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Introduction
Pathogenic microbes possess unique virulent factors encoded by their genes present on 
chromosomal DNA that may exist as pathogenicity islands, or in their extrachromo-
somal plasmids [1]. High-throughput genomic analysis has shown that there is a signifi-
cant difference in the genome of pathogenic and non-pathogenic bacteria even within 
closely-related species [2]. Such differences have been exploited to develop tools which 
predict pathogenic genes in genomes and metagenomes [3]. In addition to being spe-
cies-specific or host-specific, pathogenesis processes are multifaceted broadly consisting 
of virulence, adhesion, invasion, secretion, and drug resistance [4]. As a result, vast dif-
ferences exist in the protein profile of pathogenic and non-pathogenic bacteria as patho-
genic bacteria require proteins which can aid them in survival and proliferation within 
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the host during infection. For example, pathogenic and non-pathogenic Listeria species 
show significant difference in their proteome [5]. Similarly, pathogenic Mycobacterium 
tuberculosis and non-pathogenic Mycobacterium smegmatis show differences in porin 
complexes in their outer membrane [6]. However, many of the putative outer membrane 
proteins of Mycobacterium tuberculosis have not been yet been identified and character-
ized [7], many of which may be responsible in its virulence and survival in host cells.

Taken together, the above examples indicate that there is an urgent need to understand 
the role of unknown or yet unannotated proteins in pathogenesis, which can be consid-
ered as leads for further experiments.

Homology-based approaches are able to provide only limited information for iden-
tification and functional annotation of virulence determinants in bacteria [8], hence 
machine learning (ML)-based approaches provide ideal substitutes for predicting and 
identifying virulence determinants. Given the plethora of biological information avail-
able in the form of sequence data, attempts can be made to use this data to predict 
pathogenic proteins using machine learning and artificial intelligence approaches. The 
high-quality and manually curated data can be used for training and testing the ML 
models followed by performance evaluation to develop efficient and reliable classifiers 
for prediction of pathogenic proteins. Several algorithms like Random forest, SVM, kNN 
etc. are available that are known to provide excellent performances in such classifiers [3, 
9, 10].

Initial studies were focused on the classification of human pathogenic and non-path-
ogenic bacteria based on presence or absence of pathogenic protein profiles [11, 12]. 
Another binary classifier called PaPrBaG [13] based on Random forest algorithm can 
identify pathogens from Next Generation Sequencing Data. However, these tools can 
only differentiate between bacterial human pathogens from non-pathogen. VirulentPred 
[14], an SVM-based tool, was developed to predict bacterial virulence proteins. This was 
followed by another tool MP3 [3], which is one of the most commonly used tool to pre-
dict bacterial pathogenic proteins in both genomic and metagenomic datasets using an 
integrated SVM-HMM approach and provides an accuracy up to 89%. However, both 
these tools are binary classifiers that predict if a protein will be pathogenic or non-path-
ogenic and do not provide a functional annotation. In summary, there is a deficit of tools 
that can identify the role of virulent protein in the multistep process of pathogenesis 
and can also annotate the novel proteins identified in new sequenced genomes. Patho-
Fact is a recently developed pipeline that identifies antimicrobial resistance genes and 
bacterial toxins from metagenomic datasets [15]. In this study, we constructed a unique 
classifier “MP4” that predicts pathogenic proteins in both genomic and metagenomic 
datasets, and categorizes the protein into the two classes of pathogenesis along with its 
predicted annotation, which is helpful to understand role of the protein in the process of 
pathogenesis.

Materials and methods
Dataset preparation

The datasets of pathogenic proteins were constructed by curating the available databases 
such as Virulence Factor Database (VFDB) [16], Pathosystems Resource Integration 
Center (PATRIC) [17], PHIDIAS virulent factors (http:// www. phidi as. us/ victo rs/) [18], 

http://www.phidias.us/victors/
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Antibiotic Resistance Proteins from Comprehensive Antibiotic Resistance Database 
(CARD) [19] and Antibiotic Resistance Genes Database (ARDB) [20]. The initial dataset 
contained 8,794 sequences (excluding antibiotic resistance proteins) as virulent proteins 
and 4,992 Antibiotic Resistance sequences. A negative dataset consisting of non-patho-
genic proteins comprised of a total of 18,296 sequences was also constructed using the 
Database of Essential Genes [21].

The sequences with non-confirmatory annotations such as “hypothetical”, “like”, “may”, 
“possible”, “potential”, “predicted”, “probable”, “putative”, “uncharacterized”, “unknown”, 
“unnamed” were removed from the main dataset and were used for constructing the 
Real Dataset. For removing the redundancy in the remaining sequence data, clustering 
was performed using CD-HIT at a cut-off value of 0.95 (i.e., 95% sequence similarity) 
and the representative sequences from each cluster were obtained [22]. The clustering 
resulted in the sets of 4948 virulent proteins sequences (not including antibiotic resist-
ance proteins), 1040 antibiotic resistance protein sequences and 11,029 non-pathogenic 
proteins.

Sub‑categorization of datasets and curation into multiple classes

The sub-categorization was performed based on the function of the protein sequences 
followed by an extensive literature review to classify the different groups of proteins into 
broader categories. The uniqueness and the relatedness amongst the different classes 
of proteins in terms of their role in pathogenicity, structural diversity, and the origin of 
the proteins, were considered while classifying the proteins. Sequences with ambiguous 
annotations were removed to reduce the noise in the data. Sequences in the essential 
proteins database having similar annotations to virulent proteins were removed. Addi-
tionally, except polymerases, enzyme sequences were removed to decrease large vari-
ability within negative dataset.

Thus, MP4 protein dataset consisted of protein sequences belonging to 6 major classes: 
Antibiotic resistance proteins, Non-pathogenic proteins, Secretory proteins, Sigma pro-
teins, Capsules and toxins. Non-pathogenic proteins were considered as a single class, 
the Antibiotic resistance proteins and Toxins were clubbed into a single class because 
both these types of protein have either evolved or adapted for the sole purpose of bacte-
rial resistance and pathogenicity, while the other class comprising of secretory proteins 
and capsular proteins aids in the virulence of a microbe ranging from enhancing attach-
ment to the optimization of resources in the bacterial niche to disruption of host cells. 
Thus, the sequences were classified as: Class 1 proteins consisting of Non-pathogenic 
proteins (1047 sequences), Class 2 proteins consisting of antibiotic resistance proteins 
and toxins (1020 sequences), and Class 3 proteins with secretory and capsular proteins 
(1492 sequences).

Each class was randomly divided into 80:20 ratios from which the 80% parts from all 
the classes were combined to make a training dataset (2848 sequences). Blind dataset 
contained rest 20% of the dataset (711 sequences), based on which statistical measures 
of data classification of machine learning model is estimated.



Page 4 of 17Gupta et al. BMC Bioinformatics          (2022) 23:507 

Construction of different validation datasets

For performance validation of MP4, two different datasets were used consisting of 
sequences not used for training. Sequences kept for the construction of real dataset-1, 
were curated into the three classes according to the aforementioned procedure. The real 
dataset-1 consisted of 308 manually curated sequences. A real dataset-2 consisting of 200 
sequences previously used in MP3 [3], was also curated based on the sub-categorization 
mentioned in the previous section.

Construction of independent genomic and metagenomic validation datasets and comparative 

datasets

A literature review was performed to construct independent datasets consisting of 25 path-
ogenic and 25 non-pathogenic bacterial strains, respectively. These sequences were then 
downloaded from the NCBI FTP server (ftp:// ftp. ncbi. nlm. nih. gov/).

The performance comparison between MP3 and MP4 was performed using the Virulent-
Pred sequences [14] and Shigella flexineri virulence plasmid sequences which consisted of 
Shigella flexineri virulence plasmid group I and Shigella flexineri virulence plasmid group 
II. Shigella flexineri virulence plasmid group I consists of proteins that are translocated 
by Shigella into the host cells during the infection (Translocated proteins, 18 sequences) 
whereas Shigella flexineri virulence plasmid group II contains proteins that remain in the 
bacteria during the infection (Non-translocated proteins, 19 sequences), which were pre-
viously used for the validation of the performance of MP3 [3]. The Shigella flexineri viru-
lence plasmid group III (1 sequence) [3] was also used to validate the function of MP4. All 
the sequences used to compare MP3 and MP4 were previously used by MP3 [3]. A third 
dataset consisting of 41 proteins from Mycobacterium tuberculosis NITR203 strain that 
included known as well as hypothetical proteins was used to assess ability of MP4 to predict 
and sub-categorize hypothetical sequences. These sequences were earlier used by MP3 [3].

Metagenomic datasets for healthy individual (SRR5898979) and colorectal cancer patient 
(SRR8865601) were obtained from [23]. Using SPAdes (version 3.13.0) [24], forward and 
reverse pairedend reads were assembled into single reads for CRC patient and healthy indi-
vidual respectively. Using Prodigal (version 2.6.3) software [25], gene prediction was per-
formed which were used as an input for MP4 to predict proportion of different classes of 
pathogenic proteins in the two samples.

Calculation of  pathogenicity index The pathogenicity index was calculated for all the 
strains and was used as basis for identifying and differentiating pathogenic strains from non-
pathogenic strains.

where;

Pathogenicity Index =
Number of positive sequences

Total number of sequences

Number of positive sequences = Number of sequences ∈ class2+Number of sequences ∈ Class3

ftp://ftp.ncbi.nlm.nih.gov/
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Input features

Dipeptide frequency and pepstats features

The dipeptide frequency provides information about the amino acid sequence 
arrangement for a protein. As an input, it provides global information on the pro-
tein features in a fixed-length vector. It encompasses information such as local order 
and fraction of amino acid. The dipeptide frequency of each protein can be calculated 
using the following formula:

The pepstats features were calculated using EMBOSS:6.6.0.0 (http:// emboss. sourc 
eforge. net/ apps/ cvs/ emboss/ apps/ embos supda te. html). The pepstats calculation 
provided a total of 34 features consisting of physicochemical properties of proteins 
including Molecular weight, Number of residues, Average residue weight, Charge, 
Isoelectric point, molar percent and extinction coefficient at 1 mg/ml (A280) (Addi-
tional file 1: Table S1). With these features, the sequences with variable lengths were 
converted into vectors with Lx434 dimension (L: number of rows in each dataset), 
which our machine learning algorithm can use for data classification.

Selection of appropriate machine learning model for classification

WEKA 3.8.2 was used to compare the various machine learning algorithms includ-
ing PART, Random Forest, IBk and SVM using fivefold cross validation on training 
data with dipeptide frequency and pepstats features as inputs. Accuracy, precision, 
F-measure, MCC, ROC, true positive rate (TPR) and true negative rate (TNR) values 
were recorded for all the algorithms mentioned in this section.

Optimization of various RF and SVM parameters for the development of classification 

models

The comparison between different machine learning algorithms revealed that SVM 
and RF had comparable performances in terms of Accuracy, Precision, F-measure, 
MCC and ROC values on the training dataset. Hence, both SVM and RF were con-
sidered for further parameter optimization and evaluation using e1071 package [26] 
and randomForest library respectively, available in R (version 3.4). For the RF-based 
model, the importance of each feature was calculated at ntree = 500, using the mean 
decrease in accuracy at best mtry obtained with the help of tuneRF function which 
calculates mtry values using OOB error as an estimate. The OOB error that repre-
sents the error in prediction by randomForest algorithm was calculated using top 
5, 10, 15, 20, 30, 50, 70 and 90% features (dipeptide frequencies + pepstats features) 
using different mtry values at ntree = 200–1000. The best performing model was 
selected based on the least %OOB error. The performance of various classification 
models employing RF algorithms was optimized using fivefold cross-validation. In RF, 
the OOB error was used as a measure for accuracy.

The tuning of SVM kernels was performed using tune function of R library e1071 
at different values of cost, gamma, degree and coef0 with the help of all 434 features 

Dipepide frequency =
Total number of dipeptides

Total number of all possible dipeptides
× 100

http://emboss.sourceforge.net/apps/cvs/emboss/apps/embossupdate.html
http://emboss.sourceforge.net/apps/cvs/emboss/apps/embossupdate.html
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(Additional file 2: Table S2). Parameters for the kernel having the highest total cross-
validation accuracy and the least error were selected for the development of SVM-
based models. The SVM-based feature selection was performed using the VarImp 
function, a generic method for calculating variable importance for objects. The Var-
Imp function uses ROC values as the measure of the importance of features. Three 
different lists consisting of important features for each class were obtained. Further, 
top 50, 100, 150, 200, 250, 300, 350, 400 and 410 features were extracted from each 
list. Then, for every list, the entries with the same ROC value between all the three 
classes were extracted to give final lists of top features.

Performance validation of final classification model

The performances of the final models were evaluated using 20% of total data kept as 
blind dataset and on the independent datasets consisting of 25 known pathogenic and 
non-pathogenic strains. Performances of the model are represented in terms of Sensitiv-
ity, Specificity, Accuracy, Precision and Balanced Accuracy.

Sensitivity (Sn) Sensitivity measures the ability of the process to predict correct results.
Specificity (Sp) Specificity measures the ability of a process to predict incorrect results.
Accuracy Accuracy measures the degree of correctness of the predicted results to its 

actual value or the experimental value.
MCC Matthews correlation coefficient.
Balanced Accuracy Balanced Accuracy measures the average of the proportion cor-

rects of each class individually. It is used when the dataset used for training purposes is 
unbalanced.

Where, TP: The pathogenic protein correctly identified as pathogenic.
FP: The non-pathogenic protein incorrectly identified as pathogenic protein.
TN: The non-pathogenic protein correctly identified as non-pathogenic.
FN: The pathogenic protein incorrectly identified as non-pathogenic protein.

Results
Selection of machine learning algorithms and optimization parameters

On comparing the various machine learning algorithms, it was observed that both 
Random Forest (RF) and Support vector machines (SVM) gave comparable results 
with accuracy, MCC, and ROC values of 74.9%, 0.56, 0.87 and 73.6%, 0.57 and 0.81, 

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FN
, Precision =

TP

TP + FP

Accuracy =
TP + TN

TP + FN + FP + TN

Balanced Accuracy =
Sn+ Sp

2

MCC =
(TP ∗ TN )− (FP ∗ FN )

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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respectively (Table 1). Hence, both the algorithms were selected for further param-
eter optimization.

The mean decrease in accuracy of the top 30 features is represented in Additional 
file 3: Fig. S1 and the complete list of variables with the mean decrease in accuracy 
values is given in Additional file 1: Table S1. The performances of RF-based classifi-
cation models were calculated at various mtry values and at ntree = 200–1000 using 
different top variables. From Additional file  4: Table  S3, Additional file  5: Fig. S2a 
and Additional file  6: Fig. S2b, it is apparent that the model developed using top 
50% features at mtry = 13 and ntree = 800 performed better than the other RF-based 
models and displayed the least %OOB error of 22.12%.

Best parameters for different kernels were achieved using cross-validation accu-
racies calculated at the tuning step of SVM algorithm. Three SVM kernels, linear, 
polynomial and radial basis function were used for the model development. Of these 
kernels, the polynomial kernel showed the best performance with the percentage 
accuracy and error of 80.2% and 0.18, respectively. The results for all the kernels 
and their parameters are mentioned in Table 2. As mentioned in the materials and 
method section, the features with the same ROC values calculated by VarImp func-
tion were extracted for the three classes to generate different lists of top variables 
consisting of 33, 68, 105, 152, 210, 258, 306, 386, 401 features, respectively. The list 
of top 386 features selected using VarImp function is given in Additional file 7: Sup-
plementary Text. For the selection and development of the final SVM-based clas-
sification model, the five-fold cross-validation was performed using the top features 
and their cross-validation accuracy was recorded. The best performing SVM-based 
model showed a cross-validation accuracy of 79.88% (Table 3).

Table 1 Comparison of performances between the algorithms

MCC Matthews correlation coefficient, TPR True positive rate, TNR True negative rate

Values PART RF IBk SVM

Accuracy (%) 62.9 74.9 66.4 73.6

Precision 0.64 0.69 0.73 0.73

F-Measure 0.64 0.76 0.64 0.75

MCC 0.38 0.56 0.44 0.57

ROC 0.69 0.87 0.71 0.81

TPR 0.63 0.75 0.66 0.74

TNR 0.80 0.85 0.83 0.85

Table 2 The cross validation performances of all the three kernels at their best parameters

RBF Radial basis function

Kernel Accuracy (%) Error Dispersion Cost Gamma Degree Coefficient

Linear 69.03 0.30 0.01 1 – – –

Polynomial 80.2 0.18 0.02 1 0.1 2 2

RBF 78.6 0.2 0.02 6 0.001 – –
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Performance evaluation of RF and SVM classification models using blind set

On comparing the performance of RF and SVM based module on the blind dataset, an 
accuracy of 78.48% and 81.72% was obtained (Additional file 8: Table S4 and Table 4). 
The class-wise (Class 1, Class 2 and Class 3) sensitivity, specificity and balanced accu-
racy values of the SVM-based model and RF-based model are mentioned in Table 4 and 
Additional file  8: Table  S4, respectively, which show that the SVM-based model per-
formed better, both at cross-validation step and on the blind dataset. Thus, the SVM-
based model with 386 features was considered as the final model, and the performance 
of this model was validated using real validation dataset (materials and method section). 
Further evaluation of performance was carried out using independent datasets consist-
ing of bacterial pathogenic and non-pathogenic protein sequences.

Performance validation of MP4 using real datasets

The performance of the SVM-based model was evaluated using the 308 sequences that 
were curated as real dataset-1 and another set of 200 sequences curated as real data-
set-2 (materials and method section) and displayed an accuracy of 79.22% and 72% 

Table 3 The cross validation accuracies of SVM-based models at different top features

Where, Accuracy: Cross validation accuracy in percentage

Top features Accuracy

33 67.77

68 67.77

105 72.08

152 75.18

210 76.90

387 79.88

401 79.60

Table 4 The performance of SVM-based model on the MP4 blind set

Where, Class 1: Non-pathogenic proteins; Class 2: Antibiotic resistance and toxic proteins and Class 3: Secretory and capsular 
proteins

Accuracy (%) 81.72

Class 1 Class 2 Class 3

Sensitivity 0.81 0.77 0.85

Specificity 0.93 0.93 0.86

Balanced accuracy 0.87 0.85 0.85

Table 5 The performance of SVM based model on the real dataset1

Where, Class 1: Non-pathogenic Proteins; Class 2: Antibiotic Resistance and Toxic proteins and Class 3: Secretory and 
capsular proteins

Accuracy (%) 79.22

Class 1 Class 2 Class 3

Sensitivity 0.88 0.74 0.77

Specificity 0.99 0.89 0.80

Balanced accuracy 0.93 0.82 0.79
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respectively. The class-wise values of sensitivity, specificity and balanced accuracies are 
provided in Tables 5 and 6.

Performance comparison between MP4, MP3 and VirulentPred using real datasets

Using real dataset‑1

The performance of MP4 was compared with the previously published and publicly 
available tools MP3 [3] and VirulentPred [14] on real datasets. On real dataset-1, MP4 
was able to predict pathogenicity of many proteins with yet to be confirmed function 
as compared to MP3 and VirulentPred. For example, MexG protein from Pseudomonas 
aeruginosa was predicted to be non-pathogenic by MP3 and VirulentPred but MP4 pre-
dicted it as a class 2 pathogenic protein. The role of MexG in regulation of antibiotic 
efflux and other virulence factor such as pyocyanin [27] aligns well with the prediction 
provided by MP4. Similarly, ArlR protein is involved in multifaceted regulation of bio-
film formation and pathogenesis in Staphylococcus aureus [28], and was predicted to 
be class 2 pathogenic protein by MP4 whereas MP3 and VirulentPred predicted it to 
be non-pathogenic. Vibrio parahaemolyticus putative protein VPA1351, which hypoth-
esized to be type 3 secretion system apparatus protein [29], was predicted as class 3 
pathogenic protein by MP4 as compared to MP3 and VirulentPred that predicted it to be 
non-pathogenic (Additional file 9: Table S5).

Using real dataset‑2

In real dataset-2, protein sequences from Cronobacter turicensis z3032, Erwinia amylo-
vora CFBP1430, Erwinia billingiae Eb661 and Salmonella bongori NCTC12419 showed 
100% identity to YchO family inverse autotransporters that belong to Type Ve secretion 
system [30], and were predicted to be in the class 3 by MP4, which includes secretory 
type proteins. The Chromobacterium violaceum ATCC12472 sequence was predicted to 
belong to class 3 pathogenic proteins. The result was also supported by BLAST result 
that showed a 100% identity of this protein with the EscJ/YscJ/HrcJ family type III secre-
tion inner membrane ring protein found in Chromobacterium violaceum. Similarly, PrgI, 
sipD and sipC from Salmonella enterica (serovar typhimurium) LT2 were predicted to 
belong to the class 3 by MP4 and the results were supported by BLAST which identi-
fied them as type III secretion system proteins. IpaC from Shigella flexneri (serotype 2a) 
301 was again correctly predicted by MP4, and was predicted to be in class 2 patho-
genic proteins, which is supported by the previously published literature where it was 
shown that Shigella exhibited chloroquine resistance [31]. Similarly, Pesticin from Yers-
inia pestis CO92 showed 100% identity to TonB-dependent siderophore receptors found 

Table 6 The performance of SVM based model on the real dataset2

Where, Class 1: Non-pathogenic Proteins; Class 2: Antibiotic Resistance and Toxic proteins and Class 3: Secretory and 
capsular proteins

Accuracy (%) 72.0

Class 1 Class 2 Class 3

Sensitivity 0.71 0.56 0.78

Specificity 0.94 0.85 0.80

Balanced accuracy 0.83 0.70 0.79
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in Enterobacterales and was correctly predicted to be in class 3 by MP4. In another 
example, MP4 predicted MdtG protein of Klebsiella pneumoniae subsp. pneumoniae 
MGH78578 to be in class 2. This was confirmed by BLAST analysis which showed 100% 
identity with MdtG found in Klebsiella pneumoniae subsp. pneumoniae DSM 30104 
which is experimentally proven to be involved in the multidrug resistance in Klebsiella 
pneumoniae DSM 30104 [32]. Similarly, tetracycline efflux protein found in Salmonella 
enterica was predicted to be in class 2, which was also supported by the BLAST results. 
RNA polymerase sigma factors found in Bacillus anthracis strA0248 were predicted to 
be in class 2 by MP4 which shows that RNA polymerase sigma factors are essential for 
antibiotic resistance in Bacillus anthracis strA0248. These results were supported by 
the studies conducted by Ross et al. where they showed that the deletion of sigma fac-
tors stops the β-lactamase activity associated with B. Anthracis [33] (Additional file 10: 
Table S6).

OrgA subunit involved in secretion of needle subunits of type 3 secretion system in 
Burkholderia pseudomallei [34] was predicted as class3 pathogenic protein by MP4 
as compared to non-pathogenic predictions provided by MP3 and VirulentPred. MP3 
and VirulentPred also failed to predict pathogenicity of Erm(x) gene product 23S rRNA 
N-6-methyltransferase [35], which was correctly predicted as class 2 protein predicting 
its role in antibiotic resistance by MP4. In another such instance, both MP3 and Viru-
lentPred failed to predict pathogenicity of Yersinia pseudotuberculosis chaperone protein 
YscY while MP4 was able to predict as class 3 pathogenic protein, which is supported by 
earlier study where they showed that YscY chaperone protein is essential prior to forma-
tion of type 3 secretion system needle in Yersinia pseudotuberculosis [36] (Additional 
file 10: Table S6).

Performance validation of MP4 using independent genomic and metagenomic validation 

datasets

On the independent bacterial pathogenic and non-pathogenic datasets of 25 strains 
each, a higher number of pathogenic proteins were predicted by MP4 in the patho-
genic bacterial protein dataset in comparison to the non-pathogenic bacterial proteins 
(Tables 7 and 8). In the cases of well-known and properly documented pathogens such 
as Bacillus anthracis A2012 uid54101, Chlamydophila pneumoniae TW 183 uid57997, 
Helicobacter pylori B8 uid49873, Shigella dysenteriae 1617 uid229875, Klebsiella pneu-
moniae 342 uid59145 and Salmonella typhimurium DT104 uid223287, the pathogenic-
ity index values were reported to be 0.86, 0.84, 0.82 0.81, 0.77 and 0.75, respectively. In 
contrast, in the case of non-pathogenic bacterial genomes such as Thermotoga maritima 
MSB8 uid57723, Aquifex aeolicus VF5 uid57765, Mycoplasma hyopneumoniae 7448 
uid58039 and Bacillus coagulans 2 6 uid68053, the pathogenicity index was calculated 
and reported to be 0.42, 0.42, 0.56 and 0.57, respectively.

Using the CRC and healthy metagenomic samples, 9,022 and 9,569 sequences respec-
tively were used as input for MP4 to obtain proportion of different classes of pathogenic 
proteins in the datasets. MP4 predicted a higher proportion of Class 1 proteins (non-
pathogenic proteins) in healthy sample as compared to CRC sample. Similarly, the pro-
portion of Class 2 proteins (antibiotic resistance proteins and toxins) was higher in CRC 
sample compared to the healthy sample. The proportion of Class 3 proteins (associated 
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Table 7 Performance validation of MP4 on pathogenic protein dataset

Strains Class 1 Class 2 Class 3 Total sequences Pathogenicity 
index

References

Bacillus anthracis 
A2012 uid54101

42 96 159 297 0.859 https:// www. ncbi. nlm. 
nih. gov/ biopr oject? 
cmd= Retri eve& dopt= 
Overv iew& list_ uids= 
299

Prevotella melanino-
genica ATCC 25,845 
uid51377

344 288 1661 2293 0.85 http:// hmp. jcvi. org/ 
jumps tart/ hmp013/ 
index. shtml

Chlamydophila psit-
taci 6BC uid63621

154 139 682 975 0.842 https:// doi. org/ 10. 1128/ 
mBio. 00604- 12

Chlamydophila 
pneumoniae TW 183 
uid57997

178 160 775 1113 0.84 PMID: 26420648

Helicobacter pylori B8 
uid49873

314 197 1196 1707 0.816 PMID:21896079

Helicobacter pylori 
SouthAfrica20 
uid216150

320 218 1164 1702 0.812 PMID: 21081026

Shigella dysenteriae 
1617 uid229875

1224 2520 2665 6409 0.809

Providencia stu-
artii MRSN 2154 
uid162193

900 920 2279 4099 0.78

Francisella tularen-
sis holarctica F92 
uid181998

407 600 835 1842 0.779 PMC3569339

Escherichia coli 
CFT073 uid57915

1196 1519 2649 5364 0.777 PMID: 12471157

Proteus mirabilis 
HI4320 uid61599

817 786 2059 3662 0.777 PMID: 18375554

Klebsiella pneumo-
niae 342 uid59145

1302 1649 2815 5766 0.774 https:// doi. org/ 10. 1371/ 
journ al. pgen. 10001 41

Capnocytophaga 
ochracea DSM 7271 
uid59197

493 616 1062 2171 0.773 PMID: 21304645

Citrobacter koseri 
ATCC BAA 895 
uid58143

1153 1397 2456 5006 0.77 PMID:12751719

Escherichia coli clone 
D i14 uid162049

1138 1342 2438 4918 0.769 https:// doi. org/ 10. 1371/ 
journ al. ppat. 10065 25

Mycoplasma pneu-
moniae 309 uid85495

164 107 436 707 0.768 PMID:18754792

Enterobacter aero-
genes KCTC 2190 
uid68103

1171 1330 2411 4912 0.762 PMID: 22493190

Shigella sonnei 53G 
uid84383

1303 1586 2521 5410 0.759 https:// www. ncbi. nlm. 
nih. gov/ genom e/? 
term= Shige lla+ son-
nei+ 53G+ uid84 383

Treponema pallidum 
DAL 1 uid87065

256 404 396 1056 0.758 PMID: 23449808

Enterobacter cloacae 
SCF1 uid59969

1067 1249 2083 4399 0.757 PMC3236048

Moraxella catarrhalis 
BBH18 uid48809

460 452 974 1886 0.756 PMID: 20453089

Capnocytophaga 
canimorsus Cc5 
uid70727

590 607 1207 2404 0.755 https:// doi. org/ 10. 1371/ 
journ al. ppat. 10001 64

https://www.ncbi.nlm.nih.gov/bioproject?cmd=Retrieve&dopt=Overview&list_uids=299
https://www.ncbi.nlm.nih.gov/bioproject?cmd=Retrieve&dopt=Overview&list_uids=299
https://www.ncbi.nlm.nih.gov/bioproject?cmd=Retrieve&dopt=Overview&list_uids=299
https://www.ncbi.nlm.nih.gov/bioproject?cmd=Retrieve&dopt=Overview&list_uids=299
https://www.ncbi.nlm.nih.gov/bioproject?cmd=Retrieve&dopt=Overview&list_uids=299
http://hmp.jcvi.org/jumpstart/hmp013/index.shtml
http://hmp.jcvi.org/jumpstart/hmp013/index.shtml
http://hmp.jcvi.org/jumpstart/hmp013/index.shtml
https://doi.org/10.1128/mBio.00604-12
https://doi.org/10.1128/mBio.00604-12
https://doi.org/10.1371/journal.pgen.1000141
https://doi.org/10.1371/journal.pgen.1000141
https://doi.org/10.1371/journal.ppat.1006525
https://doi.org/10.1371/journal.ppat.1006525
https://www.ncbi.nlm.nih.gov/genome/?term=Shigella+sonnei+53G+uid84383
https://www.ncbi.nlm.nih.gov/genome/?term=Shigella+sonnei+53G+uid84383
https://www.ncbi.nlm.nih.gov/genome/?term=Shigella+sonnei+53G+uid84383
https://www.ncbi.nlm.nih.gov/genome/?term=Shigella+sonnei+53G+uid84383
https://doi.org/10.1371/journal.ppat.1000164
https://doi.org/10.1371/journal.ppat.1000164
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Where, Class 1: Non-pathogenic proteins; Class 2: Antibiotic resistance and toxic proteins and Class 3: Secretory and capsular 
proteins

Table 7 (continued)

Strains Class 1 Class 2 Class 3 Total sequences Pathogenicity 
index

References

Shigella flexneri 
2,002,017 uid159233

1160 1239 2304 4703 0.753 PMID: 19955273

Nocardia brasilien-
sis ATCC 700,358 
uid86913

2081 3731 2602 8414 0.753 PMC3347167

Salmonella typh-
imurium DT104 
uid223287

1159 1280 2153 4592 0.748 PMID: 9752592

Table 8 MP4 performance on the non-pathogenic protein

Where, Class 1: Non-pathogenic proteins; Class 2: Antibiotic resistance and toxic proteins and Class 3: Secretory and capsular 
proteins

Strains Class 1 Class 2 Class 3 Total sequences Pathogenicity 
index

Thermotoga maritima MSB8 uid57723 1086 342 430 1858 0.416

Aquifex aeolicus VF5 uid57765 875 250 401 1526 0.427

Mycoplasma hyopneumoniae 7448 uid58039 291 95 271 657 0.557

Bacillus coagulans 2 6 uid68053 1273 639 1059 2971 0.572

Bacillus halodurans C 125 uid57791 1686 948 1418 4052 0.584

Thermoanaerobacterium thermosaccharolyti-
cum DSM 571 uid51639

1017 752 832 2601 0.609

Bacillus licheniformis DSM 13 ATCC 14,580 
uid58199

1608 949 1614 4171 0.614

Corynebacterium urealyticum DSM 7111 
uid188688

744 522 669 1935 0.616

Lactobacillus fermentum CECT 5716 uid162003 403 217 431 1051 0.617

Staphylococcus carnosus TM300 uid59401 927 559 975 2461 0.623

Lactobacillus delbrueckii bulgaricus ATCC 11842 
uid58647

573 255 701 1529 0.625

Listeria welshimeri serovar 6b SLCC5334 
uid61605

1026 601 1147 2774 0.63

Listeria innocua Clip11262 uid61567 1113 649 1281 3043 0.634

Bacillus pumilus SAFR 032 uid59017 1341 754 1584 3679 0.635

Listeria ivanovii PAM 55 uid73473 960 549 1141 2650 0.638

Lactococcus garvieae ATCC 49156 uid73413 690 359 898 1947 0.646

Bacillus subtilis BSP1 uid184010 1362 846 1639 3847 0.646

Streptococcus parauberis KCTC 11537 uid67355 640 358 870 1868 0.657

Mycoplasma hyorhinis GDL 1 uid87003 219 135 293 647 0.662

Lactococcus lactis cremoris UC509 9 uid179384 701 414 994 2109 0.668

Lactococcus lactis IO 1 uid192185 739 440 1045 2224 0.668

Bacillus thuringiensis Al Hakam uid58795 1585 1333 1880 4798 0.67

Corynebacterium argentoratense DSM 44202 
uid217419

614 506 755 1875 0.673

Pseudomonas putida S16 uid68747 1683 1388 2147 5218 0.677

Tetragenococcus halophilus uid74441 823 542 1190 2555 0.678
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secretory system and capsular proteins) was found similar in the CRC and healthy sam-
ples. This was reasonably expected since the secretory systems and other associated 
structural proteins could be present in both pathogenic or non-pathogenic bacteria, 
however in case of pathogenic bacteria they are associated with host pathogenesis, and 
in non-pathogenic bacteria they serve as important features for survival in various envi-
ronments. Overall, MP4 predicted higher pathogenicity index for CRC sample (0.82) as 
compared to healthy sample (0.71) (Table 9).

Performance comparison between MP4 and MP3 using VirulentPred and MP3 datasets

The performance of MP4 was compared with MP3 and VirulentPred on the dataset 
obtained from VirulentPred. The MP3 and VirulentPred tools provided an accuracy of 
90% and 85%, respectively, whereas MP4 provided an accuracy of 100%. on the same 
dataset  (Table 10).

Another validation was performed using the dataset of pathogenic proteins obtained 
from MP3 [3]. For the proteins present on virulence plasmid of Shigella group I (translo-
cated proteins), 17 out of 18 proteins were predicted to be pathogenic by both MP3 and 
MP4. Out of these 17, MP4 predicted all proteins except for IpgB2 to be in the category 
of secretory and capsular proteins (Class 3) which is supported by the fact that virulent 
plasmid of Shigella group I are translocated proteins. In another case, OspD3 protein 
was predicted to be non-pathogenic by MP3, however, MP4 predicted OspD3 to be path-
ogenic (Class 3). This result was also supported by the BLAST analysis and the literature 
studies showing that it belongs to type III secretion system and can cause inflammation 
in the epithelial cells [37]. In case of Shigella group II (non-translocated proteins), 16 
out of 20 known pathogenic proteins were predicted to be pathogenic by MP4, whereas 
MP3 predicted 12 out of the 20 proteins as pathogenic proteins. The Shigella group III 

Table 9 Class wise predictions obtained by MP4 on healthy and CRC affected individual’s 
metagenomic data

Where, Class 1: Non-pathogenic Proteins; Class 2: Antibiotic Resistance and Toxic proteins and Class 3: Secretory and 
capsular proteins

Samples Number of 
sequences

Percentage 
of Class 1 
predictions

Percentage 
of Class 2 
predictions

Percentage 
of Class 3 
predictions

Pathogenicity 
index

Healthy sample 9569 29.33 25.47 45.17 0.70

CRC sample 9022 17.85 36.53 45.61 0.82

Table 10 Pathogenicity indices of various datasets based on prediction by MP4

Where, Class 1: Non-pathogenic Proteins; Class 2: Antibiotic Resistance and Toxic proteins and Class 3: Secretory and 
capsular proteins

Sequence datasets Total sequences Class 1 Class 2 Class 3 Pathogenicity 
index

VirulenPred dataset 40 0 10 30 1

Shigella group1 18 1 0 17 0.94

Shigella group2 19 5 6 8 0.74

Shigella group3 1 0 0 1 1
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consisted of IpaJ sequence, which was also predicted to be pathogenic by both MP4 and 
MP3 (Table 9, and Additional file 11: Table S7).

Thus, MP4 provided higher accuracy than MP3 and VirulentPred on the MP3 and 
VirulentPred datasets. Further, MP3 and VirulentPred could only classify the proteins 
as pathogenic or non-pathogenic, whereas MP4 classified the input proteins into path-
ogenic or non-pathogenic, and also provided a functional annotation for the classified 
proteins.

Performance of MP4 on Mycobacterium tuberculosis NITR203 protein dataset.

Out of 41 proteins used in this dataset, both MP4 and MP3 were able to predict all these 
proteins to be pathogenic. While MP3 classified these proteins as pathogenic, MP4 was 
able to sub-categorize these proteins into either Class 2 or Class 3 pathogenic proteins. 
Lipoprotein LpqH anchored on cell membrane of Mycobacterium tuberculosis [38] was 
predicted to be pathogenic by MP3 and was correctly sub-categorized as Class 3 protein 
by MP4. Zinc metallopeptidase was another known pathogenic protein [39] which was 
correctly predicted to be pathogenic by MP3 but MP4 was able to classify it as Class 2 
pathogenic protein. Moreover, MP4 was able to predict and classify many hypothetical 
proteins such as hypothetical protein MT2286, hypothetical protein MT2731 and hypo-
thetical protein J112_13775 as Class 2 proteins and hypothetical proteins MRA_2260, 
J112_12965 and FJ05194_3111 as Class 3 pathogenic protein (Additional file  12: 
Table S8).

Development of MP4 web server

The steps involved in the development of a web interface for MP4 are shown in Fig. 1. 
Using the final classification models developed using the aforementioned processes, a 
user can predict the category of pathogenic protein. The prediction modules enable the 

Fig. 1 The steps involved in the construction of MP4 classification models for the prediction of pathogenic 
proteins
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users to input the information by pasting the sequences in FASTA format or by upload-
ing the FASTA file. The query is analysed through the background model and the pre-
diction is displayed on the Results page. The results can also be downloaded using the 
download link provided on the Results page. The web-server can be accessed at http:// 
metag enomi cs. iiserb. ac. in/ mp4/.

Discussion
Functional annotation of pathogenic proteins requires tedious experimental procedures 
and validation which is a time-consuming and challenging task. In this case, homology-
based approaches like BLAST can be used to assign functions to unknown proteins, 
however, these are majorly limited due to the availability of information in reference 
protein databases [14]. In this scenario, the machine learning based approaches provide 
valuable alternatives since multiple features from any biological input can be exploited 
to train the ML models etc. and thus can be used to construct efficient and reliable 
classifiers.

MP4, an SVM-based tool, developed in this study can help the users to predict patho-
genic proteins and sub-classify the proteins based on their role in the process of patho-
genesis. The tool can make reliable and accurate functional annotation of pathogenic 
proteins with comparatively higher sensitivity and specificity. The evaluation of perfor-
mance on real dataset-1 and real dataset-2, on the independent metagenomic dataset, 
bacterial pathogenic and non-pathogenic datasets, and comparison of its performance 
with publicly available tools such as MP3 and VirulentPred attests to the accuracy and 
reliability of this tool. Additionally, while BLAST failed to provide annotations to hypo-
thetical mycobacterial proteins, MP4 was able to identify and annotate such proteins 
and classify them into their respective class based on their function. Therefore, to the 
best of our knowledge, MP4 is currently the only available machine learning based tool 
that can predict and classify pathogenic proteins based on their function in any genomic 
or metagenomic dataset, and thus a wide usage of tool is anticipated.

Abbreviations
ML  Machine learning
SVM  Support vector machine
kNN  K-nearest neighbours
SVM-HMM  Support vector machine hidden Markov Model
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RF  Random forest
MCC  Mathew’s correlation coefficient
OOB error  Out of box error
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