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Abstract 

Background:  Protein–protein interactions are widespread in biological systems and 
play an important role in cell biology. Since traditional laboratory-based methods have 
some drawbacks, such as time-consuming, money-consuming, etc., a large number of 
methods based on deep learning have emerged. However, these methods do not take 
into account the long-distance dependency information between each two amino 
acids in sequence. In addition, most existing models based on graph neural networks 
only aggregate the first-order neighbors in protein–protein interaction (PPI) network. 
Although multi-order neighbor information can be aggregated by increasing the 
number of layers of neural network, it is easy to cause over-fitting. So, it is necessary to 
design a network that can capture long distance dependency information between 
amino acids in the sequence and can directly capture multi-order neighbor informa-
tion in protein–protein interaction network.

Results:  In this study, we propose a multi-hop neural network (LDMGNN) model 
combining long distance dependency information to predict the multi-label pro-
tein–protein interactions. In the LDMGNN model, we design the protein amino acid 
sequence encoding (PAASE) module with the multi-head self-attention Transformer 
block to extract the features of amino acid sequences by calculating the interdepend-
ence between every two amino acids. And expand the receptive field in space by 
constructing a two-hop protein–protein interaction (THPPI) network. We combine 
PPI network and THPPI network with amino acid sequence features respectively, then 
input them into two identical GIN blocks at the same time to obtain two embeddings. 
Next, the two embeddings are fused and input to the classifier for predict multi-label 
protein–protein interactions. Compared with other state-of-the-art methods, LDMGNN 
shows the best performance on both the SHS27K and SHS148k datasets. Ablation 
experiments show that the PAASE module and the construction of THPPI network are 
feasible and effective.

Conclusions:  In general terms, our proposed LDMGNN model has achieved satisfac-
tory results in the prediction of multi-label protein–protein interactions.
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Background
Protein takes one of the most common molecules in organisms. It is the material basis of 
life activities and participates in various biological processes in organisms [1]. Most vital 
biological processes in organisms are generally driven by protein–protein interactions 
(PPIs), rather than an individual protein acting alone [2–4]. PPIs are widespread and play 
an important role in biological systems. For instance, PPIs are essential for biological cell 
activities such as cell proliferation, immune response, signal transduction, DNA tran-
scription, and replication [5]. Therefore, exploring the interactions between protein and 
protein is the key to study cell biology [6–8] and has great significance to the diagnosis 
and treatment of diseases, as well as the design and development of drugs [9]. At pre-
sent, there are many methods for the prediction of PPIs, which can be broadly divided 
into two types: laboratory-based traditional methods and deep learning methods.

In pace with the rapid development of high-throughput technology, a number of labo-
ratory-based traditional methods have been used to predict PPIs, such as mass spectro-
metric protein complex identification (MS-PCI) [10], yeast two-hybrid (Y2H) [11, 12] 
and tandem affinity purification (TAP) [13, 14]. These methods can visually observe the 
interactions between protein and protein. However, the vast majority of experiments are 
based on genome scale, and has narrow comprehensive. At the same time, a lot of time 
and money are needed to support the smooth running of the experiment. In addition, 
part of experiments rely on obtaining target proteins from animals, which violates ethics 
and morality [15–19]. To address the shortcomings of traditional methods, researchers 
were turning to deep learning methods.

Deep learning, by virtue of its powerful feature learning ability, has been valued by 
various fields and is rapidly evolving, no exception in the bioinformatics field, where it is 
ingeniously applied to probe some problems in bioinformatics, such as protein–protein 
interactions prediction tasks. Sun et al. [20] applied stacked autoencoder (SAE) to cap-
ture amino acid sequence features to predict PPI. Hang et al. [21] designed a deep neural 
network (DNN-PPI) framework capable of automatically acquiring features in the amino 
acid sequence of proteins. Chen et al. [7] constructed an end-to-end framework for PPI 
prediction based on siamese residual recurrent neural network (PIPR), which extracted 
features from amino acid sequences. These deep learning models all exhibit excellent 
generalization ability for addressing the PPIs prediction tasks. However, they are highly 
dependent on the amino acid sequence of proteins. Since there may be some similari-
ties between different amino acids, these typical deep learning models cannot effectively 
capture the information of the entire protein amino acid sequence and the relationships 
between different amino acids.

It should be noted that all the methods mentioned above only take amino acid 
sequence features as input. They don’t consider the interactions between proteins [22], 
which makes the prediction performance limited. Protein–protein interactions can 
be considered as hidden information to some extent, so combining it and amino acid 
sequence information together can improve the accuracy of prediction. For the PPI net-
work, it can be viewed as a graph with each protein as the node and the connecting rela-
tionships between proteins as the edge.

Therefore, Yang et al. [23] proposed to view the PPI network as an undirected graph 
and applied GCN [24] in the PPIs prediction task for the first time. It constructed an 
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unsigned variational graph autoencoder, which combined the PPI network with amino 
acid sequence information to learn the features of proteins to predict PPI. Inspired by 
the methods of graph signal processing, Colonnese et al. [25] considered node features 
on PPI networks as signals, and developed a Markov model to accomplish PPIs predic-
tion. Lv et al. [26] constructed a GNN-PPI model based on graph isomorphism network 
(GIN) to predict the interactions between protein–protein pairs. It not only considered 
the amino acid sequence information, but also fully considered the correlation between 
proteins.

These models have improved the accuracy of PPIs prediction. However, they only con-
sidered the information of two proteins directly interacting in PPI network, ignoring 
the information of protein–protein pairs indirectly interacting. In this way, the informa-
tion captured by these model are incomplete. Studies [27, 28] have shown that indirectly 
interacting also have meaningful information. In a biological network, two molecular 
nodes that do not interact directly also have some similarities [29]. And then, for the 
target node, it would be helpful if the information of such indirectly interacting nodes 
could be aggregated.

In this paper, we propose a novel LDMGNN model to implement the multi-label pre-
diction task of protein–protein interactions. This model mainly aims to solve the two 
problems mentioned above. The first problem is that the existing methods ignore the 
long-distance dependence information between amino acids in the sequence, and the 
second is that the existing methods do not fully consider the interaction among indi-
rect connected protein nodes. To solve the first problem, we use the Transformer with 
a multi-head self-attention mechanism to capture the correlation between every two 
amino acids in the sequence. For the second problem, we construct a two-hop protein–
protein interaction (THPPI) network based on the PPI network to enhance graph repre-
sentation learning. Overall, our main contributions:

•	 We use the Transformer module with a multi-head self-attention mechanism to cap-
ture the long-distance dependency information between each two amino acids in 
sequence.

•	 Based on the two-hop concept, we construct a THPPI network based on PPI net-
work, which can capture the information between indirectly interacting proteins and 
thus increase the receptive field in space.

•	 The experimental results show that our method exhibit good performance.

Resuts
In the following, the datasets, experimental parameter settings, evaluation metrics, 
baselines, experimental results and analysis used in our experiment will be introduced.

Datasets

In this paper, we use two common datasets, i.e., SHS27k and SHS148k, to evaluate 
our method. These two datasets contain a lot of PPIs information and amino acid 
sequence information. They were randomly selected by [7] from the Homo sapiens 
subset of STRING [30] according to the rule that the sequence alignment similarity is 
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less than 40% . The SHS27k dataset contains 1690 proteins and 7624 pairs of PPIs, and 
the SHS148k dataset contains 5189 proteins and 44,488 pairs of PPIs. The interactions 
of the two datasets can be divided into seven types, i.e., posttranslational modifica-
tion (ptmod), catalysis, reaction, activation, expression, binding and inhibition, they 
can show not only the physical correlation between proteins but also the functional 
correlation.

We regard all known PPIs as positive samples, and negative samples of the same size 
are randomly selected from unknown interactions. In our experiment, the positive and 
negative sample rate is 1:1. Specifically, in the SHS27k dataset, the number of negative 
samples is 7624. In the SHS148k dataset, the number of negative samples is 44,488. At 
the same time, inspired by [26], in order to evaluate the generalization ability of the 
LDMGNN model more realistically, we choose three partition schemes to divide the test 
set, i.e., random, BFS and DFS. Our test set accounts for 20% of the dataset.

Given the protein set P and PPI set I , construct a protein–protein interaction net-
work G = �P, I� . The size of the fixed test set is N (We divide the data set according 
to edges, that is, N refers to the number of edges in the test set). Firstly, a protein is 
randomly selected from the protein set P as the root node proot . Given a threshold t, 
the degree of the root node proot must be less than this threshold (we set the thresh-
old t = 5 ), that is |N (p root )| < t . Set the initial test set I test = ∅ , the current node 
pcur = proot . And then use DFS(BFS) algorithm to search the neighbor nodes pk of 
the current node pcur , i.e. pk ∈ N (pcur) . At this time, the test set I test = I test ∪ Icur , 
Icur = {pcur , pk} . The process is repeated until the number of edges in the subgraph 
formed by all nodes in the test set exceeds N.

Parameter settings and evaluation metric

Our experiment is performed on an NVIDIA GTX 3090 GPU with a PyTorch deep 
learning framework. We choose the Adam algorithm [31] as the optimization strategy 
in this paper with a weight decay coefficient of 5e−4 and a batch size setting of 512. 
We train our models for 300 epochs with an initial learning rate of 0.001. We choose 
the ReduceLROnPlateau function to vary the learning rate and to prevent overfitting, 
the patience is set to 20. During model training, if the loss is not reduced for 20 con-
secutive iterations, training will automatically stop.

Since our task is to use a classifier to solve the multi-label PPI classification. The 
interactions between protein–protein pairs have at least one label. Moreover, the 
types of PPIs in the SHS27k and SHS148k datasets are extremely unbalanced [26]. 
Micro-F1 will emphasize the common labels in the datasets, which is not easy to be 
affected by small samples or large samples, so that each sample has the same impor-
tance [32]. Comprehensive consideration, we choose the Micro-F1 evaluation metric 
to measure the accuracy of our model. The mathematical formula is as follows:

where Recallm and Precisionm are the total recall and total precision for all classes, 
expressed with mathematical formulae as follows:

(1)Micro−F1 = 2
Recallm × Precisionm

Recallm + Precisionm
,
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where n indicates the number of classes, in this experiment, the number of classes is 
7. TPi , FPi , TNi and FNi indicate true positives, false positives, true negatives and false 
negatives of the ith class, respectively.

Baselines

In order to better illustrate the effectiveness of our model, we compare LDMGNN with 
different baselines. These baselines can be divided into machine learning based and deep 
learning based. We choose three algorithms based on machine learning, which are SVM 
[33], RF [34] and LR [35]. The input are the features of proteins, which are common 
handcrafted protein features, i.e., AC [33] and CTD [36].

When compare with the models based on deep learning, we construct the same archi-
tecture as them. We input the SHS27k dataset and SHS148k dataset into the model, and 
change the output from the original two classification to multi-label classification. These 
deep learning models are as follows.

•	 HIN2Vec [37]: A representation learning framework for heterogeneous information 
networks (HIN). It uses different types of interactions among nodes to capture the 
features of nodes and meta- paths in HIN.

•	 SDNE [38]: A structural deep network embedding method for link prediction and 
multi-label classification tasks. It can not only effectively capture the highly nonlinear 
network structure, but also preserve the global and local structure of the network.

•	 LPI-DLDN [39]: A deep learning model of dual-network neural architecture com-
posed of feature importance ranking (FIR) network and MLP network. Given the 
sequences of protein and lncRNA, predict the potential interaction between lncRNA 
and protein.

•	 LPI-deepGBDT [40]: A multiple-layer deep structure model based on gradient boost-
ing decision trees. Given the sequences of protein and lncRNA, predict the unob-
served LPIs.

•	 DTI-CDF [41]:A cascade deep forest model based on hybrid feature, which cascades 
the traditional machine learning models RF and XGB. Given the hybrid feature (con-
tains the information of drug, target and drug-target interaction) to predict the inter-
action between drug and target.

•	 PIPR [7]: An end-to-end network model for predicting PPI, which combines two 
residual RCNN using Siamese architecture. And this method provides an automatic 
multi-granularity feature selection mechanism to capture the features of sequences.

•	 GAT​ [42]: A new neural network based on graph structure data. It learns the embed-
ding of nodes by using self-attention mechanism in the structure of graph.

•	 GNN-PPI [26]: A graph neural network model, given the information of protein 
amino acid sequence and PPI network, is used for the prediction of multi-label PPI.

(2)Recallm =
TP1 + TP2 + · · · + TPn

TP1 + TP2 + · · · + TPn + FN1 + FN2 + · · · + FNn
,

(3)Precisionm =
TP1 + TP2 + · · · + TPn

TP1 + TP2 + · · · + TPn + FP1 + FP2 + · · · + FPn
,
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Our experiment is inspired by GNN-PPI [26]. However, compared with GNN-PPI 
model, our LDMGNN model mainly has the following two innovations. First, in the 
part of amino acid sequence encoding, we innovatively propose to replace biGRU 
block with a transformer block with multi-head self-attention mechanism, which can 
not only capture the long-distance dependence information between amino acids, but 
also solve the problem that biGRU cannot be parallelized. Second, considering that 
there may be some connection between nodes that do not interact directly, in order 
to capture more comprehensive information of proteins, we construct a two-hop PPI 
network. This is not available in the GNN-PPI model.

Results and analysis

As shown in Table 1, the LDMGNN method shows the best performance compared to 
the other baselines. From this result, it can be seen that our model has fully learn the 
long-distance dependency between amino acids and effectively expand the receptive 
field, which can improve the prediction accuracy of multi-label PPI. From the per-
spective of dataset size, the performance of the model increases with the size of the 
dataset. Obviously, our method performs better under dataset SHS148k than data-
set SHS27k, this is because we are able to obtain more valuable information as the 
PPI network growing. From the perspective of dataset partition scheme, the perfor-
mance improvement of our method in BFS and DFS partitioning scheme is generally 
higher than that in random. For the SHS27k dataset, our method achieves an abso-
lute improvement of 1.43% , 10.75% , 3.48% when compared with the GNN-PPI model 
in random, BFS, and DFS partitioning methods, respectively. And for the SHS148k 
dataset, our method achieves an absolute improvement of 0.12% , 2.61% , 1.12% when 
compared with the GNN-PPI method in random, BFS, and DFS partitioning methods, 
respectively. This illustrates that our method has a certain generalization ability and 
has practical implications.

Table 1  Performance results of LDMGNN compared with other methods on two datasets, we report 
the mean and standard deviation of the test sets

Each boldface number represents the best value for that partition

Methods SHS27k SHS148k

Random BFS DFS Random BFS DFS

SVM [33] 75.35± 1.05 42.98± 6.15 53.07± 5.16 80.55± 0.23 49.14± 5.30 58.59± 0.07

RF [34] 78.45± 0.08 37.67± 1.57 35.55± 2.22 82.10± 0.20 38.96± 1.94 43.26± 3.43

LR [35] 71.55± 0.93 43.06± 5.05 48.51± 1.87 67.00± 0.07 47.45± 1.42 51.09± 2.09

HIN2Vec [37] 74.22± 2.38 49.61± 4.88 53.78± 3.05 78.01± 0.62 56.94± 3.20 57.15± 2.49

SDNE [38] 84.04± 0.91 47.29± 4.32 53.42± 2.82 86.65± 2.73 58.43± 4.94 68.84± 1.52

LPI-DLDN [39] 77.36± 0.48 44.68± 2.31 54.98± 3.94 83.83± 0.52 56.41± 5.38 60.07± 2.71

LPI-deepGBDT [40] 72.70± 0.67 42.25± 3.81 50.48± 2.76 81.69± 0.39 55.51± 7.40 59.67± 3.29

DTI-CDF [41] 79.29± 0.89 49.60± 5.28 55.88± 4.19 83.12± 0.55 60.04± 8.27 65.42± 5.89

PIPR [7] 83.31± 0.75 44.48± 4.44 57.80± 3.24 90.05± 2.59 61.83± 10.23 63.98± 0.76

GAT [42] 86.35± 0.86 53.08± 5.24 60.09± 1.69 88.87± 0.31 62.10± 7.75 65.49± 0.50

GNN-PPI [26] 87.91± 0.39 63.81± 1.79 74.72± 5.26 92.26± 0.10 71.37± 5.33 82.67± 0.85

LDMGNN 89.34 ± 0.44 74.56 ± 3.03 78.20 ± 2.69 92.38 ± 0.08 73.98 ± 5.51 83.79 ± 0.95
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Significant difference analysis

To verify whether the performance of our proposed LDMGNN model is statistically sig-
nificantly different from these 11 baseline models, we conducted a paired samples t-test 
using SPSS software. The related results are shown in Tables 2 and 3. Table 2 is used to 
represent the correlation between two samples, where the value of correlations is in the 
interval [ −1,1]. When this value is greater than 0, it means that there is a positive corre-
lation between the two samples, and when this value is less than 0, it means that there is 
a negative correlation between the two samples. And the larger the absolute value of the 

Table 2  Paired samples correlation of the LDMGNN model with 11 baseline models

N Correlation Sig.

Pair 1 LDMGNN &SVM 6 0.976 0.001

Pair 2 LDMGNN &RF 6 0.917 0.010

Pair 3 LDMGNN &LR 6 0.920 0.009

Pair 4 LDMGNN &HIN2Vec 6 0.916 0.010

Pair 5 LDMGNN &SDNE 6 0.953 0.003

Pair 6 LDMGNN &LPIDLDN 6 0.938 0.006

Pair 7 LDMGNN &LPIdeepGBDT 6 0.929 0.007

Pair 8 LDMGNN &DTICDF 6 0.943 0.005

Pair 9 LDMGNN &PIPR 6 0.916 0.010

Pair 10 LDMGNN &GAT​ 6 0.938 0.006

Pair 11 LDMGNN &GNNPPI 6 0.965 0.002

Table 3  Paired samples test of the LDMGNN model with 11 baseline models

Bold number represents the p-value of the corresponding paired sample

95% confidence 
interval of the 
difference

Mean SD Std. error 
mean

Lower Upper t df Sig.(2-tailed)

Pair 1 LDMGNN-
SVM

22.09500 7.58174 3.09523 14.13845 30.05155 7.138 5 0.001

Pair 2 LDMGNN-RF 29.37667 14.80078 6.04239 13.84420 44.90913 4.862 5 0.005
Pair 3 LDMGNN-LR 27.26500 5.42631 2.21528 21.57044 32.95956 12.308 5 0.000
Pair 4 LDMGNN-

HIN2Vec
20.42333 5.50138 2.24593 14.64998 26.19668 9.093 5 0.000

Pair 5 LDMGNN-
SDNE

15.59667 9.21296 3.76118 5.92826 25.26507 4.147 5 0.009

Pair 6 LDMGNN-
LPIDLDN

19.15333 7.98559 3.26010 10.77297 27.53369 5.875 5 0.002

Pair 7 LDMGNN-LPI-
deepGBDT

21.65833 7.89829 3.22446 13.36958 29.94708 6.717 5 0.001

Pair 8 LDMGNN-
DTICDF

16.48333 6.47322 2.64268 9.69010 23.27656 6.237 5 0.001

Pair 9 LDMGNN-
PIPR

15.13333 10.28307 4.19805 4.34191 25.92476 3.605 5 0.015

Pair 10 LDMGNN-GAT​ 12.71167 7.96402 3.25130 4.35394 21.06940 3.910 5 0.011
Pair 11 LDMGNN-

GNNPPI
3.25167 3.85639 1.57436 -0.79537 7.29870 2.065 5 0.094
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correlations, the stronger the correlation between the two samples. At the same time, 
the significance level p value (i.e., Sig. in Table 2) should be less than 0.05. When the p 
value is less than 0.05, it can indicate whether the correlation between samples is sig-
nificant. A paired samples t-test only makes sense when there is a significant correlation 
between paired samples. Table 3 shows the results of the paired samples t-test, when the 
p value (i.e., Sig.(2-tailed)) is less than 0.05, it indicates that there is a significant differ-
ence between the two samples.

As shown in Table 2 , the correlation of the first row (LDMGNN & SVM) is 0.976 (the 
absolute value is close to 1), and the significance level p value (Sig.) is 0.001 (< 0.05), 
which indicates that the two samples of LDMGNN and SVM have significant correla-
tion, and is strongly correlated. Similarly, it can be seen that the correlations of the last 
10 pairs of samples are 0.917, 0.920, 0.916, 0.953, 0.938, 0.929, 0.943, 0.916, 0.938 and 
0.965, respectively (all greater than 0.9). And the corresponding significance level p value 
(i.e., Sig.) of the last 10 paired samples are 0.010, 0.009, 0.010, 0.003, 0.006, 0.007, 0.005, 
0.010, 0.006 and 0.002 (all less than 0.05). Obviously, these 10 paired samples are all sig-
nificantly correlated. Therefore, it is meaningful to perform a paired samples t-test on 
these 11 pairs of paired samples.

From the Table 3, we can see that the p values (i.e., Sig.(2-tailed)) of the top 10 pairs 
of samples are 0.001, 0.005, 0.000, 0.000, 0.009, 0.002, 0.001, 0.002, 0.015 and 0.011, 
respectively, all of which are less than 0.05. It shows that there are significant differences 
between the first 10 pairs of samples. The p values (i.e., Sig.(2-tailed)) of the 11th pair of 
samples is 0.094, which is greater than 0.05. As for the 11th pair of samples, we consider 
that the extreme imbalance of the data may be a factor in this situation. Further, from 
the perspective of reality, we believe that LDMGNN model has certain practical signifi-
cance. Lv et al. [26] studied the Homo sapiens subsets at two time points (2011 / 01 / 25 
and 2021 / 01 / 25) in the BioGRID database. They found that the newly discovered pro-
teins had local patterns of BFS and DFS. In these two partition schemes, our LDMGNN 
model has a large improvement in accuracy compared with the GNN-PPI model.

Ablation analysis

In order to verify the importance and effectiveness of each module in this study for the 
prediction model, we conduct an ablation study by deleting or replacing each module in 
this study. We use GNN-PPI as the baseline for PPIs prediction, which processes amino 
acid sequences using RNN and aggregates only first-order neighbor information. −
PMHGE represents the removal of PMHGE from the LDMGNN model and, unlike base-
line GNN-PPI, and uses the Transformer with a multi-head self-attention mechanism 
to learn the amino acid interdependency in the sequence. -PAASE represents the dele-
tion of the PAASE module from the LDMGNN model. Unlike the baseline GNN-PPI, we 
construct a THPPI network and simultaneously aggregates first-order and second-order 
neighbor information, increasing the spatial receptive field in the model. LDMGNN is 
our proposed model. Compared with the baseline GNN-PPI, our LDMGNN not only 
captures the long-distance dependency information in the sequence but also increases 
the spatial receptive field in space. We still use Micro-F1 as the evaluation metric.

As can be seen from Table 4, when the model only uses the multi-head self-attention 
mechanism to capture the long-distance dependency information in the sequence, for 
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the SHS27k dataset, the current model increases by 0.81% , 5.03% and 2.20% respec-
tively compared with the GNN-PPI model under the random, BFS and DFS partitioning 
schemes. For the SHS148k dataset, 0.12% , −2.36% and 0.10% improvements are achieved 
respectively. The results show that the prediction accuracy could be improved if the 
model only captures the interdependency of amino acids in the sequence, indicating that 
the long-distance dependency of amino acids in the sequence plays a positive role in 
the prediction of multi-label PPI. In view of the situation that micro-F1 of the SHS148k 
dataset decreased by 2.36% in the BFS partitioning scheme, we believe that this is caused 
by data imbalance.

When the model only increases the spatial receptive field of network, for the SHS27k 
dataset, the current model increases by 1.37% , 4.80% and 0.09% respectively compared 
with the GNN-PPI model under the random, BFS and DFS partitioning schemes. For the 
SHS148k dataset, 0.09% , 0.26% and 0.24% improvements are achieved respectively. The 
results show that aggregating the information of first-order and second-order neighbors 
simultaneously can improve the accuracy of prediction, which suggest that appropriate 
increase of network receptive field also plays a positive role in the prediction of multi-
label PPI. However, the improved accuracy is the highest when the model captures the 
interdependencies between amino acids in the sequence and aggregate the first-order 
and second-order neighbors, which further demonstrate that LDMGNN model is effec-
tive for predicting multi-label PPI.

The selection of hop number

When constructing a multi-hop PPI network to increase the receptive field, we con-
ducted experiments on different k to determine the k-hop network to be constructed. 

Table 4  Ablation studies on SHS27k and SHS148k datasets

Datasets Partition scheme GNN-PPI −PMHGE  −PAASE  LDMGNN

SHS27K Random 87.91± 0.39 88.72± 0.44 89.28± 0.41 89.34± 0.44

BFS 63.81± 1.79 68.84± 5.49 68.61± 3.72 74.56± 3.03

DFS 74.72± 5.26 76.92± 4.28 74.81± 2.78 78.20± 2.69

SHS148K Random 92.26± 0.10 92.38± 0.08 92.35± 0.26 92.54± 0.21

BFS 71.37± 5.33 69.01± 4.36 71.63± 3.19 73.98± 5.51

DFS 82.67± 0.85 82.77± 1.58 82.91± 1.19 83.79± 0.95

Table 5  Comparison experiment of hop number selection on SHS27k and SHS128k datasets

Bold number represents the best value for that partition scheme

Datasets Partition scheme One-hop One-hop + two-hop One-hop + two-
hop + three-
hop

SHS27K Random 88.72± 0.44 89.34 ± 0.44 88.24± 0.95

BFS 68.84± 5.49 74.56 ± 3.03 68.42± 6.40

DFS 76.92± 4.28 78.20 ± 2.69 74.52± 4.33

SHS148K Random 92.38± 0.08 92.54 ± 0.21 92.28± 0.13

BFS 70.92± 5.37 73.98 ± 5.51 69.01± 4.36

DFS 82.77± 1.58 83.79 ± 0.95 81.96± 0.93
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The experimental results are shown in Table  5. In the table, “One-Hop” indicates the 
case where k = 1 . In this case, the PPI network is the original PPI network, and the tar-
get node only aggregates the information of first-order neighbors. In the table, “One-
Hop + Two-Hop” represents the case where k = 2 . We construct a THPPI network, 
where the target node aggregates the information of first-order and second-order neigh-
bors simultaneously. “One-Hop + Two-Hop + Three-Hop” in the table represents k = 3 . 
We construct both a THPPI network and a Three-Hop PPI network, and the target node 
aggregates the information of first-order, second-order, and third-order neighbors at the 
same time. We still use micro-F1 as the evaluation metric, and each boldface number 
means the best accuracy under this partitioning scheme. Obviously, the prediction accu-
racy is the highest when k is 2.

It can be seen from Table 5 that when k is set to 2, the accuracy of the model obtained 
in each partition scheme on the two datasets is higher than that when K is set to 1. This 
indicates that it is necessary to construct a multi-hop PPI network to increase the recep-
tive field of the network in space. However, with the increase of k, the performance of 
the model on the two datasets shows a decreasing trend. When k is 3, the model acquires 
much less accuracy in each of the partition methods on both datasets than when k is 
2. Indeed, the accuracy obtained when k is 3 is less in all cases than when k is 1. This 
indicates that the simple construction of a multi-hop PPI network is not the best. As the 
receptive field gradually increases, the model gradually tends to be over-fitting. There-
fore, in this study, k is selected as 2 when we construct the multi-hop PPI network. It 
further shows that it is effective and reasonable for us to aggregate the first-order and 
second-order neighbor information at the same time and appropriately increase the 
receptive field of the network.

The effect of more negative samples on model performance

To test how more negative samples will affect the performance of the model, we increase 
the number of negative samples while keeping the number of positive samples constant. 
At this time, the positive: negative sample rate in the datasets will change. Specifically, 
for the SHS27k dataset, we randomly selected three negative samples from proteins 
pairs with unknown interactions, and the number of these three negative samples were 
22,872, 38,120 and 76,240, respectively. We took the protein pairs that are known inter-
actions as positive samples, and the number is 7624. Thus we can obtain three different 
positive:negative sample rates, which are 1:3, 1:5 and 1:10. Similarly, for the SHS148k 
dataset, we randomly selected three negative samples from protein pairs of unknown 
interactions, with numbers of 133,464, 222,440, and 444,880, respectively. We also took 
known interacting protein pairs as positive samples with a number of 44,488, resulting 
in three different positive:negative sample rates, which are 1 : 3, 1 : 5, and 1 : 10, respec-
tively. We still choose three partition schemes to divide the test set, namely random, BFS 
and DFS, and our test set accounts for 20% of the dataset.

The experimental results are shown in Table 6, where 1:1 is the positive:negative sam-
ple rate used by the LDMGNN model. As can be seen from Table  6, for the SHS27k 
dataset, under random, BFS and DFS partition schemes. Compared with the result 
that positive:negative sample rate is 1:1, when the positive:negative sample rate is 1:3, 
the performance of the model decreases by 3.09, 3.13 and 2.06, respectively; when 
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the rate is 1:5, the performance of the model decreases by 6.60, 5.27 and 5.26, respec-
tively; when the rate is 1:10, the performance of the model decreases by 11.40, 8.94 and 
8.36, respectively. And for the SHS148k dataset, under random, BFS and DFS partition 
schemes. Compared with the result that positive:negative sample rate is 1:1, when the 
positive:negative sample rate is 1:3, the performance of the model decreases by 3.07, 2.26 
and 4.82, respectively; when the rate is 1:5, it decreases by 10.28, 5.77 and 11.15, respec-
tively; when the rate is 1:10, it decreases by 16.83, 12.62 and 16.87, respectively.

Obviously, we can see that when we add more negative samples, the performance of 
the model will decrease significantly. This is because when the number of negative sam-
ples exceeds the number of positive samples, it will affect the correct judgment of the 
model on the positive samples, so that the classifier can not capture the features of the 
positive samples well. Therefore, the imbalance between positive and negative samples 
will negatively affect the performance of the model.

Discussion
Next, we will introduce why we use the Transformer with a multi-head self-attention 
mechanism to capture amino acid sequence information and why we construct a THPPI 
network to aggregate two-hop neighbor information.

It is acknowledged that the Transformer [43] was first proposed to replace recurrent 
neural network (RNN) to solve natural language processing. It has two unique proper-
ties, one is that it can obtain the long-distance dependency of sequences, and the other 
is that it can be parallelized. Inspired by the methods of natural language processing 
such as Bert [44] and Roberta [45], we regard each amino acid as a vector, the amino acid 
sequence as a vector set. And we consider that there may also be long-distance depend-
ency between every two amino acids in a sequence. So we use the Transformer with a 
multi-head self-attention mechanism to capture amino acid sequence information.

Meanwhile, we constrcut a THPPI network since there may be meaningful informa-
tion between two indirectly interacting nodes. Exactly, the competitive inhibition [46] 
in biochemistry can also explain that there may be some structural similarity or func-
tional similarity between the two indirectly connected nodes. As shown in Fig. 1, a 
typical example [47] of similar structures in biomolecules causing competitive inhibi-
tion. When humans are bitten by snakes, snake venom proteins follow the blood cir-
culation into the nervous tissue space, bind to acetylcholine receptors (AchR), and the 
binding affinity between them is much higher than that of acetylcholine (Ach). Thus 

Table 6  Results of increase the number of negative samples on SHS27K and SHS148k

Bold number represents the best value for that partition scheme

Positive:negative 
sample rate

SHS27k SHS148k

Random BFS DFS Random BFS DFS

1:1 89.34 ± 0.44 74.56 ± 3.03 78.20 ± 2.69 92.38 ± 0.08 73.98 ± 5.51 83.79 ± 0.95

1:3 86.25± 0.21 71.43± 1.56 76.14± 1.66 89.31± 0.98 71.72± 2.34 78.97± 0.75

1:5 82.74± 0.55 69.29± 2.71 72.94± 2.81 82.10± 2.39 68.21± 4.84 72.64± 0.93

1:10 77.94± 0.75 65.62± 2.47 69.84± 1.28 75.55± 0.52 61.36± 5.41 66.92± 1.85
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the snake venom proteins would inhibit the binding of acetylcholine to acetylcholine 
receptors. Here, the snake venom proteins are structurally similar to acetylcholine. 
Enlightened by this case, we consider that in a PPI network, there may be two pro-
teins that are indirectly connected, but structurally similar or functionally similar. So 
we construct a THPPI network to aggregate the second-order neighbor information 
to enlarge the receptive field in space.

Conclusions
In this study, we propose the LDMGNN model to predict multi-label protein–protein 
interactions. LDMGNN first captures the potential features of amino acid sequences 
through the PAASE module and then concatenates this information with the topo-
logical information of the initial PPI network and the topological information of the 
THPPI network respectively. Then, they are respectively input into the graph neural 
network, and the two obtained feature matrices are addition by element-wise as the 
final embedding of protein and protein pair. Finally, this embedding is fed into a clas-
sifier for predicting protein–protein interactions.

We carry out a series of experiments, and in the SHS27k dataset and SHS148k data-
set, our model shows better performance than the existing model. Furthermore, we 
perform an ablation experiment to verify that each module in the model is indispen-
sable and that the parameters in the experiment are reasonable and effective. This 
indicates that the Transformer with a multi-head self-attention mechanism can suc-
cessfully capture the long-distance dependence information in amino acid sequences. 
The spatial receptive field of the network can be increased by aggregating the first-
order and second-order neighbor information simultaneously. In conclusion, the 
LDMGNN model can comprehensively learn the feature information between protein 
pairs and has a good potential in PPI prediction.

Methods
This section introduces the proposed multi-label PPI prediction approach, which is 
an end-to-end representation learning model. Given the representation of protein 
amino acid sequence, the adjacency matrix of PPI network and the adjacency matrix 
of THPPI network, we try to predict the labels between protein–protein pairs. The 

Fig. 1  The illustration of the competitive inhibition
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representation of protein amino acid sequence input here is processed into a numeri-
cal vector by [7]. In this section, we define the multi-label PPI prediction problem. 
Then we will introduce our LDMGNN model in detail.

Problem formulation

We represent the set of amino acids as M, and define the amino acid sequence S of a 
protein, which consists of amino acids in varying proportions as S = {m1,m2, . . . ,ml} , 
where mi ∈ M, i = 1, 2, . . . , l . We consider the initial PPI network as an undirected 
graph G1 = �P, I� , whose adjacency matrix is A1 ∈ {0, 1}N×N  , where P is the set of pro-
teins and denoted as P = {p1, p2, . . . , pn} . I is the set of protein–protein interactions, 
defined as I = pij | pij = pi, pj , i �= j, pi, pj ∈ P  . If pij = 1 , this indicates that there 
have interactions between protein pi and protein pj . If pij = 0 , this indicates that 
there is no interaction between the proteins or the interactions between them has not 
been identified at this time. Similarly, we consider the constructed THPPI network as 
an undirected graph G2 = �P, I� , whose adjacency matrix is A2 ∈ {0, 1}N×N .

The task of this multi-label classification is to learn a model F = (p, ŷ) from the 
training set Itrain , and its input p is protein pairs with known interaction, p ∈ Itrain . 
The output is a 7-dimensional vector, which corresponds to a finite set of labels L. 
We define the label set of PPIs as L = {ℓ0, ℓ1, . . . , ℓn} , where n = 6 are the types of 
protein–protein interaction, which are post-translational modifications (PTMOD), 
catalysis, reaction, activation, expression, binding and inhibition, respectively. The 
interaction of each pair of proteins contains at least one type. When there is a certain 
type of interaction, the corresponding position in the vector is 1, otherwise it is 0. The 
learned model F is used to predict the labels ŷij of protein pair pij ∈ Itest.

Overview

The framework of the proposed LDMGNN model is shown in Fig.  2. We introduce 
the framework from the following three parts. The first part is the “Protein Encod-
ing”, which is the core of LDMGNN model. It is used to extract the representation of 
protein nodes. The second part is “Feature Fusion”, and the last part is the “Multi-label 
PPI Prediction”.

Protein encoding

In the process of protein encoding, we can regard this process as two parts. These two 
parts are trained together in an end-to-end manner. One is protein amino acid sequence 
encoding (PAASE), which is to capture the protein feature based on amino acid 
sequence, which we call sequence feature. The second is protein multi-hop graph encod-
ing (PMHGE), which can be regarded as composed of two branches. One branch uses a 
GIN block to capture the first embedding of protein, and the other branch uses a GIN 
block to capture the second embedding of protein.
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Protein amino acid sequence encoding (PAASE)

This module is used to capture the protein feature based on amino acid sequence. Prede-
fined feature appearing in modules were observed by [7] through processing. Chen et al. 
[7] used the embedding method to represent each amino acid m ∈ M as a 13 dimen-
sional vector, which is composed of two sub-vectors, i.e., m = [m1,m2] . The first sub-
vector m1 measures the co-occurrence similarity of amino acids, and its dimension is 5. 
The second sub-vector m2 represents the similarity of the electrostatic and hydrophobic 
among amino acids, which is an eight-dimensional one-hot encoding.

Fig. 2  The illustration of the LDMGNN framework. Here G1 indicates the original PPI network, and G2 indicates 
the THPPI network. This symbol ⊕ indicates addition by element-wise. eTi  and eTj  represent embedding 
vectors for proteins pi and pj , respectively. And the MUL block represents the dot product operation. The FC 
block is designed to classify the classes of protein interactions. And as shown in the figure, there are seven 
different types

Fig. 3  The illustration of PAASE module. The MHSA Transformer block here refers to the Transformer with 
the multi-head self-attention mechanism, just for the convenience of writing in the figure, so the multi-head 
self-attention is replaced by MHSA
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As shown in Fig. 3, the predefined feature are input and pass through a one-dimen-
sional convolution layer, and the size of the convolution kernel is 3. We input the hidden 
features of the output into the normalization layer, which can increase the learning rate 
of the model and speed up the training speed. Then we choose a maximum pooling layer 
and let it extract more representative features. To capture the long-distance depend-
ency information in the sequence, we then input these representative features into the 
Transformer module with multi-head self-attention mechanism for learning about the 
interdependencies of amino acids. Next, We input the hidden features obtained from 
the MHSA Transformer layer into a one-dimensional average pooling layer, for which 
dimension reduction will be performed. Finally, the sequence feature is obtained through 
a fully connected layer.

The transformer with multi‑head self‑attention mechanism

The function of this block is to learn the interdependence between each two amino acids 
in the amino acid sequence by calculating the correlation coefficient between them. This 
can not only capture the local information of amino acids in the sequence, but also cap-
ture the long-distance dependency information between amino acids.

Fig. 4  The illustration of the multi-head self-attention mechanism. The multi-head self-attention mechanism 
operates on each amino acid node. mi(qi , ki , vi) represents the query vector, key vector and value vector of 
amino acid node mi . mi

(

qi,h , ki,h , vi,j
)

 represents the query vector, key vector, and value vector of the hth type 
of amino acid node mi . This symbol ⊕ indicates addition by element-wise
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Because of the potential for multiple types of interactions between each pair of amino 
acids, we apply multi-head self-attention mechanism to each amino acid of each protein 
amino acid sequence. Then we extract the low dimensional feature embedding of each 
amino acid by computing the correlation of different kinds between each pair of amino 
acids. As shown in Fig. 4, and for convenience, we only present a brief diagram. For each 
amino acid mi , it gets a query vector qi ∈ Rdq , a key vector ki ∈ Rdk , and a value vector 
vi ∈ Rdv . They are obtained by linear transformations of the features of amino acids using 
trainable parameters Wq ∈ Rfeature_in×dq , Wk ∈ Rfeature_in×dk and Wv ∈ Rfeature_in×dv , 
which are shared for all amino acid nodes.

Since there are h types of correlations for each pair of amino acids 
(

mi,mj

)

 , it is neces-
sary to calculate the embeddings of amino acid nodes using the multi-head self-attention 
mechanism. For each node mi in the amino acid sequence, qi,1, . . . , qi,h can be obtained 
by linear transformation of qi using different weight matrices Wq,1, . . . ,Wq,h . Smilarly, 
ki,1, . . . , ki,h can be obtained by linear transformation of ki using different weight matri-
ces Wk ,1, . . . ,Wk ,h ; vi,1, . . . , vi,h can be obtained by linear transformation of vi using dif-
ferent weight matrices Wv,1, . . . ,Wv,h . For each correlation in each pair of amino acids, 
its coefficients αh

i,j can be calculated using the Query-key dot product method, which can 
be expressed by mathematical formula as follows:

These correlation coefficients will then be normalized. The correlation coefficient αh
i,j is 

used as the weight to measure the value of each amino acid mi , and then the weighted 
sum is carried out to obtain the embedding of h types of each amino acid mi , which are 
z1i , . . . , z

h
i  , respectively. Finally, these embeddings of all kinds are concatenated with the 

Transformer to produce the final output zi of an amino acid node in the current layer, 
which is expressed by mathematical formula as:

where Zi ∈ R feature _out , and

Protein multi‑hop graph encoding (PMHGE)

In the process of protein multi-hop graph encoding, we use two GIN blocks to obtain 
two embeddings of protein. The input of the first GIN block is the original PPI network 
and the sequence feature, and the output is the first embedding E1 of protein. The input 
of the second GIN block is the two-hop PPI network (THPPI) and the sequence feature, 
and output is the second embedding E2 of protein. In this way, not only the features of 
adjacent nodes can be aggregated directly, but also the features of non adjacent nodes 
can be aggregated.

(4)αh
i,j = qi,h . . . k

T
j,h.

(5)Zi = concat
(

z1i . . . z
h
i

)

·Wo,

(6)zhi =
∑

j

softmaxj

(

αh
i,j

√

dk

)

· vhj .
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Two‑hop protein–protein interaction (THPPI) network

Through the THPPI graph network, the GIN block can learn new interactions between 
two proteins for the purpose of augmented graph representation. We construct the 
THPPI network through the PPI network. Specifically, we generate the adjacency matrix 
A2 of the THPPI network G2 through the adjacency matrix A of the original graph G1 , 
so as to obtain the structural information of the THPPI network. The mathematical for-
mula is described as follows:

where sign(x) is a symbolic function, when x > 0 , the value is 1; and when x ≤ 0 , the 
value is 0. It is worth noting that the new adjacency matrix contains the self-connection 
relation. And when protein nodes i and j correspond to values greater than 0, indicating 
that there is two-hop relationship between them on the original graph. Similarly, in the 
THPPI network G2 , two protein nodes are connected by edges to indicate their interac-
tion. Due to the nature of graphs in general, the model of graph neural networks can also 
do message passing and aggregation operational on G2.

Graph isomorphic network (GIN) block

The two GIN blocks in Fig. 2 are the same, as shown in Fig. 5 below. The input of this 
module is an L∗256 feature matrix, where L represents the number of proteins and 256 
represents the number of features of each protein. This feature matrix is obtained by 
concatenating structural information of the PPI network with amino acid sequence 
information. After two linear layers, two ReLU activation layers and normalization lay-
ers, the protein embedding was obtained.

Graph neural networks [24, 48–50] have seen tremendous progress in a variety of 
extremely challenging tasks. While graph isomorphism network (GIN) [51] is proved to 
be the most powerful variant of graph neural network (GNN) at present. Next, we will 
introduce how to obtain the information of the PPI network and the information of the 
THPPI network through the GIN block.

Similar to graph neural networks, the neighbor aggregation mechanism is the core of 
GIN. We iteratively update the feature of each node by aggregating feature of its neigh-
bors. After k iterations, the structure information in the k-hop neighborhood can be 
captured. And the new feature vector gkp  of node p can be expressed by the following 
mathematical formula:

(7)A2 = sign
(

A · AT
)

,

Fig. 5  The illustration of GIN block
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where N(p) is the set of all neighbor nodes of node p. We choose vector sum as the 
aggregation function and multi-layer perceptrons (MLP) as the update function.

Then, for the original PPI network G1 , after kth iterations, node p obtains the feature 
vector gkp1 , which can be expressed as:

where p′1 represents the first-order neighbor of the node p, and ǫ1 is hyperparameter. 
Finally, we can obtain the embedding of G1 , which is called E1.

Similarly, for the THPPI network G2 , after kth iterations, node p obtains the feature 
vector gkp2 , which can be expressed as:

where p′′2 represents the second-order neighbor of node p, and ǫ2 is hyperparameter. On 
the original graph G1 , p′′2 is the second-order neighbor of p. However, on the graph G2 we 
constructed, p′′2 is the first-order neighbor of p. Finally, we can obtain the embedding of 
G2 , which is called E2.

Feature fusion

This operation can well integrate the embedding E1 of the original PPI network and the 
embedding E2 of the THPPI network into the same embedding space. We fuse these two 
embeddings together to obtain the final embedding E out of all proteins and use element-
wise summation as the fusion form in this paper. Expressed in mathematical formula as 
the following:

Multi‑label PPI prediction

We input the final embedding E out of the proteins into a fully connected (FC) layer clas-
sifier, which predicts the interactions between two proteins. We use dot product opera-
tion to combine the embedding ei of protein pi and the embedding ej of protein pj . The 
mathematical formula is as follows:

In order to better supervise the training process of the model, we choose the multi-task 
binary cross-entropy loss function. And its mathematical formula is shown as follows:

(8)gkp = Update
({

gk−1
p , akp

})

, akp = Agg
({

gk−1
p′ | p′ ∈ N (p)

})

.

(9)gkp1 = MLPk





�

1+ ǫk1

�

+
�

p′1∈N (p)

gk−1
p′1



,

(10)gkp2 = MLPk





�

1+ ǫk2

�

+
�

p′′2∈N (p)

gk−1
p′′2



,

(11)E out = E1 + E2.

(12)ŷij = FC
(

ei · ej
)

.
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where I train represents the training set. ykij and ŷkij denotes the ground-truth label and 
predicted probability for class k, respectively.
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