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Background
Machine learning (ML) algorithms based on convolutional neural networks (CNNs) 
have made significant contributions to image analysis in digital pathology (DP). CNN 
algorithms have been shown to provide accurate computational solutions to low-level 
problems such as cell nucleus detection, as well as high-level problems such as gland 
segmentation and cancer classification, grading and survival prediction [1].

Abstract 

Background:  Histological feature representation is advantageous for computer aided 
diagnosis (CAD) and disease classification when using predictive techniques based 
on machine learning. Explicit feature representations in computer tissue models can 
assist explainability of machine learning predictions. Different approaches to feature 
representation within digital tissue images have been proposed. Cell-graphs have 
been demonstrated to provide precise and general constructs that can model both 
low- and high-level features. The basement membrane is high-level tissue architec-
ture, and interactions across the basement membrane are involved in multiple disease 
processes. Thus, the basement membrane is an important histological feature to study 
from a cell-graph and machine learning perspective.

Results:  We present a two stage machine learning pipeline for generating a cell-graph 
from a digital H &E stained tissue image. Using a combination of convolutional neural 
networks for visual analysis and graph neural networks exploiting node and edge 
labels for topological analysis, the pipeline is shown to predict both low- and high-level 
histological features in oral mucosal tissue with good accuracy.

Conclusions:  Convolutional and graph neural networks are complementary technolo-
gies for learning, representing and predicting local and global histological features 
employing node and edge labels. Their combination is potentially widely applicable in 
histopathology image analysis and can enhance explainability in CAD tools for disease 
prediction.
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However, concept representations for histological features visible in the underly-
ing digital tissue image, are missing in CNN models. Such features are often the basis 
for clinical grading schemes in pathology. The absence of histological features in CNN 
models renders their explanatory power weak, in terms a human pathologist could 
understand. Consequently, several researchers have considered graph neural networks 
(GNNs) as an alternative ML paradigm that can better fit the explanatory, clinical and 
regulatory needs of DP [2]. GNNs are capable of learning the properties and charac-
teristics of a wide range of graph theoretic structures [3]. Labelled graph structures are 
widely used in mathematical modeling, as they are well suited to represent high-level 
conceptual features (e.g. semantic networks [4]). In fact, digital images are just a special 
case consisting of gridded 2-dimensional labelled graphs. Many efficient algorithms exist 
to construct and analyse graph models [5, 6].

An important class of graph models for tissue representation in the DP literature are 
cell-graphs, which have a lengthy history that predates modern deep learning technol-
ogy [7]. The related literature summary of Additional file 1: Table S1 indicates research 
directions for this approach. Cell-graphs are motivated by the fact that cells in a tissue 
are not randomly organised, their spatial relationships are structured to allow the func-
tions of the cells and the tissue. Changes in these relationships indicate a change in func-
tion, which reflects on health and disease. In a cell-graph we can explicitly represent the 
high- and low-level histological features as well as relationships seen in tissue, in terms 
of entities (termed nodes) and relations (termed edges). A typical node is the centroid of 
a cell nucleus which has visual attributes, including location, colour and texture, as well 
as histological attributes such as cell type and morphology. A typical relation between 
entities is distance. By modeling tissue in this precise but abstract way, a cell-graph has 
the potential to capture the distinctive topological1 properties characterising a wide 
range of histological features, even when these are spread over large regions of a tissue 
image. Several approaches to cell-graph modeling have been proposed for different tis-
sue types, and the cell-graph model must be adapted to the task, tissue and disease (c.f. 
Groups I, II, IV of Additional file 1: Table S1). While histological features lack a precise 
(i.e. mathematical) description, they can in principle be machine learned as a graph con-
cept from a sufficiently large set of positive and negative examples [8–10].

To support explainability and generate trust in ML predictions, it is important that 
cell-graphs are amenable to human analysis and retrospective confirmation of ML pre-
dictions against ground truth image data in cases of doubt. Many GNN solutions pub-
lished in the literature have addressed DP problems, by providing an end-to-end (i.e. 
black-box) solution [2] (c.f. Groups III, IV and V of Additional file  1: Table  S1). Such 
GNN solutions compute, for example a binary classification (diseased/non-diseased) of 
an entire cell-graph according to some clinical grading scale. This is done without any 
explicit identification or analysis of the diagnostic contribution of individual histologi-
cal features. In such end-to-end approaches, explainability is weakened by missing con-
cepts, which must be recovered by additional post-hoc explainability techniques, such as 
sub-graph masking [11, 12].

1  Topological properties are geometry invariant, and hence less sensitive to problems such as tissue damage and staining 
distortion which can occur in the digital imaging process for tissue samples.
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In our work, we consider an alternative to this end-to-end GNN approach, where 
GNNs locate, classify and quantify relevant histological features in cell-graph structures, 
that a clinical pathologist might have used, when guided by a specific diagnostic model. 
In ML terms, this represents the use of hand-crafted features for learning which come 
directly from the science of histology itself, rather than from visual attributes of a digital 
image. A key general question here is: how well can we represent and learn high-level his-
tological features using graph theory and GNNs?

This report describes an ML pipeline for cell-graph representation and learning of his-
tological features based on both node and edge feature analysis. We illustrate its applica-
tion to the representation and ML of the basement membrane (BM) as part of a clinical 
grading model for oral mucosal lesions in patients post-haematopoietic stem cell trans-
plantation in the form of chronic graft-versus host disease (cGvHD) [13]. The grading 
model has identified changes in the BM as a key feature in the histopathological disease 
process of oral mucosal cGvHD [13]. The BM is a high-level histological feature separat-
ing the epithelium from the underlying lamina propria. It plays a key role in mediating 
interactions between cells in many processes like development, healing, fibrosis and can-
cer [14]. We propose a model for representing this high-level feature by classifying edges 
in a cell-graph to identify the cellular interface between the two tissue types separated by 
the BM.

Contributions and significance

We present a hierarchical approach to cell-graph construction based on a two stage 
pipeline that combines CNN-based analysis of local histological features with GNN-
based analysis of global histological features. This algorithmic approach can be used to 
directly translate the organisation and features of a clinically-based disease model into a 
set of ML-based classification and localisation algorithms that include explicit concept 
representations. In this way, the rationale for ML predictions can be traced backwards 
starting from the clinical disease model through a set of concept representations and 
measurements to the original ground truth image data, in a way that a human patholo-
gist could understand and confirm.

The main contributions of this work are: 

1	 An explanatory paradigm for ML-generated edge label predictions in cell-graphs that 
is anchored in well-defined histological phenomena, and that offers enhanced oppor-
tunities to compare ML predictions with ground truth data using pathologist exper-
tise.

2	 Novel concepts and results regarding the represention and ML of histological fea-
tures using both node and edge label representations.

3	 Applications of cell-graphs and GNNs in DP outside the widely studied domain of 
oncology.

Methods
Cell‑graph model

A cell-graph G can be defined as a labelled undirected graph
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where V is a finite set of node (entity) names v ∈ V  , and E is a finite set of edges (rela-
tions) e ∈ E . An undirected edge e can be represented as a pair (doubleton set) of nodes 
e = {v1, v2}.2 The function � : V → LV  is a node labelling which maps each node v ∈ V  
to a node label �(v) = l ∈ LV  , and the function ε : E → LE is an edge labelling which 
maps each edge e ∈ E to an edge label ε(e) = l′ ∈ LE . In our approach, every cell-graph 
G is associated with an underlying digital image I, and G attempts to capture salient his-
tological facts about I while abstracting away many irrelevant visual details.

In our approach to cell-graph modeling of the BM outlined below, a node label is a tri-
ple l = (x, y, type) where x, y ∈ R represents the geometric co-ordinates of the centroid 
of a cell nucleus, while type takes one of the four discrete cell class names. Note that the 
geometric coordinates x, y are only used for visualising a cell-graph and superimposing 
it on a tissue image. They are not used for GNN training as they are orientation depend-
ent. An edge label l′ ∈ LE will be Boolean value (true/false) to indicate whether the edge 
crosses the BM or not. An edge {v1, v2} implicitly indicates a proximity relation between 
nodes v1 and v2 in the underlying digital image I. In general, we can extend the label 
sets LV , LE with any number of additional parameters to represent further histological 
features and structures in hierarchical grading schemes e.g. oral mucosal cGvHD [13]. 
However, the above parameters suffice to define a cell-graph model of the BM.

Datasets

Datasets for training CNN models of cell classification and localisation were created 
using whole slide images (WSI) of oral mucosal biopsies from nine patients receiv-
ing haematopoetic cell transplantation and four healthy controls [13]. Biopsies were 
obtained from patients attending the Department of Maxillofacial Surgery, Karolin-
ska University Hospital or were retrieved retrospectively from Stockholm’s Medicine 
Biobank (Sweden Biobank). All patients were treated in accordance with the Helsinki 
Declaration. Previously, the biopsies had been sectioned and stained with haema-
toxylin and eosin (H &E) (Histolab Products AB, Gothenburg, Sweden), and scanned 
(x40) using a 3D Histech Midi Scanner System (3D Histech, Histolab Products AB). 
Sections were chosen to provide a wide variance of stain intensity and BM altera-
tions. The 13 WSIs were visualised using CaseViewer (3D Histech, Histolab Products 
AB), annotated and exported (1µm per 2 pixels), prior to segmentation into 152 tiles 
( 2000× 2000 pixels) in .tiff format. 51 tiles were selected located close to the BM, of 
which 42 included both epithelium and lamina propria. All tiles were manually anno-
tated by three histology experts to establish ground truth data regarding the loca-
tion (i.e. centroid coordinates) and classification of cell nuclei. Cell classifications 
were identified as epithelial, fibroblast and endothelial, inflammatory or lymphocytic 
(Fig.  1). Both locations and cell classifications were annotated as meta-information 
for the .tiff tile files using JSON formatted data annotations created with an in-house 
graphical annotation tool. Table 1 summarises the distribution of cell classes in the 

G = (V ,E, � : V → LV , ε : E → LE),

2  Note that for representing an undirected edge, the node order is considered irrelevant, i.e. {v1, v2} is the same as {v2, v1}
.
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Fig. 1  WSI of healthy buccal oral mucosa that has been segmented into tiles of 2000× 2000 pixels (a). 
Annotation of the extension of the BM visualised with blue line (b). Nuclei centroids were annotated (c) 
and labelled as either epithelial (red), fibroblast or endothelial (blue), inflammatory (green) or lymphocytic 
(yellow)

Table 1  Distribution of cell classes in the dataset for training the CNN models for nuclei detection 
and classification

Tiles Epithelial Fibroblasts and endothelial Inflammatory Lymphocytic Total

CNN dataset—annotated nuclei

Total 51 27,226 22,017 1809 11,676 62,728
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dataset, and indicates data skew among these classes, especially in the inflammatory 
class, which is due to differing degrees of inflammation from healthy to severe oral 
cGvHD [13].

For GNN learning of the BM as a cell-graph concept, it was necessary to construct a 
set of ground truth cell-graph models showing the location and topological context of 
the BM. 42 tiles with BM were annotated by histology experts using spline segments 
to represent BM location. Below, we describe the automated process of translating the 
spline segment annotations into ground truth cell-graph edge labels. Table 2 shows the 
resulting distribution of edge classes in the ground truth cell-graph dataset. It indicates 
data skew between the two edge classes, as the BM involves only a small percentage of 
each tile area.

Both cell annotations and BM annotations were reviewed by two histology experts 
to implement a consensus-based quality control process. Thus, two sets of high-quality 
ground truth data were available for ML: cell type annotations and BM annotations.

Experimental procedures

Figure 2 illustrates our ML-based architecture for the construction and analysis of cell-
graphs starting from high-resolution digital images of H &E stained tissue. The figure 
shows the major software components and data flows from left to right in a two stage 
pipeline.

In Stage 1 of the pipeline, the input is a digitised image I of H &E stained tissue. This 
tissue image is analysed by a deep CNN to identify small localised histological features. 
We have focused on the histological classification of four common cell populations pre-
sent in our tissue samples: inflammatory, lymphocyte, fibroblast/endothelial and epithe-
lial. However, other cell classes could also be considered such as apoptotic or mitotic 
cells. For CNN-based image analysis, we used the EfficientNet algorithm [15] to predict 
all cell classifications, and the EfficientDet algorithm [16] to predict the location of the 
centroids of all cell nuclei. These state-of-the-art deep-learning CNN algorithms make 
efficient use of a limited number of training parameters, and the smallest architecture 
EfficientNet-B0 (5.3 million trainable parameters) already gave high quality cell recogni-
tion. Note that no hand-crafted features (such as textures, cell size or shape) or cell seg-
mentation are used in Stage 1. Therefore, in principle, any other off-the-shelf deep CNN 
could be used in Stage 1, which makes this modular approach well adapted to future 
improvements in CNN algorithms. In particular, given larger ground truth annotated 
training sets and/or synthetic data, deeper versions of EfficientNet and EfficientDet 
could be used to give better CNN performance (e.g. EfficientNet-B1).

Table 2  Distribution of edge classes in the dataset for training the GNN models for identifying the 
edges crossing the BM

Tiles Non-crossing Crossing Total

 GNN dataset—annotated edges

Total 42 161,991 10,123 172,114
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The CNN output of Stage 1 is a list of nodes v1, v2, . . . , vn and for each node vi a label 
prediction �(vi) = (xi, yi, typei) . The node set V = {v1, v2, . . . , vn} is thus the basis for a 
cell-graph model G of I.

The next step in Stage 1 is the addition of a suitable edge set E to the labelled node set V 
which was the output of the CNN. For this we use a d-distance3 limited Delaunay triangula-
tion method [17]. Given the node set V = {v1, v2, . . . , vn} , Delaunay triangulation aims to 
connect three nodes vi, vj , vk ∈ V  in a triangle, whenever the triangle’s circumcircle is void 
of any other node point in V. Commonly, the Delaunay triangulation of a node set is unique 
up to graph isomorphism. This situation ensures the consistency of cell-graph construction 
across different data sets. For triangulation no edges need cross one another, and the cell-
graph is said to be planar. For generating the triangulation edge set E, we used the divide 
and conquer algorithm [18] that generates the edge set in O(n log n) time. For d-distance 

Fig. 2  ML pipeline for cell-graph construction and histological feature prediction. Node labels are generated 
by our CNN model (as in Fig. 1) and a node-labelled cell-graph is constructed with Delaunay triangulation. 
Edges are labelled by our GNN model to produce a fully node and edge labelled cell-graph with both 
high- and low-level histopathological features. Predicted edge labels (crossing/not crossing the BM) are 
visualised as true positive (green), false negative (yellow) and false positive (red). True negative edges are not 
visualised

3  For d we have chosen a value effectively equivalent to 300 pixels (150 microns). This choice was made to avoid long 
edges in the cell-graph, as cell density is generally not the same in different parts of a tile.
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Delaunay, we delete all Delaunay triangulation edges where the end nodes are separated by 
a distance greater than d in the image.

Thus, the final output of Stage 1 is a partially labelled cell-graph G = (V ,E) in which the 
node set V is defined and labelled (by � ), and the edge set E is defined but not yet labelled.

In Stage 2 we use a GNN algorithm to predict the edge label ε(e) = l′ ∈ LE of each 
edge e ∈ E as a Boolean value (true/false). The edge label ε(e) of an edge e = {v1, v2} 
should be true if a straight line between the image coordinates x1, y1 of node v1 and x2, y2 
of node v2 crosses the BM in the underlying tissue image I, otherwise ε(e) should be false.

There are many different architectures for GNNs published in the ML literature (see 
e.g. the surveys [19–21]). Message passing GNNs are robust to changes in the graph size, 
and this robustness is essential for working with different tissue datasets. For the Stage 2 
GNN algorithm we used GraphSage [22], which applies a basic form of message passing. 
In principle, many other more advanced GNNs could be used in Stage 2, so this modular 
approach is also well adapted to future improvements in GNN algorithms.

Training the CNN models

We chose EfficientNet-B0 as the architecture for the cell classification task in Stage 1. 
The use of a compound coefficient to uniformly scale the dimensions of depth, width of 
the CNN architecture and resolution of the image makes EfficientNet more efficient for 
training. In particular, it uses about one order of magnitude fewer training parameters 
than comparable deep CNNs having similar performance. This allows smaller training 
sets and faster training [15]. From every tile in the dataset, 32× 32 pixel images were 
extracted, each containing the bounding rectangle for the centroid of an annotated cell 
nucleus. These 32× 32 pixel images were then up-scaled to 224 × 224 pixel images using 
bicubic interpolation and used to train EfficientNet.

A CNN can be mathematically represented as stacked layers of non-linear function 
blocks applied on input data [15]. This representation can be expressed as

where N  represents the CNN, Fi denotes the non-linear function block at stage i, Li 
represents the network length and ⊙ represents the composition of all layers stacked 
together. Furthermore, 〈Hi,Wi,Ci〉 represents the height, width and channel informa-
tion of the input image which describes the input shape of the tensor input data to N  . 
The main goal of the EfficientNet architecture is to maximise the accuracy of the model 
without modifying Fi . This is achieved by compound scaling of the Li (depth), 〈Hi,Wi〉 
(resolution) and Ci (width) of N  as shown in Eq. (2) [15].

where d,  w,  r are the coefficients for scaling the depth, width and resolution of N  . 
The architectural details of the EfficientNet B0 model used are given in Table 3, where 
MBConv is the mobile inverted bottleneck block [23].

(1)N = ⊙
i=1,...,s

F
Li
i (X�Hi ,Wi ,Ci�),

(2)max
d,w,r

Accuracy(N (d,w, r))

(3)such that N (d,w, r) = ⊙
i=1,...,s

F
d·Li
i (X� r·Hi , r·Wi ,w·Ci�),
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The cell annotated dataset was divided into two disjoint subsets for training and test-
ing based on a qualitative assessment of BM integrity and distribution in each tile. Three 
different data splits were used: (i) 60:40, (ii) 65:35 and (iii) 70:30 to assess the adequacy of 
the dataset size and to detect overfitting in the CNN model. 15% of the training data was 
reserved for validation in each split.

Medical image datasets are known to have class imbalance problems, where the dis-
tribution of samples representing each class is highly skewed [24]. To address this issue, 
oversampling of training data was performed according to cell class, to achieve a more 
uniform distribution of samples per class. To further artificially increase the size of the 
dataset, and improve CNN model generalisation on new data, the following data aug-
mentation steps were performed on the training data. The images were flipped hori-
zontally with a 50% probability and flipped vertically with the same probability. The 
complete dataset was then used to train an EfficientNet model with the objective to 
accurately classify each cell. No model pretraining was used.

For nuclei localisation, we used the EfficientDet-D0 architecture which integrates a 
previously trained EfficientNet model as its backbone network [16]. This allows transfer 
of the cell classification model to the nuclei localisation task. EfficientDet-D0 consists of 
three Bi-directional Feature Pyramid Network (BiFPN) blocks with 3x3 convolutional 
layers, 64 channels and the ReLU activation function. The role of BiFPN is to aggregate 
the features from different levels via a top-down and bottom-up approach using the con-
volutional layers. Table 4 shows the architectural setup of EfficientDet D0 model used in 
this research.

Due to the large size of the tiles ( 2000× 2000 pixels), each tile was split into 16 sub-tiles 
of size 512× 512 pixels, with a 16 pixel overlap between each crop to evenly distribute the 
squares over the image. Sub-tiles containing less than 10 cell annotations were discarded. 

Table 3  Architectural details of efficientNet B0 model for cell classification [15]

Stage Function block Resolution #Channels #Layers
i Fi Hi ×Wi Ci Li

1 Conv 3× 3 224× 224 32 1

2 MBConv1, 3× 3 112× 112 16 1

3 MBConv6, 3× 3 112× 112 24 2

4 MBConv6, k5× 5 56× 56 40 2

5 MBConv6, k3× 3 28× 28 80 3

6 MBConv6, k5× 5 14× 14 112 3

7 MBConv6, k5× 5 14× 14 192 4

8 MBConv6, k3× 3 7× 7 320 1

9 Conv 1× 1 & Pooling & FC 7× 7 1280 1

Table 4  Architectural details of EfficientDet D0 model for cell detection [16]

Input size Backbone #Channels (BiFPN) #Layers (BiFPN) #Layers 
(Box/
class)

Rinput Network Wbifpn Dbifpn Dclass

512 B0 64 3 3



Page 10 of 21Nair et al. BMC Bioinformatics  2022, 23(1):506

In addition to oversampling and data augmentation techniques to handle the class imbal-
ance problem, an α-balanced variant of the focal loss function was used [25]. Focal loss is an 
improved version of the cross-entropy loss function for class imbalance in object detection 
tasks [26]. The focal loss function is defined by,

Here α ∈ [0, 1] is a weighting factor used to balance the positive and negative labeled 
samples, and p ∈ [0, 1] is the model estimated probability for class membership. The 
central idea of focal loss is to ignore the cases where the prediction is wrong and p is 
small, and focus more on hard-negative cases where there is a wrong prediction with a 
high p value. Here γ is a parameter to specify the rate at which easy examples are down-
weighted to focus more on the hard-negatives.

Training the GNN models

After constructing the node labelled cell-graph G = (V ,E, �) as the output of Stage 1, the 
task of predicting the edge label values ε(e) (i.e. crossing or not crossing) was considered as a 
GNN classification problem.

For generating a fixed dimension embedding of an arbitrary sized cell-graph G into Rn 
we use GraphSage [22]. For each target node v ∈ V  , GraphSage generates an embedding 
of v by message passing, i.e. aggregating features from the local neighborhood of v in G 
using an iterative process. During each iteration, a fixed subset of the node’s neighborhood 
is sampled. All the information from the sampled neighborhood is then transformed to an 
embedding vector using an aggregator function. The number of graph convolutional layers 
K, is a hyperparameter which determines the number of hops or depth traversal, to aggre-
gate the node information during each iteration. The aggregated information hkNv

 at a node 
v ∈ V  , at the kth layer of a GraphSage model is defined by,

Here, hk−1
u  represents the embedding of node u in the previous layer k − 1 , Nv represents 

the sampled neighborhood of node v and AGGk for each k ∈ {1, 2, . . . ,K } is a differenti-
able aggregator function. The state embedding hkv of a node v is calculated by concat-
enating the aggregated information in Eq. (5) with its state embedding in the previous 
layer hk−1

v  and is defined by,

Here, Wk is a trainable weight matrix, || represents the concatenation operation and σ 
represents a non-linear activation function. We used the Max Pool aggregator [22] as the 
aggregator function in our GraphSage model, which is defined in Eq. (7).

(4)FL =
−α(1− p)γ log(p), y=1
−(1− α)pγ log(1− p), otherwise.

(5)hkNv
= AGGk(h

k−1
u , ∀u ∈ Nv).

(6)hkv = σ(Wk · [h
k−1
v ||hkNv

]).

(7)AGG
max_pool
k = max({σ(Wpoolh

k
ui
+ b) : ui ∈ N (u)}),
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where max is the element-wise max operator and σ is a non-linear activation function. 
The final embedding representation zv of the node v is generated after the last iteration 
in the final layer K, and is defined by zv = hkv for each v ∈ V .

We implemented edge label prediction from the node embedding output of Graph-
Sage as follows. To calculate the edge information of the nodes, the node embeddings 
zv are fed to a fully connected neural network with output dimension 1. The result is an 
output vector ov ∈ R

1×|V | where |V| is the number of nodes in the cell-graph. The edge 
label prediction between two nodes oedge(i,j) ∈ [0, 1] is calculated by,

where σ is the non-linear sigmoid function and oedge(i,j) is the probability that the edge 
between node i and node j, (i, j ∈ V ) crosses the BM.

Figure 3 depicts the procedure for ground truth cell-graph construction and training 
GraphSage to identify the edges crossing the BM. The ground truth cell-graphs for GNN 
training were constructed using 42 of the 514 tiles from the ground truth cell annotated 
image set {I1, . . . , In} used for CNN training. Each tile contained a visible BM annotated 
as a set of splines S(I) = {s1, . . . , sn} using the JSON format. To label each edge e in G(I), 
we computed its intersection with each of the splines sj ∈ S(I) . If the intersection of e 
and sj was non-empty for some spline sj ∈ S(I) then ε(e) was set to true otherwise ε(e) 
was set to false. With the exception of the manually generated BM spline annotations 
S(I), construction of each cell-graph G(I) from its tissue image I was a fully automated 
process. Applied to a set of H &E stained training images {I1, ..., In} , this process gave a 
ground truth cell-graph dataset {G(I1), ...,G(In)} of node and edge labelled cell-graphs 
G(Ij) suitable for GNN training.

(8)oedge(i,j) = σ(oTi · oj),

Fig. 3  Training procedure for a GraphSage model to identify the edges crossing the BM. Ground truth 
annotations for nuclei locations, cell class and BM localisation were integrated with a d-distance limited 
Delaunay triangulation to create a node and edge labelled ground truth cell-graph. Nodes were labelled 
according to cell class and edges were labelled as crossing (red edges) or not crossing (black edges) the BM. 
Subsequently the ground truth cell-graphs were employed for training GraphSage for edge classification

4  Absence of BM was the excluding factor.
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The ground truth cell-graph dataset was then used to train a GraphSage GNN. For this 
purpose, the cell-graph dataset was divided into two disjoint subsets for training and testing 
using (i) 60:40, (ii) 65:35 and (iii) 70:30 training/test data splits. Again, 15% of the training 
data was kept as the validation set to tune the model during training. The number of lay-
ers in the GraphSage model was set to two, as deep GNN models are susceptible to overs-
moothing [27, 28]. The neighbourhood sample size was set to 10, which was adequate to 
completely sample the immediate neighbourhood of each node in the Delaunay triangula-
tion. The model was trained for 100 epochs with a batch size of 32. An Adam optimizer 
was used with an initial learning rate set to 1× e−3 and was scheduled to drop by 1× e−1 
after every 40 epochs. This setting allowed larger weight changes at the start of the learning 
process, and smaller weight changes towards the end for fine-tuning. To avoid overfitting 
of the data, regularisation techniques like dropout were used with a value set to 0.3 and the 
weight-decay parameter was set to 1× e−4.

Evaluation metrics

We use the standard ML metrics of accuracy, precision, recall and F1-score to evalu-
ate the quality of trained models for both classification tasks (cell-type in the CNN and 
BM edge crossing in the GNN) [29]. The accuracy metric represents the number of cor-
rectly classified instances divided by the total number of instances evaluated. Precision 
is defined as the ratio of correctly identified positive instances to all correctly identified 
instances. Recall measures the proportion of correctly identified positive instances to all 
actual positive instances. The F1 score is the harmonic mean of precision and recall, and 
is a good metric for imbalanced datasets such as ours. The mathematical definitions of 
these metrics are given below.

Here, TP, FP, TN and FN represent the numbers of true positives, false positives, true 
negatives and false negatives respectively.

To evaluate the quality of training for the nuclei localisation task, we used the mean 
average precision (mAP) metric which is widely used for object detection tasks [30–32]. 
The mAP metric is defined as the mean of the average precision (AP) for the images in a 
dataset, with AP defined by,

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)Precision =
TP

TP + FP

(11)Recall =
TP

TP + FN

(12)F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall

(13)AP =

∫ 1

0
p(r) dr.
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Here, p is the precision and r is the recall, p, r ∈ [0, 1] . AP is thus the trade-off between 
precision and recall of the model.

Computing platform

The CNN and GNN stages of the pipeline were both implemented using the PyTorch 
Geometric library [33]. All training experiments were run on an NVIDIA Tesla V100 
SXM2 GPU with 32GB RAM.

Results
In this section, we discuss the quality of our CNN and GNN models in terms of their 
predictive performance using the above standard metrics. We also discuss their predic-
tive performance from a histological perspective by presenting and discussing specific 
examples of ML labelled tiles.

We begin by summarising the overall performance of the entire ML pipeline, in 
Table  5, as well as the performance of its two individual ML components: 

1	 Accuracy and mAP of the CNN models of Stage 1,
2	 Accuracy of the GNN model of Stage 2,
3	 Accuracy of the entire ML pipeline, i.e. Stages 1 and 2 combined.

For each column in Table  5, we present metrics obtained for each of the three 
training:test data splits: (i) 60:40 (ii) 65:35 and (iii) 70:30.

CNN evaluation

Cell classification

We computed values for the standard metrics of precision, recall, F1-score and accu-
racy to understand the results of training an EfficientNet CNN for the cell classifica-
tion task. The detailed metrics for the validation and test datasets are shown in Table 6 
and Additional file 1: Tables S2 and S3. The best result was obtained for the 70:30 split 
experiment, where F1 scores for the fibroblast and endothelial, and epithelial classes are 
high. These cell classes predominate on opposite sides of the BM and help locate the 
BM, especially when intact. However, the high precision, recall and F1 scores for inflam-
matory cells with respect to the validation set coupled with low corresponding values 
for the test set suggest partial overfitting of the CNN model due to a lack of sufficient 
inflammatory cell examples.

Table 5  Comparison of ML performance on validation (Val) and test datasets

Best outcomes in bold

Splits EfficientNet EfficientDet GraphSage Entire ML pipeline

Stage 1 Stage 1 Stage 2 Stages 1 + 2

Accuracy mAP Accuracy Accuracy

Val Test Test Val Test Test

60:40 0.9811 0.7103 0.5181 0.9123 0.9041 0.8781

65:35 0.9801 0.6985 0.5250 0.9016 0.8970 0.8669

70:30 0.9808 0.7115 0.5095 0.9148 0.9071 0.8816
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Nuclei localisation

We evaluated the performance of EfficientDet on the nuclei localisation task using 
the mAP metric. We recorded the best mAP value for the 65:35 dataset split ratio and 
the localisation performance by cell class for the test dataset is shown in Table 7 (and 
Additional file 1: Tables S4 and S5). Recall that EfficientDet builds upon an EfficientNet 
model. Comparison of Tables 6 and 7 illustrates how this dependency affects the accu-
racy of localising cell nuclei.

However, the mAP metric does not give a representative measure of localisation per-
formance when the training set is not fully annotated. It is not practical to fully manu-
ally annotate all ground truth images, especially for new datasets. This meant there were 
many cases in which the ML model accurately located a cell nucleus which was not 
annotated in the ground truth image. In such a case, according to mAP the prediction 
was considered false, which is incorrect.

Verification of both cell class predictions and locations was carried out manually 
through visual inspection by the histopathology experts (Additional file 1: Fig. S1).

GNN evaluation

The GraphSage GNN model generates predictions of edge labels in the cell-graph 
which identify those edges that cross the BM. Table 8 (and Additional file 1: Tables 
S6 and S7) presents a summary of GNN model performance. For the ground-truth 
cell-graph dataset, we observed the best result for the 70:30 split experiment with 

Table 6  Detailed metrics for cell class identification—(70:30 split)

Accuracy measurements in bold

Precision Recall F1 Support

EfficientNet (Stage 1)—Validation Set

 Inflammatory 0.99 1.00 1.00 2534

 Lymphocyte 0.97 1.00 0.99 7036

 Fibroblast/Endothelial 0.98 0.97 0.97 6739

 Epithelial 0.98 0.97 0.97 4286

 Accuracy 0.98 20595

EfficientNet (Stage 1)—Test Set

 Inflammatory 0.06 0.05 0.05 401

 Lymphocyte 0.68 0.33 0.45 4479

 Fibroblast/Endothelial 0.62 0.79 0.69 6433

 Epithelial 0.83 0.90 0.86 7882

 Accuracy 0.71 19195

Table 7  Detailed metrics for nuclei localisation—65:35 split

Average mAP in bold

Inflammatory Lymphocyte Fibroblast/
endothelial

Epithelial

EfficientDet (Stage 1)—Test Set

 mAP mAP mAP mAP Average mAP

 0.0881 0.5105 0.6466 0.8546 0.5250
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a good F1 score of 0.9071. Notice that the class imbalance in the ground truth cell-
graph training set (see Table 2) manifests as an F1 value imbalance between crossing 
and non-crossing edges. However, the training set imbalance has been ameliorated, 
and the overall F1 score is good.

Full pipeline evaluation

The goal of metrics for the full ML pipeline was to estimate its performance at pre-
dicting the BM in original and unannotated images of H &E stained oral mucosa 
tissue, imitating clinical usage. This need not be the same as measured GNN perfor-
mance on the cell-graph test data described in section "Methods". This is because 
the overall accuracy of the pipeline depends on the accuracy of two different ML 
models in Stages 1 and 2. These have been shown to be less than 100% accurate 
(Tables 5, 6, 7, and 8). To evaluate the performance metrics, it was necessary to add 
BM ground truth annotations to the digital images as spline data.

The observed performance results given in Table 9 show only a small drop from 
0.91 to 0.88 in the F1 metric in comparison to Table 8 (and Additional file 1: Tables 
S8 and S9).

These metric estimations were visually confirmed by histology experts. The pre-
dicted BM crossing edges were confirmed to follow the BM interface with good 
agreement. Figure 4 highlights two cases of healthy and severely inflamed tissue. In 
healthy tissue and intact BM, the pipeline performed well according to visual inspec-
tion. Whereas with increasing inflammation, witnessed by exocytosis and elevated 
numbers of inflammatory and lymphocytic cells, resulting in loss of BM integrity, 
the false positive edge predictions increase according to visual inspection.

Table 8  Detailed metrics for edge classification—70:30 split

Accuracy measurements in bold

Precision Recall F1 Support

GraphSage (STage 2)—validation set

 Non-crossing edge 0.9795 0.9293 0.9537 20017

 Crossing edge 0.3552 0.6672 0.4636 1169

 Accuracy 0.9148 21186

GraphSage (Stage 2)—test set

 Non-crossing edge 0.9810 0.9194 0.9492 45779

 Crossing edge 0.3417 0.7011 0.4594 2733

 Accuracy 0.9071 48512

Table 9  Detailed metrics for the full pipeline—70:30 split

Accuracy measurement in bold

Precision Recall F1 Support

Full pipeline (stages 1 + 2)—test set

 Non-crossing edge 0.9794 0.8944 0.9350 55629

 Crossing edge 0.2318 0.6288 0.3387 2818

 Accuracy 0.8816 58447
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Discussion
We have presented a two-stage ML pipeline, based on a CNN and a GNN architec-
ture, to identify and localise low-level and higher-level histological features as node 
and edge labels in cell-graphs. This pipeline achieves good levels of accuracy using 
currently available ML technology.

Graph-based learning in computational pathology includes a variety of tasks, appli-
cations, datasets and ML architectures, which have been combined in different ways. 
Additional file  1: Table  S1 provides a representative overview of existing research 
organised in terms of both ML techniques and digital pathology goals. The table iden-
tifies five clusters of published research (Groups I to V) and ranks these in order of 
similarity to the current study, Group GI being the most and Group V the least simi-
lar. Our work aimed to develop an ML architecture to identify high-level histological 
features from cell-graphs. Thus it shares a common goal with Groups I and II which is 
not shared with the larger Groups III, IV and V (c.f. Additional file 1: Table S1 column 
10).

In Group I, Levy [34] and Anklin [35] are the two works most closely related to our 
approach overall. In common with our work, they share: (i) a DP goal of predicting 
high-level histological features from a graph and (ii) an ML approach of using GNN 
algorithms. In Levy [34] a framework is introduced for capturing the micro- and 

Fig. 4  A comparison of BM crossing edge predictions by the pipeline in tissue displaying a healthy BM and in 
tissue with severe degradation of the BM. In the bottom row, predicted edge labels (crossing/not crossing the 
BM) are visualised as true positive (green), false negative (yellow) and false positive (red). True negative edges 
are not visualised. The ground truth annotation of the BM is superimposed as a blue line for comparison
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macro-architectures of histological images to determine the degree of tumor invasion. 
Both CNN and GNN algorithms were used to learn high-level histology features as 
2-dimensional regions of interest, which are collections of tissue patches. For exam-
ple, the degree of overlap between the tumor and adjacent tissue region can thus be 
measured. By contrast, the BM, which we study, is essentially a 1-dimensional struc-
ture, consisting of highly specialised connective tissue, not easily representable as a 
region. The work of Anklin [35] utilises the tissue-graphs introduced by Pati [36] for 
hierarchical cell-graphs to propose a weakly supervised GNN for segmentation into 
regions of benign or diseased tissue that are biologically meaningful to a pathologist.

Both Levy [34] and Anklin [35] use tissue regions/patches as nodes in their cell-
graph representation. Such composite node models risk being too large to capture 
individual cell interactions. By contrast, we use individual cell nuclei as the nodes 
in our cell-graphs, since our aim is to study the cellular interactions across the BM. 
This observation can also be applied to the research in Group V of Additional file 1: 
Table S1.

The work of Levy [34] comes closest to replicating our combined CNN/GNN ML 
architecture for histological feature identification using supervised learning. How-
ever, edge features are not used in either Levy [34] or Anklin [35]. Thus, segmentation 
by edge classification could not be implemented by either of these approaches. Our 
approach integrates edge label aggregation with node label aggregation to extend an 
existing message passing GNN (GraphSage) to edge label prediction. This combined 
aggregation technique could also be applied to other message passing GNNs, which 
are increasingly the dominant technology of GNNs (see for example [37]). Our work 
highlights the fact that optimal aggregation of node and edge data is an important 
area for future cell-graph research. The work presented here thus represents a novel 
approach to segmentation problems using edge label prediction.

Additional file  1: Table  S1 also shows that Levy [34] and Anklin [35] differ in the 
specific CNN and GNN algorithms used, as well as the graph construction method. 
Furthermore, Anklin [35] uses a semi-supervised approach to learning in contrast 
with the supervised approach used both here and in Levy [34].

Learning high level histological features from graphs by deep learning methods 
other than GNNs has also been proposed. Three such examples are given in Additional 
file 1: Table S1 Group II. The work of Sirinukunwattana [8] introduced a cell-graph 
approach to extract the tissue phenotype signatures using statistical measurements 
and logistical regression analyses. The study involved clustering of tissue patches, 
which was further employed as a method for tissue phenotyping [9, 38]. These papers 
share some similarities with our paper, as they also use supervised CNN algorithms 
for cell identification and detection [8]. Furthermore, they also use the Delaunay tri-
angulation method for their cell-graph construction. However, in our approach we 
use EfficientNet and EfficientDet [15, 16] for cell identification and detection, which 
are considered state-of-the-art methods in the CNN community. Also, we use GNNs 
instead of clustering or logistic regression analyses for understanding the high-level 
histopathological features.

Many works consider a combination of CNN and GNN learning algorithms to pre-
dict an overall classification for an entire cell-graph such as disease severity. All these 
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works contrast with our own goal of classifying the individual graph components and 
substructures. To survey this extensive research, it has been divided into three cat-
egories (Groups III, IV and V) in Additional file 1: Table S1.

The majority of the studies in the field of digital pathology involving cell-graphs or 
tissue-graphs perform ML only from node features (Group III: [39–41]). This shows 
that the use of edge labels as topology descriptors for biological entity-graphs is under-
exploited. To our knowledge Sureka [39], Anand [40], and Studer [41], as well as Bilgin 
[10] in Group IV are the only works which utilise an edge attribute for learning, namely 
the distance between nodes. The edge convolution method proposed by Anand [40] was 
used in Sureka [39] to incorporate the edge distance attribute. The ENN network [42] 
that maps edge features to a matrix that is multiplied by the node feature vector, was 
used in Studer [41].

The research works in Group IV [11, 12, 43–45] also combine CNN and GNN meth-
ods to classify overall graph properties, and all share a common use of the k-nearest 
neighbour (kNN) method for cell-graph construction, and cell nuclei as the node attrib-
utes. By contrast, our approach uses Delaunay triangulation for cell-graph construction. 
We use the Delaunay method because kNN-based edge generation is not invariant with 
respect to the node ordering in a graph. By contrast, both the Delaunay triangulation and 
d-distance neighbors methods used in our approach are invariant to node order [46]. 
The important consequence when using kNN edge generation, is that non-isomorphic5 
cell-graphs can be generated from the same tissue image. Consequently, kNN methods 
cannot be guaranteed to be robust to tissue orientation, which can negatively impact the 
learnability of histological features. However, in Group IV, kNN methods are not applied 
to learn histological features, so kNN methods may nevertheless be robust for learning 
the tasks of this group.

The research works in Group V [10, 36, 47, 48] all make use of complex node represen-
tations in cell-graphs, such as cell-graphs, cell clusters, patch graphs and tissue-graphs. 
This also holds for both the works of Levy [34] and Anklin [35] in Group I. Hierarchical 
graphs have also been used to model the tissue structure. The work of Pati [36] proposed 
HACT graphs, which are a combination of cell-graph, tissue-graph and cell-to-tissue-
graphs for breast cancer classification. The work of Lu [47] generated cell cluster graphs 
using the Mean-shift clustering algorithm by grouping nuclei into subgraphs based on 
their spatial and morphological features. In Bilgin [10] and Demir [48] hierarchical cell 
cluster graphs were constructed by placing a grid on top of the cells and clustering the 
cells based on the grid size and number of cells within it. The cell cluster generated by 
this method can represent a single cell, part of a cell or a group of cells combined.

As for Group I, we can again observe that composite node models risk being too large 
to capture individual cell interactions. By contrast, we use cell nuclei as the nodes in 
our cell-graphs, since our aim was to learn and represent the cellular interaction across 
the BM. For this reason, we consider graph representations other than cell-graphs to be 
largely outside the scope of our work.

5  Observe that most important graph theoretic concepts (e.g. cliques, centroids) are isomorphism invariant.
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There are several limitations to this study. We observe that even though CNN model 
performance was not optimal for all four cell types due to data imbalances, the GNN 
model was robust to CNN prediction errors, and actually achieved greater accuracy 
(GNN overall accuracy 0.91 versus CNN overall accuracy 0.71). Data imbalances were 
due to the inherent nature of the dataset with a combination of healthy and diseased 
tissues. Thus, additional research is warranted to address the data imbalances in CNN 
training data. Future algorithmic research might also assess whether additional GNN 
stages in our pipeline are effective in constructing hierarchical cell-graph models [10, 
36]. The node and edge aggregation methods used here could potentially be improved 
by further algorithmic analysis of GNNs together with practical ML experimentation. 
Additional classes of histologically-based edge labels could also be considered to further 
improve accuracy.

Conclusions
We have shown that convolutional and graph neural networks are complementary tech-
nologies for learning, representing and predicting local and global histological features 
using node and edge labels from digitised tissue images. CNNs are well suited to local 
analysis of small image regions. They yield low-level histological representations that 
can be passed on for higher-level topological analysis by GNNs, through the shared 
data structure of a cell-graph model. This process is naturally hierarchical, and follows 
the workflow of the pathologist in clinical practise. A staged CNN/GNN pipeline also 
enhances the explainability of ML predictions in histological terms terms that can be 
easily understood by the clinician, especially when predicted features are linked to a 
diagnostic model, such as oral mucosal cGvHD [13]. Using state-of-the-art but off-the-
shelf CNN and GNN technologies, we have demonstrated good performance results for 
such a staged ML pipeline. In the future, these performance results could be improved 
by using larger and more balanced data sets for ML training, and further improvements 
in CNN and GNN algorithms. By using precisely defined cell-graph structures for data 
exchange between ML models, a staged ML pipeline is also robust to future changes in 
ML technology, and developments in diagnostic techniques.

The work presented here is oriented towards oral medicine, but we believe the 
approach is general, and could be applied to other medical fields such as oncology.
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