] uses pre-trained ResNet-34 as the coding block of 
the network, adds a new context extraction module to capture more high-level features, 
and proves its effectiveness in other two-dimensional medical image segmentation tasks. 
However, the segmentation effect for OD and OC is not good, and the F1 scores of OD 
and OC are only 0.968 and 0.869. The main body of Stack-U-Net  [44] is two stacked 
U-Net, which increases the model complexity, but the performance improvement is not 
significant. The BGA-Net  [45] consists of a segmentation backbone, a boundary aux-
iliary branch and two adversarial networks. Although there is a good improvement in 
segmentation performance for both OD and OC, the number of parameters grows lin-
early as the model becomes more complex, significantly increasing the computational 
cost. DCGAN [46] combined DCNN and GAN to propose a DCGAN-based model to 

Table 4  Comparison of quantitative results of different methods on the Drishti-GS1 dataset

Method Year OD (mean/std) OC (mean/std)

F1 BLE(px) F1 BLE (px)

FCN [20] 2014 0.9321/0.102 8.90/5.74 0.8170/0.103 21.83/15.67

U-Net [21] 2015 0.9600/0.020 7.23/4.51 0.8500/0.100 19.53/13.98

M-Net [18] 2018 0.9590/0.040 7.97/8.29 0.866/0.110 17.05/12.76

Stack-U-Net [44] 2018 0.9700/0.020 6.47/3.51 0.8900/0.090 14.39/7.18

POSAL [34] 2019 0.9650/– –/– 0.8580/– –/–

CE-Net [32] 2019 0.9688/0.003 5.04/3.69 0.8699/0.117 16.06/13.11

JointRCNN [38] 2020 0.9640/– –/– 0.8640/– –/–

BGA-Net [45] 2021 0.9750/0.019 7.01/3.53 0.8980/0.08 14.37/9.29

DCGAN [46] 2022 0.9746/0.017 7.35/4.83 0.8631/0.113 18.69/13.48

Proposed method – 0.9752/0.012 6.33/3.30 0.9012/0.08 11.97/6.12
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jointly segment OC and OD. DCGAN achieved good segmentation performance on the 
segmentation of OD, but performed poorly on the segmentation accuracy of OC, with 
an F1 score of only 0.8631.

The deep convolutional neural network model RSAP-Net proposed in this paper per-
forms joint segmentation of OD and OC and cooperates with the MSRCR-PT preproc-
essing method to achieve excellent segmentation performance on the Drishti-GS1 data 
set. Especially in OC segmentation, the F1 score and BLE value of RSAP-Net reached 
90.12 and 11.97, respectively, which are 0.32% and 2.4px higher than the most advanced 
BGA-Net. Figure 4 shows the OD and OC segmentation edge profiles of RSAP-Net with 
U-Net, Stack-U-Net and JointRCNN on seven samples of the Drishti-GS1 dataset. Com-
parison of the segmentation effect plots of the four methods shows that the proposed 
RSAP-Net model segments the OD and OC boundaries better than the other methods. 
The error between the edges of the segmented region and the edges of GroundTruth is 
the smallest, especially in OC segmentation.

Discussion

1.	 Running time The entire training phase of RSAP-Net takes approximately 4.5 h on a 
single NIVIDA Quadro RTX 6000 (400 epochs). When tested, generating the final 
segmentation map for a fundus image took only 1.32 s, which is faster than existing 
methods such as M-Net [18], which takes 1.83s and Stack-U-Net [44], which takes 
2.21 s.

Fig. 4  Examples of segmentation results of different methods on the Drishti-GS1 dataset
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2.	 Is the MSRCR-PT method effective when used with other models? To further dem-
onstrate the effectiveness of the MSRCR-PT method, we selected the classical 
U-Net [21] model for the ablation experiments, and the results are shown in Table 5. 
It can be seen that when using the U-Net + MSRCR-PT method, OD and OC are 
0.81% and 2.93% higher than U-Net in F1, and 0.85 px and 6.42 px lower in BLE, 
respectively, where the segmentation performance improvement of OC is more obvi-
ous.

3.	 Limitations and prospects First of all, in this work, we only studied and analysed the 
OD and OC segmentation tasks, and although we achieved some results, this does 
not show the effectiveness of our method for other segmentation tasks. Therefore, it 
is natural to question whether the MSRCR-PT preprocessing method and RSAP can 
be generalised to other tasks. We have found in our extensive experiments that the 
MSRCR algorithm also has a positive effect on the adaptive enhancement of fundus 
vessels, which will be the next step in our work.

Conclusions
In order to alleviate the problem of feature differences between codecs in end-to-end 
networks, this paper proposes a codec network connected by a residual spatial atten-
tion path to achieve joint segmentation of OD and OC. RSAP-Net is composed of a 
residual encoder, multi-branch context extraction module, decoder and RSAP. On the 
one hand, RSAP effectively alleviates the problem of feature differences between encod-
ers and decoders. On the other hand, the multi-branch context feature extraction mod-
ule can capture more high-level features and retain more spatial information. Before 
training, considering the positional overlap between OD and OC in the fundus image, 
the MSRCR-PT pre-processing method is used to process the original fundus image. 
MSRCR-PT combines a multi-scale colour restoration algorithm and a polar coordi-
nate transformation method. While adaptively enhancing the fundus image, it can also 
balance the cup-to-disk ratio to prevent over-fitting during model training. Finally, we 
proved the effectiveness of the model through ablation experiments. Compared with the 
existing methods, RSAP-Net achieved better segmentation results on the Drishti-GS1 
dataset.

Methods
The overall framework of RSAP-Net is shown in Fig. 5. We choose a U-shaped network 
as the backbone of RSAP-Net, which consists of four parts: an encoder part, a multi-
branch context extraction module, a residual spatial attention path (RSAP) and a decoder 

Table 5  U-Net uses PT and MSRCR-PT ablation experiments on the Drishti-GS1 dataset

Method Parament (KB) OD (mean/std) OC (mean/std)

F1 BLE(px) F1 BLE(px)

U-Net[21] 67535 0.9600/0.020 7.23/4.51 0.8500/0.100 19.53/13.98

U-Net+PT 67535 0.9658/0.014 6.85/3.48 0.8681/0.110 15.63/8.51

U-Net+MSRCR-PT 67535 0.9681/0.012 6.38/3.43 0.8793/0.090 13.11/6.87
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part. In the encoder part, the initial input scale of the original image is 512 × 512. After 
five times of down-sampling operations, five different scale feature maps of 256 × 256, 
128 × 128, 64 × 64, 32 × 32, and 16 × 16 are obtained. As shown in Fig.  5a, the fea-
ture encoder module uses four residual blocks as the backbone. It then adds maximum 
pooling layer for downsampling, reducing the upper layers’ computational complexity 
while preventing overfitting. The multi-branch context extraction module consists of a 
multi-branch dilated convolution block (MDB) and a global information coding block 
(GIC). The decoder part comprises four decoding blocks and uses deconvolution to per-
form upsampling to obtain refined edges and reconstruct depth features. Each decoding 
block consists of two 1 × 1 convolutional layers and a 3 × 3 deconvolutional layer with a 
step size of 2. Between the encoder and decoder, we have added three RSAP modules, 
using RSAP as an auxiliary path to transfer the characteristic information generated by 
the shallower layers of the network, especially the spatial information of OD and OC. 
RSAP can filter noise in the feature map and resolve boundary-blurring caused by multi-
layer downsampling and upsampling, as well as mitigate feature differences between the 
coder-decoder and enhance the edge features of OD and OC, which are essential for OD 
and OC segmentation.

Residual spatial attention path module

In the encoder–decoder network for OD and OC segmentation, continuous down-
sampling and up-sampling will lose much characteristic information and cause bound-
ary blur problems. As the number of network layers increases, this problem will become 
more serious. U-Net [21] proposes a skip connection to retain as much of the lost feature 
information as possible. Although the skip connection bridges the encoding block with 

Fig. 5  a RSAP-Net overall network architecture, b Encoder module, c Decoder module, d figure note
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the decoding block and preserves some of the feature information. However, the features 
obtained by the decoder after intense computation are higher-level features. In contrast, the 
features obtained by the encoder through the shallower network calculations belong to low-
level features. Therefore, simply bridging the coder-decoder via a skip connection cannot 
eliminate the difference in features between the two. The deeper the skip connection, the 
smaller the difference because the deeper the encoder goes, the deeper the computation, 
which gradually reduces the computational difference with the decoder. Conversely, the dif-
ference in features is greater at the shallower levels of the network.

To further alleviate the feature differences between encoders–decoders and the prob-
lem of boundary ambiguity. we have added three Residual spatial attention paths between 
codecs from top to bottom. These residual paths are composed of several residual convolu-
tion blocks and a redesigned spatial attention mechanism. The residual convolution block 
is used to simulate the residual convolution operation in the encoder. The spatial attention 
mechanism is used to focus on the “where” feature is more meaningful, and the spatial 
domain information in the input feature map is processed accordingly. Improve accuracy 
while reducing the number of calculations. Let the network learn the edge characteristics of 
OD and OC more effectively.

As shown in Fig. 6, the input to RSAP is the low-level feature map L ∈ RC×W×H out-
put from the encoder side. The higher-level feature map G ∈ RC ′×W×H is output using the 
residual block to simulate the residual convolution operation in the encoder. The channel 
information of the feature map is then aggregated by using the maximum pooling and aver-
age pooling operations to generate two 2D maps: Xs

max ∈ R1×W×H and Xs
avg ∈ R1×W×H , 

representing the global maximum pooling feature and the global average pooling feature, 
respectively. Finally, the higher-level feature map H ∈ RC ′×W×H generated by RSAP is 
summed with the corresponding higher-level feature map output from the decoder side as 
the input to the next decoding block. In short, the spatial attention mechanism in RSAP is 
computed as:

 Here, LR represents the LeakyReLU activation function,Max means maximum 
pooling,Avg means average pooling, Concat means concatenate, and C 3×3 represents the 
convolution operation with a convolution kernel size of 3 × 3.

(8)
Fs(X) = LR

(

C3×3(Concat(Max(X), Avg(X)))
)

= LR
(

C3×3
(

Concat
(

Xmaxs ,X
s
avg

))

Fig. 6  Residual spatial attention path (RSAP module)
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Multi‑branch context extraction module

Gu et al. [32] Thinking about the context extraction module inspired us. At the bottom 
of the backbone network, we introduced the CE-Net context extractor and adjusted it 
for OD and OC segmentation tasks. The adjusted module is called the multi-branch con-
text feature extraction module, composed of a multi-branch dilated convolution block 
(MDC) and a global information coding block (GIC). This module is primarily used to 
extract contextual semantic information and generate high-level feature maps.

MDC: multi‑branch dilated convolution block

Aiming at the problem that multiple downsampling in neural networks will reduce 
image resolution and lose feature information, [47] proposed dilated convolution. They 
introduced a hyperparameter called “dilation rate” to the convolutional layer to define 
the spacing between values when the convolution kernel processes data. Using dilation 
convolutions with different dilation rates allows ordinary convolutions to have a larger 
receptive field with the same parameters and calculations.

The output resolution calculation formula of dilated convolution is as follows:

Among them, Win,Wout are the input image’s width and the output image’s width, p is 
the padding, d is the dilation rate, k is the size of the convolution kernel, and s is the step 
size. Inspired by dilated convolution, we merged the Inception block  [48] and dilated 
convolution and introduced MDC block to encode deep feature maps. As shown in 
Fig. 7, the MDC is divided into four cascade branches. We use three convolutions of 1, 
2 and 5 dilation rates to expand the receptive field and add a 1× 1 convolution in each 
branch to correct linear activation. By applying dilated convolution with different dila-
tion rates, MDC blocks can extract richer contextual features.

GIC: global information coding block

In order to deal with the problem of different target sizes in OD and OC segmenta-
tion tasks, we introduced a global information coding block(GIC). As shown in Fig. 7, 
GIC consists of two convolution branches and two pooling branches. The convolution 
branches are convolution kernels with 2× 2 steps of 2 and 3× 3 steps of 3. The pooling 

(9)W out =
W in + 2p− d(k − 1)− 1

s
+ 1

Fig. 7  Multi-branch context extraction module. It is composed of a multi-branch dilated convolution block 
and a global information coding block
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branches are two maximum pooling operations of 5 × 5 and 6 × 6. GIC can achieve four 
effective fields of view of different sizes to detect targets of different sizes. In order to 
reduce the number of parameters and reduce the computational cost, we use 1× 1 con-
volution. Finally, the low-level feature maps whose channels are equal to 1 output by the 
four branches are up-sampled to make them reach the same size as the original feature 
maps and concatenated.

MSRCR‑PT: multi‑scale Retinex color restoration and Polar transformation

Before inputting the image into the convolutional neural network model for training and 
testing, it is necessary to design an effective pre-processing method, and the pre-pro-
cessing method designed in this paper focuses on the following two key points: 

1.	 The boundary between OD and OC is blurred, especially the boundary of OC.
2.	 OC is too small in the image, which is very easy to cause overfitting during training.

The significance of fundus retinal image pre‑processing

The acquisition of fundus retinal images is often affected by several factors, such as une-
ven illumination during acquisition, different shapes of lesions and fundus colours from 
patient to patient, and technical problems with the acquisition equipment, all of which 
can lead to uneven quality of the acquired images. Figure 8 shows the original fundus 
retinal images for each of the four patients from the Drishti-GS1 dataset. It is clear that 
there is a large difference between the light and darkness in patients (a, b) and (c, d), and 
that the image in (d) is itself unevenly illuminated, with the lower right corner being sig-
nificantly darker.

Figure 9 show the original fundus retinal images of four additional patients from the 
Drishti-GS1 dataset. It is clear that the colour of the fundus images of these four patients 
is very different, with (a) the darkest image and (b) (c) (d) the lighter image, and the over-
all fundus image being reddish in colour. In the optic disc-optic cup segmentation task, 
all of these factors make it more difficult to segment the boundaries between the optic 
disc and the optic cup, and between the optic disc-optic cup and the background.

The key point in the optic disc optic cup segmentation task is to accurately segment 
the OD and OC from the fundus image. The difficulty lies in the boundary segmentation 
between OD and OC and the boundary segmentation between OD and background. 
Figure 10 shows the original unpreprocessed fundus image and Fig. 10b shows the gold 

(a) (b) (c) (d)(a) (b) (c) (d)
Fig. 8  Comparison of Drishti-GS1 standard fundus retinal data sets for light and dark and illumination 
conditions
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standard for segmentation of the optic cup in the original fundus image. The optic cup 
occupies too few pixels in the whole image compared to the rest of the image, which is 
very easy to overfit in the training of a deep convolutional neural network. Figure 10c, d 
show the magnified original fundus retinal image and the ground truth respectively. By 
comparing (c) and (d) it is clear that the boundary between the optic cup and the optic 
disc is very blurred, which very much affects the model’s ability to accurately segment 
the optic cup boundary.

Pre‑processing method: MSRCR‑PT

M-Net  [18] uses a polar transformation (PT) to present better the spatial over-
lap relationship between OD and OC to the neural network model. A closer look at 
the properties of PT reveals that because PT is a mapping of pixel directions, data 
enhancement on the original fundus image is equivalent to data enhancement in 
polar coordinates. In order to improve the performance of OD segmentation while 
still coping with the complex problem of OC segmentation, we have designed a pre-
processing method that incorporates the MSRCR algorithm and PT. Before perform-
ing polar transformation on the fundus image, we first colour-enhanced the original 
fundus image using the MSRCR method. Retinex, a combination of the words Retina 
and Cortex, is a commonly used image enhancement method. It was proposed by 
Edwin. H. Land in 1963  [41]. It can balance three aspects: dynamic range compres-
sion, edge enhancement and colour constancy, thus allowing adaptive enhancement 
of a wide variety of different types of images. After more than 40 years of develop-
ment, the Retinex algorithm has gradually improved from the single-scale Retinex 
algorithm (SSR) to the multi-scale Retinex algorithm (MSR), and then to the multi-
scale Retinex colour restoration algorithm (MSRCR). After carefully observing the 

(a) (b) (c) (d)(a) (b) (c) (d)
Fig. 9  Drishti-GS1 standard fundus retinal dataset colour comparison

(a) (c) (d)(b)(a) (c) (d)(b)
Fig. 10  a Original image; b ground truth (optic cup portion); c enlarged ROI; d enlarged ground truth (were 
yellow, green, and black areas indicate the optic cup, optic disc, and background, respectively)
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Drishti-GS1 data set, we found that the OD and OC edges of many fundus images are 
relatively blurred, especially the OC part. In order to show the boundary between OD 
and OC more clearly, we apply the MSRCR algorithm to the segmentation of OD and 
OC. The steps of the MSRCR algorithm are as follows Algorithm 1:

Figure 11 shows the effect of the fundus image after processing by the MSRCR algo-
rithm. The OD and OC edges are much clearer after processing than the original fun-
dus image, especially the OC border.

Finally, we converted the fundus images processed by the MSRCR algorithm to a 
polar coordinate system on a pixel-by-pixel basis to equalize the cup-to-disc ratio 
and further improve the segmentation performance of OD and OC. As shown in 
Fig. 12a, the point p = (x, y) represents the point on the image plane of the fundus, 
corresponding to the point P(θ , r) on the polar coordinate system, where r and θ are 
the radius and directional angle of the origin p, respectively. Figure 10 visualises the 
effectiveness of the MSRCR-PT method for OD and OC segmentation. When com-
paring the fundus images processed with GroundTruth using only PT and using the 
MSRCR-PT method, it is clear that the OD and OC boundaries are much clearer in 
the fundus images processed with MSRCR-PT.

The transformation relationship between polar coordinates and Cartesian coordi-
nates is as follows:

Fig. 11  Comparison of fundus images before and after processing by the MSRCR algorithm. Where the 
yellow, green and black areas indicate OC, OD and background, respectively
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Loss function

The cross-entropy loss function is very effective for multi-classification networks. Since 
OD and OC segmentation needs to segment the three categories of background, OD and 
OC, we use the cross-entropy loss function as the loss function of RSAP-Net in this arti-
cle. The cross-entropy loss function is described as follows:

Among them, x = [x0, x1, . . . , xc−1] represents the non-softmax output, and c is the 
number of class. In this paper, c = 3, x = [x0, x1, x2] , 0 corresponds to the background, 1 
corresponds to OD, and 2 corresponds to OC. Therefore, the loss function in this article 
is specifically expressed as follows:
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Fig. 12  a Fundus image in the right-angle coordinate system, b GroundTruth in right-angle coordinate 
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yellow, green and black areas indicate OC, OD and background, respectively
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