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Abstract 

Background: Today’s biomedical imaging technology has been able to present the 
morphological structure or functional metabolic information of organisms at different 
scale levels, such as organ, tissue, cell, molecule and gene. However, different imaging 
modes have different application scope, advantages and disadvantages. In order to 
improve the role of medical image in disease diagnosis, the fusion of biomedical image 
information at different imaging modes and scales has become an important research 
direction in medical image. Traditional medical image fusion methods are all designed 
to measure the activity level and fusion rules. They are lack of mining the context 
features of different modes of image, which leads to the obstruction of improving the 
quality of fused images.

Method: In this paper, an attention-multiscale network medical image fusion model 
based on contextual features is proposed. The model selects five backbone modules 
in the VGG-16 network to build encoders to obtain the contextual features of medical 
images. It builds the attention mechanism branch to complete the fusion of global 
contextual features and designs the residual multiscale detail processing branch to 
complete the fusion of local contextual features. Finally, it completes the cascade 
reconstruction of features by the decoder to obtain the fused image.

Results: Ten sets of images related to five diseases are selected from the AANLIB data-
base to validate the VANet model. Structural images are derived from MR images with 
high resolution and functional images are derived from SPECT and PET images that are 
good at describing organ blood flow levels and tissue metabolism. Fusion experiments 
are performed on twelve fusion algorithms including the VANet model. The model 
selects eight metrics from different aspects to build a fusion quality evaluation system 
to complete the performance evaluation of the fused images. Friedman’s test and the 
post-hoc Nemenyi test are introduced to conduct professional statistical tests to dem-
onstrate the superiority of VANet model.

Conclusions: The VANet model completely captures and fuses the texture details and 
color information of the source images. From the fusion results, the metabolism and 
structural information of the model are well expressed and there is no interference of 
color information on the structure and texture; in terms of the objective evaluation 
system, the metric value of the VANet model is generally higher than that of other 
methods.; in terms of efficiency, the time consumption of the model is acceptable; in 
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terms of scalability, the model is not affected by the input order of source images and 
can be extended to tri-modal fusion.

Keywords: Medical image, Medical image fusion, Attention mechanism, Contextual 
information, Multi scale feature extraction

Background
As an important auxiliary tool for medical diagnosis, the importance of medical images 
is self-evident. With the development of sensor technology, the types of medical images 
are becoming more and more abundant [1, 2]. The information provided to doctors by 
different types of medical images is usually complementary and how to aggregate these 
complementary information into one image has become the focus of current research 
[3–7].

Figure  1 presents two modal images of a patient with mild Alzheimer’s disease and 
their fusion results. Figure  1a is the MR-T2 image showing globally widened hemi-
spheric sulci, which is more prominent in parietal lobes. Figure 1b is the PET image that 
captures signals of markedly abnormal metabolism in brain regions. Weak metabolism 
occurs in the anterior temporal and posterior parietal regions. The changes tend to be 
bilateral, but the right hemisphere is more affected than the left, with the posterior cin-
gulate gyrus relatively unaffected. Figure 1c is the fusion result of Fig. 1a and b. Doc-
tors can pay attention to the metabolism of abnormal parts while observing structural 
changes. It can be seen that medical image fusion is of great significance to clinical 
diagnosis.

(a) MR-T2 (b) PET

(c) The fusion of MR-T2 and
PET

Fig. 1 Multi-modal image of a brain metastasis of a bronchial cancer
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Since the quality of the fused images directly affects the doctor’s judgment of the 
disease, how to improve the fusion quality of medical images has become an urgent 
problem to be solved. The quality of fused images depends on the acquisition of image 
features and the design of fusion rules. Traditional methods usually adopt manual design 
of feature extraction methods and fusion rules. Although such methods can effectively 
describe the detailed features of images, they can not acquire the features of images with 
different modalities. Human-designed image fusion rules focus more on computing 
weight maps, which integrate pixel activity information from different source images. In 
traditional fusion methods, the computation of the weight map is achieved by two steps 
of activity level measurement and weight assignment. Medical images are decomposed 
by pre-designed filters and their activity is measured by the absolute value of the decom-
posed coefficients. Then a “choose-max” or “weighted-average” fusion rule is applied to 
different measurement sources to assign weights.However, this kind of measuring activ-
ity and assigning weights are not very stable due to noise, registration and differences in 
pixel intensities. In order to further improve the performance of the fusion model, schol-
ars have proposed many complex decomposition methods and designed weight alloca-
tion strategies carefully. Therefore, these methods are usually designed in steps, breaking 
the link between activity level measurement and weight assignment.

The medical image fusion method based on deep learning can comprehensively con-
sider the key issues of the fusion image process. This kind of method realizes the direct 
mapping of source image to weight by encoding the image and completes activity level 
measurement and weight assignment in an ”optimal” way via learning network param-
eters, which enhances the correlation between activity level measurement and weight 
assignment effectively. In all deep learning algorithms, improved algorithms based on 
autoencoders (AE) [8–10], generative adversarial networks (GAN) [11, 12] and convolu-
tional neural networks (CNN) [13–15] are popular in medical image fusion. Song et al. 
proposed MSDNet and applied it to the extraction of medical image features [16]. The 
multiplexing of features enhanced the expression of important information in the fused 
image; Kang et al. regarded the fusion of PET and MR images as a min-max optimiza-
tion problem with respect to the generator and the discriminator [17]. They proposed 
TAcGAN model to enhance the structural features of fused images through a game of 
generator and discriminator, while preserving part of the information of SPECT images. 
Zhang et al. proposed a general fusion framework based on convolutional neural net-
work called IFCNN [18]. IFCNN can obtain the salient features of medical images with-
out being limited by the number of source images. The fused images preserves important 
features from different images better.

Although the above methods improve the fusion quality of medical images, their 
improvement is limited. This is because they only focus on image fusion itself, ignoring 
the significance of medical image fusion. Medical image fusion focuses on the global and 
local effects of abnormal tissue on medical images, which are often reflected in the con-
textual information of images. Therefore, how to obtain image context information has 
become the top priority of current research. In order to address this issue, we propose a 
new medical image fusion model on deep learning, called VAnet. The VAnet model has 
two most important parts, the encoder and the fusion network. The encoder consists of 
five convolutional pooling blocks of the VGG-16 network, which can sufficiently capture 
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the contextual information of medical images. The fusion network adopts the method 
of combining residual multi-scale feature extraction and attention mechanism to realize 
the enhancement of salient features and the preservation of texture detail information.

Methods
VAnet

Overview

VAnet is a new type of medical image fusion model. It consists of three parts: encoder, 
AM fusion network and decoder. In Fig. 2, the encoder consists of five coding blocks, 
which are corresponding to five blocks of VGG-16, respectively. The five feature maps 
obtained from five blocks contain all the contextual semantic information of the image. 
Then the feature maps are put into the AM fusion network for multi-scale deep fea-
ture fusion. The AM fusion network consists of the attention mechanism branch and 
the residual multi-scale detail fusion branch. The attention mechanism branch con-
sists of the channel attention mechanism block and five convolution blocks. Among 
them, the channel attention mechanism block can suppress noise, especially functional 
images. The residual multi-scale detail fusion branch includes three convolution blocks 
and a multi-scale detail fusion block. Among them, the multi-scale detail fusion block 
can completely compensate for the loss of detail caused by the pooling operation in 
the attention mechanism. Finally, the fused feature map will be input to the decoder to 
reconstruct the fused image.

Encoder

Traditional encoders tend to ignore the context information of feature maps in feature 
extraction. Facts have proved that the pathological characteristics of tissues are not only 
reflected in a certain independent part, but also in its contextual information. Therefore, 
we select the VGG-16 network that can obtain context information in the encoder.

As shown in Fig. 3, VGG-16 contains five blocks. Its biggest feature is that it can obtain 
information about the image context. The first two blocks consist of two convolutional 

Fig. 2 Schematic diagram of the VAnet model
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layers and one max-pooling layer, respectively. The last three blocks consist of three con-
volutional layers and one max-pooling layer, respectively. The stacking of the two can 
easily form a deeper network structure to obtain more complete and deeper contextual 
information. The kernel size of all convolutional layers is 3 × 3 and the size of max pool-
ing layers is 2 × 2. The first four blocks have different numbers of output channels; the 
fourth and last blocks have the same number of output channels.

AM fusion network

AM fusion network is the core part of the VAnet model. The extraction of important 
features and their associated features, the suppression of noise and the preservation of 
texture details all rely on the fusion network. In Fig. 4, AM fusion network consists of 
the attention mechanism branch and the residual multi-scale detail processing branch.

Attention mechanism branch Attention mechanism branch is composed of five con-
volutional blocks and a channel attention mechanism block. Each convolutional block is 
composed of a convolutional layer, a batch normalized layer and a ReLU activation func-
tion. The kernel of the convolution layer in all convolution blocks is 3 × 3. In the first 

Fig. 3 The structure of the encoder of the VAnet model

Fig. 4 The structure of the AM fusion network
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convolution block, a pooling layer is added after the activation function to reduce the 
feature dimension. In the fourth convolution block, we add an unsampled layer before 
the convolution layer to restore the feature dimension. A channel attention mechanism 
block is added behind the second convolution block and its working principle is shown 
in Fig. 5.

In Fig. 5, the size of the input feature map F is H ×W × C , which is put into the max 
pooling layer and the average pooling layer to obtain two 1× 1× C feature maps. Then 
the two feature maps are fed into a two-layer shared neural network for feature extrac-
tion. The number of neurons in the first layer of the network is C/r and the ReLU func-
tion is selected as the activation function. The number of neurons in the second layer of 
the network is C. The element-wise operation is performed on the features obtained by 
the shared neural network and the final channel attention feature Mc is generated after 
the sigmoid activation operation.

Residual multi-scale detail processing branch After the image is branched by the atten-
tion mechanism, the detailed information will be lost, which will affect the fusion result 
of the image. In order to avoid the above situation, the residual multi-scale detail fusion 
block is designed. The residual multi-scale detail processing block includes a set of 
residual convolution blocks, a multi-scale detail fusion block and a convolution block. 
Among them, the residual convolution block is designed to prevent gradient explosion. 
The convolution kernels of all convolution blocks are set to 3 ×  3. In the multi-scale 
detail fusion block, we use three different convolution kernels. Different convolution 
kernels can fuse detailed information of different scales. The selection of the convolu-
tion kernel is shown in Fig. 4. Among them, a 1 × 1 convolution kernel filter is used to 
process the information of different channels at the same location. Filters with 3 × 3 and 
5 × 5 convolution kernels are used to process the information of the surrounding chan-
nels at the same location. The reason why a filter with a larger convolution kernel is not 
used to process the surrounding information at the same position is due to the consid-
eration of the computational complexity of the model. A large convolution kernel will 
bring more computation to the model and affect the computational performance of the 
model seriously.

Decoder

The decoder is based on a nested connection architecture. Inspired by UNet++, we sim-
plified its structure. As shown in Fig. 2, the decoder consists of ten convolutional blocks. 
Each convolution block is composed of two convolution layers with convolution kernel 
of 3 × 3. The cross-layer link connects the multi-scale depth features in the decoder. The 
output of the decoder is a reconstructed image fused with multi-scale features.

Fig. 5 The structure of the channel attention block
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Loss function

In order to improve the fusion effect of the VAnet model, we use the structural similarity 
(SSIM) loss function, the mean squared variance (MSE) loss function and the total varia-
tion (TV) loss function to form a mixed loss function. The description of the hybrid loss 
function is as follows

where α and β are the balance parameters. The SSIM loss function is used to measure 
the loss of texture details of the source image during the fusion process. The MSE loss 
function is used to predict the pixel-to-pixel loss between the fused image and source 
images. The introduction of TV loss function aims to maintain the smoothness of the 
image and suppress noise. The structural similarity loss function is described as

where I fused represents the fused image and I source represents the source images. N is the 
size of the batch. SSIM(·) is used to calculate the structural similarity between images. 
The closer the SSIM value is to 1, the more detailed information of the source image is 
contained in the fused image. The MSE loss function is defined as follows

where W and H are width and height of the image, respectively. (x,y) is the pixel position 
of the image. The total vision loss function is described as

Dataset and Experimental environment

The experimental data in the article are selected from the AANLIB database. 100 pairs 
of cross-modally registered brain abnormalities medical images are downloaded and 
cropped into 11960 patch pairs as the training set for the VANet model. The size of each 
patch is set to 84x84. This operation not only ensures the diversity of training data, but 
also enhances the robustness of VAnet. As for the test data, we randomly selected two 
sets of images from each of the 4 diseases to complete the test on VAnet. The training 
and testing of the VAnet model are all tested on a machine equipped with a 2.4 GHz 
Intel Core i7-11800H CPU (32G RAM) and a GeForce RTX 3070 GPU.

Comparison algorithm and metrics

In this section, eleven medical image fusion methods are selected for comparison with 
VAnet. These eleven algorithms are GFF [19], NSCT [20], IGM [21], LPSR [22], WLS 
[23], CSR [24], LRD [25], TLAYER [26], CSMCA [27], LATLRR [28] and DTNP [29]. 
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Among them, GFF, NSCT, IGM, LRD and TLAYER are traditional image fusion meth-
ods. WLS and CSMCA are deep learning fusion methods. LPSR is a fusion method 
based on sparse representation classes. CSR is a fusion method combining neural net-
work and sparse representation. LATLRR is based on a low-rank decomposition fusion 
method. DTNP is a fusion method that combines dynamic threshold and wavelet trans-
form. The source codes of all comparison algorithms come from the Internet and the 
settings of each algorithm parameters are recommended by the corresponding authors.

In order to evaluate the performance of VAnet, we selected eight evaluation metrics to 
analyze the fused images of all algorithms. The eight metrics are Qw [30], Qe, SSIM [31], 
VIF [32], FMI [33], LABF [34], NABF [35] and NCIE [36]. Among them, Qw and Qe are 
derived from the Piella model. SSIM is used to measure the structural similarity between 
the fused image and the source image. VIF stands for visual evaluation of fused images. 
LABF, NABF, FMI and NCIE are representative metrics for evaluating image fusion in 
information theory.

Training details

The training of the VANet model involves many parameters, including batch_size, learn-
ing rate, epoch, and the balance parameter in the loss function. The settings of these 
parameters can have a profound effect on the fusion effect. Therefore, the analysis of 
these parameters has important research significance.

Batch_size

batch_size refers to the number of samples selected for a training and its size affects the 
optimization degree and speed of the model. Since the data for training VAnet model is 
relatively large, putting all the data into the network at one time will definitely cause a 
memory explosion. Therefore, batch_size needs to be introduced to solve this problem. 
However, the value of batch_size can not be too small. If it is too small, the learning 
will be random and the model will not converge. Considering the hardware environment 
and memory capacity of the experiment, according to Leslie’s theory, we set the value of 
batch_size to 64.

Epoch

Epoch is an important parameter that controls the number of weight update iterations 
and the weight update iteration directly affects the fit and convergence of the model. In 
the training of the VANet model, it is not enough to train all the data in one iteration 
to get the model into the best fit state. Therefore, it is necessary to set an appropriate 
epoch value to improve the stability of the model and the effect of image fusion. VIF is a 
metric that evaluates image quality from the perspective of information communication 
and sharing based on the statistical properties of natural scenes. Since the evaluation 
accuracy of this metric is related to the image itself and the distortion channel of the 
human visual system, it is very appropriate to choose it to assist in completing the deter-
mination of the value of epoch. Figure 6 shows the trend of VIF with the transformation 
of the epoch.

In Fig. 6, we give the average value of VIF for 50 pairs of medical fused images. When 
epoch is set to 40, the corresponding images average VIF value reaches the maximum 
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and the fused image obtained is more in line with human visual perception. Therefore, 
we set the value of epoch to 40 to complete the training of the VANet model.

learning rate

The learning rate is an important parameter of the VANet model, which affects the con-
vergence of the model. If the learning rate is too large, the model will oscillate and not 
converge. If the learning rate is too small, the model will converge slowly. Based on the 
actual situation, we chose the exponential decay learning rate. The formula is as follows

where lrbase is the initial value of the learning rate and lrdecay is the decay rate of learning 
rate. According to prior knowledge, the initial value of the learning rate is set to 0.1, and 
the decay value of the learning rate is set to 0.99.

Hyperparameters

In the loss function of the VANet model, there are two hyperparameters α and β , which 
are used to adjust SSIM loss function and MSE loss function respectively. With reference 
to other scholars setting hyperparameters for deep learning, the values of α and β are 
set between 0 and 0.01. Given the role of the two loss functions in the training process, 
we chose the evaluation metric VIF that related to the human eye perception to assist in 
determining the values of the hyperparameters α and β . Figure 7 shows the trend of VIF 
with α and β.

In Fig.  7, we give the average value of VIF for 50 pairs of medical fused images. 
Obviously, when α is set to 0.005 and β is set to 0.003, the average VIF value of the 

(5)lr = lrbase ∗ lrdecay
epoch

Fig. 6 The changing trend of epoch
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corresponding image reaches the maximum value, which best meets the requirements of 
VANet model training.

Results
The test data are derived from the following five diseases, which are subacute stroke, 
hypertensive encephalopathy, cavernous hemangioma, metastatic bronchogenic carci-
noma and mild Alzheimer’s disease. Two pairs of the source images are selected for each 
disease to prove the effectiveness and superiority of our fusion model.

Subacute stroke: loss of sensation

The two sets of source images in this section are from a 65-year-old patient with suba-
cute stroke. He is right-handed with mild left hemiplegia and atrial fibrillation. When he 
felt a tingling pain in his left arm, he went to the hospital and found that he could not 
explore the left half of the space. In his two sets of MR images, the cerebrospinal fluid 
left behind by the liquefaction and necrosis of the old infarct showed hyperintensity and 
successfully replaced the frontal pole. Hyperperfusion appears on the corresponding 
SPECT images. Figures  8 and 9 show the fusion results of all algorithms on two sets 
of subacute stroke images. The fused image based on CSR model almost loses the abil-
ity to describe functional information. The fused images obtained by LRD, IGM, TLay-
ers and DTNP algorithms can not completely describe the blood flow level. The fused 
images obtained by GFF and LPSR algorithms have serious distortion. The brightness of 
the fused images obtained by NSCT, WLS and CSMCA is dark, which is not conducive 
to the description of the structural information of the image. The fused image obtained 
by LATLRR algorithm has serious blurring. The fused image obtained by VANet model 

Fig. 7 The Hyperparameters change trend graph
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can clearly describe the blood flow situation of the tissue, while retaining the key infor-
mation in the MR images.

Tables  1 and 2 give the objective performance of different algorithms on the fusion 
of the above two sets of medical images, respectively. The VANet model achieves opti-
mal values on all objective evaluation metrics. From both subjective and objective per-
spectives, the subacute stroke images fused by VANet model can provide doctors with 

(a) MR-T2 (b) SPECT-Tl

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 8 The first set of fused MRI-SPECT images from 9 methods on subacute stroke
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complete information about the diseased tissue and help doctors complete the diagnosis 
as soon as possible.

Hypertensive encephalopathy

Two sets of source images in Figs. 10 and 11 are from a young woman that has acute 
arterial hypertension. In her MR−  T2 images, bilateral temporal and occipital lesions 

(a) MR-T2 (b) SPECT-Tl

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 9 The second set of fused MRI-SPECT images from 9 methods on subacute stroke
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Table 1 The objective evaluation scores about group 1 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.7751 
(10.59%)

0.8586 
(4.66%)

0.7595 
(10.23%)

0.5421 
(14.96%)

0.6057 
(11.95%)

0.8060 
(2.58%)

0.1003 
(− 14.96%)

0.0271 
(− 31.37%)

0.4843 
(5th)

GFF 0.6792 
(26.20%)

0.6961 
(29.09%)

0.6570 
(27.42%)

0.5194 
(19.98%)

0.5544 
(22.31%)

0.8064 
(2.53%)

0.1295 
(− 34.13%)

0.0189 
(− 1.59%)

0.0527 
(2nd)

IGM 0.7639 
(12.21%)

0.8143 
(10.35%)

0.7684 
(8.95%)

0.5956 
(4.63%)

0.5882 
(15.28%)

0.8072 
(2.43%)

0.1247 
(− 31.60%)

0.0257 
(− 27.63%)

1.9045 
(7th)

LPSR 0.7974 
(7.50%)

0.8708 
(3.19%)

0.8017 
(4.43%)

0.5920 
(5.27%)

0.6393 
(6.07%)

0.8071 
(2.44%)

0.0945 
(− 9.74%)

0.0294 
(− 36.73%)

0.1302 
(3rd)

WLS 0.7768 
(10.35%)

0.8590 
(4.61%)

0.7392 
(13.25%)

0.5417 
(15.05%)

0.6361 
(6.60%)

0.8066 
(2.50%)

0.0957 
(− 10.87%)

0.0294 
(− 36.73%)

0.0276 
(1st)

CSR 0.7918 
(8.26%)

0.8869 
(1.32%)

0.7889 
(6.12%)

0.5264 
(18.39%)

0.6713 
(1.01%)

0.8126 
(1.75%)

0.1103 
0.0861

0.0323 
(− 42.41%)

16.1686 
(10th)

LRD 0.7707 
(13.22%)

0.8484 
(5.92%)

0.7837 
(6.83%)

0.6077 
(2.55%)

0.6298 
(7.67%)

0.8079 
(2.34%)

(− 0.93%) 
(− 22.67%)

0.0265 
(− 29.81%)

33.4586 
(11th)

TLayers 0.6816 
(25.76%)

0.7167 
(25.38%)

0.7162 
(16.89%)

0.5125 
(21.60%)

0.5107 
(32.78%)

0.8071 
(2.44%)

0.1075 
(− 20.65%)

0.0315 
(− 40.95%)

0.6064 
(6th)

CSMCA 0.7842 
(9.31%)

0.8656 
(3.81%)

0.7233 
(15.75%)

0.5249 
(18.73%)

0.6193 
(9.49%)

0.8066 
(2.50%)

0.1042 
(− 18.14%)

0.0213 
(− 12.68%)

35.8234 
(12th)

LATLRR 0.6895 
(24.32%)

0.6966 
(29.00%)

0.7334 
(14.15%)

0.5819 
(7.10%)

0.5444 
(24.56%)

0.8065 
(2.52%)

0.1220 
(− 30.08%)

0.0199 
(− 6.53%)

8.2307 
(8th)

DTNP 0.7982 
(7.39%)

0.8709 
(3.18%)

0.7990 
(4.78%)

0.5925 
(5.18%)

0.6357 
(6.67%)

0.8075 
(2.39%)

0.0894 
(− 4.59%)

0.0298 
(− 37.58%)

14.0949 
(9th)

VANet 0.8572 
(1st)

0.8986 
(1st)

0.8372 
(1st)

0.6232 
(1st)

0.6781 
(1st)

0.8268 
(1st)

0.0853 (1st) 0.0186 (1st) 0.1568 
(4th)

Table 2 The objective evaluation scores about group 2 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.7348 
(10.59%)

0.8307 
(7.04%)

0.7361 
(12.53%)

0.5699 
(11.93%)

0.6032 
(9.43%)

0.8056 
(2.23%)

0.1168 
(− 17.47%)

0.0286 
(− 30.07%)

0.4715 
(5th)

GFF 0.7522 
(8.03%)

0.8571 
(3.75%)

0.7892 
(4.95%)

0.5621 
(13.49%)

0.6152 
(7.30%)

0.8114 
(1.50%)

0.1005 
(− 4.08%)

0.0323 
(− 38.08%)

0.0552 
(2nd)

IGM 0.7554 
(7.52%)

0.7950 
(11.85%)

0.7938 
(4.35%)

0.6258 
(1.93%)

0.5850 
(12.84%)

0.8072 
(2.03%)

0.1470 
(− 34.42%)

0.0238 
(− 15.97%)

1.8972 
(8th)

LPSR 0.7989 
(1.71%)

0.8696 
(2.25%)

0.8098 
(2.28%)

0.6243 
(2.18%)

0.6354 
(3.89%)

0.8070 
(2.06%)

0.0990 
(− 2.62%)

0.0303 
(− 33.99%)

0.0205 
(1st)

WLS 0.7768 
(4.61%)

0.8464 
(5.06%)

0.5782 
(43.25%)

0.5724 
(11.44%)

0.6226 
(6.02%)

0.8065 
(2.12%)

0.0991 
(− 2.72%)

0.0367 
(− 45.50%)

0.1343 
(3rd)

CSR 0.7812 
(4.02%)

0.8719 
(1.98%)

0.8148 
(1.66%)

0.5814 
(9.72%)

0.6474 
(1.96%)

0.8120 
(1.43%)

0.0988 
(− 2.43%)

0.0358 
(− 44.13%)

13.8835 
(9th)

LRD 0.7769 
(4.60%)

0.8323 
(6.84%)

0.7786 
(6.38%)

0.6267 
(1.79%)

0.6324 
(4.38%)

0.8083 
(1.89%)

0.1159 
(− 16.82%)

0.0256 
(− 21.88%)

33.2710 
(11th)

TLayers 0.6931 
(17.24%)

0.7146 
(24.43%)

0.7631 
(8.54%)

0.5539 
(15.17%)

0.5142 
(28.37%)

0.8070 
(2.06%)

0.1163 
(− 17.11%)

0.0341 
(− 41.35%)

0.5785 
(6th)

CSMCA 0.7521 
(8.04%)

0.8403 
(5.82%)

0.7101 
(16.65%)

0.5632 
(13.26%)

0.6081 
(8.55%)

0.8059 
(2.20%)

0.1237 
(− 22.07%)

0.0213 
(− 6.10%)

51.6378 
(12th)

LATLRR 0.7630 
(6.50%)

0.6861 
(29.60%)

0.7602 
(8.96%)

0.6119 
(4.25%)

0.5478 
(20.50%)

0.8061 
(2.17%)

0.1873 
(− 48.53%)

0.0203 
(− 1.48%)

8.0366 
(7th)

DTNP 0.7892 
(2.97%)

0.8601 
(3.38%)

0.8073 
(2.60%)

0.6207 
(2.77%)

0.6314 
(4.55%)

0.8077 
(1.97%)

0.0969 
(− 0.52%)

0.0295 
(− 32.20%)

14.4718 
(10th)

VANet 0.8126 
(1st)

0.8892 
(1st)

0.8283 
(1st)

0.6379 
(1st)

0.6601 
(1st)

0.8236 
(1st)

0.0964 (1st) 0.0200 (1st) 0.1622 
(4th)
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can be clearly seen. Early perfusion abnormalities are obvious at higher levels in her 
SPECT-Tl image. In order to observe the lesion tissue and its perfusion better, the two 
sets of images are selected for fusion on 12 algorithms and the fusion results are shown 
in Figs. 10 and 11, respectively. The fused images obtained by NSCT, WLS and CSMCA 
algorithms have a dim brightness and lose the energy information in the SPECT image. 
The fused images obtained by GFF, LPSR and CSR algorithms have serious distortion. 

(a) MR-T2 (b) SPECT-Tl

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 10 The first set of fused MRI-SPECT images from 9 methods on hypertensive encephalopathy
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The fused image obtained by TLayers algorithm is very blurry and can not describe the 
texture information. The fused images obtained based on IGM, LRD and DTNP algo-
rithms have a large brightness, which affects the expression of some detailed informa-
tion. The fused image obtained by LATLRR algorithm loses part of the color information, 
which affects the description of the blood flow information. The fused image obtained 
by VANet model can characterize the diseased tissue and its blood flow better.

(a) MR-T2 (b) SPECT-Tl

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 11 The second set of fused MRI-SPECT images from 9 methods on hypertensive encephalopathy
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Table 3 The objective evaluation scores about group 3 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.7433 
(7.04%)

0.8220 
(4.28%)

0.6955 
(28.68%)

0.5658 
(10.32%)

0.6304 
(12.67%)

0.8057 
(1.79%)

0.1205 
(− 15.93%)

0.0290 
(− 30.34%)

0.4928 (5th)

GFF 0.7402 
(7.48%)

0.8363 
(2.50%)

0.7037 
(24.21%)

0.5240 
(19.12%)

0.7010 
(1.33%)

0.8094 
(1.32%)

0.1146 
(− 11.61%)

0.0283 
(− 28.62%)

0.0548

(2nd)

IGM 0.7484 
(6.31%)

0.8026 
(6.80%)

0.7032 
(24.30%)

0.5891 
(5.96%)

0.6508 
(9.14%)

0.8068 
(1.65%)

0.1380 
(− 26.59%)

0.0255 
(− 20.78%)

2.1848 (7th)

LPSR 0.7867 
(1.13%)

0.8454 
(1.40%)

0.7645 
(14.33%)

0.6133 
(1.78%)

0.6863 
(3.50%)

0.8046 
(1.70%)

0.1118 
(− 9.39%)

0.0299 
(− 32.44%)

0.0245 (1st)

WLS 0.7675 
(3.66%)

0.8297 
(3.31%)

0.7092 
(23.25%)

0.5568 
(12.10%)

0.6854 
(3.63%)

0.8064 
(1.70%)

0.1113 
(− 8.98%)

0.0315 
(− 35.87%)

0.1407 (3rd)

CSR 0.7514 
(5.88%)

0.8389 
(2.18%)

0.7202 
(21.36%)

0.5168 
(20.78%)

0.7026 
(1.10%)

0.8101 
(1.23%)

0.1078 
(− 6.03%)

0.0370
(− 45.41%)

15.2815 
(10th)

LRD 0.7729 
(2.94%)

0.8186 
(4.72%)

0.7245 
(20.65%)

0.5981 
(4.36%)

0.6682 
(6.30%)

0.8073 
(1.59%)

0.1290 
(− 21.47%)

0.0232 
(− 12.93%)

33.4755 
(11th)

TLayers 0.6445 
(23.44%)

0.6710 
(27.75%)

0.5779 
(51.25%)

0.5068 
(23.16%)

0.5816 
(22.13%)

0.8069 
(1.64%)

0.1766 
(− 42.63%)

0.0376 
(− 46.28%)

0.5856 (6th)

CSMCA 0.7644 
(4.08%)

0.8357 
(2.57%)

0.8616 
(1.45%)

0.5616 
(11.15%)

0.6757 
(5.12%)

0.8062 
(1.72%)

0.1290 
(− 21.47%)

0.0206 
(− 1.94%)

36.0302 
(12th)

LATLRR 0.6702 
(18.71%)

0.6808 
(25.91%)

0.7026 
(24.41%)

0.6243 
(− 0.02%)

0.5949 
(19.40%)

0.8062 
(1.72%)

0.1789 
(− 43.38%)

0.0217 
(− 6.91%)

8.1392 (8th)

DTNP 0.7813 
(1.83%)

0.8443 
(1.53%)

0.7690 
(13.67%)

0.6112 
(2.13%)

0.6627 
(7.18%)

0.8068 
(1.65%)

0.1017 
(− 0.39%)

0.0317 
(− 36.27%)

13.9342
(9th)

VANet 0.7956 
(1st)

0.8572 
(1st)

0.8741 
(1st)

0.6242 
(2nd)

0.7103 
(1st)

0.8201 
(1st)

0.1013 (1st) 0.0202 (1st) 0.1573 (4th)

Table 4 The objective evaluation scores about group 4 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.7958 
(2.17%)

0.8520 
(0.77%)

0.8083 
(6.05%)

0.6728 
(11.56%)

0.6509 
(5.93%)

0.8060 
(1.38%)

0.1228 
(− 0.57%)

0.0289 
(− 47.06%)

0.5051 
(5th)

GFF 0.7622 
(6.68%)

0.8407 
(2.13%)

0.7531 
(13.82%)

0.6150 
(22.05%)

0.6111 
(12.83%)

0.8071 
(1.24%)

0.1513 
(− 19.30%)

0.0263 
(− 41.83%)

0.0560 
(2nd)

IGM 0.7165 
(13.48%)

0.7414 
(15.80%)

0.6855 
(25.05%)

0.6234 
(20.40%)

0.6550 
(5.27%)

0.8067 
(1.29%)

0.2033 
(− 39.94%)

0.0222 
(− 30.08%)

2.1543 
(7th)

LPSR 0.7806 
(4.16%)

0.8350 
(2.83%)

0.8451 
(1.43%)

0.7085 
(5.94%)

0.6728 
(2.48%)

0.8060 
(1.38%)

0.1399 
(− 12.72%)

0.0327 
(− 53.21%)

0.0200 
(1st)

WLS 0.7656 
(6.20%)

0.8312 
(3.30%)

0.7191 
(19.20%)

0.6343 
(18.34%)

0.6815 
(1.17%)

0.8063 
(1.34%)

0.1423 
(− 14.20%)

0.0270 
(− 43.33%)

0.2019 
(4th)

CSR 0.7795 
(4.31%)

0.8497 
(1.05%)

0.8152 
(5.15%)

0.6655 
(12.79%)

0.6897 
(− 0.03%)

0.8072 
(1.23%)

0.1284 
(− 4.91%)

0.0334 
(− 54.19%)

17.5814 
(10th)

LRD 0.7575 
(7.34%)

0.8058 
(6.55%)

0.7319 
(17.12%)

0.6559 
(14.44%)

0.6737 
(2.35%)

0.8067 
(1.29%)

0.1577 
(− 22.57%)

0.0232 
(− 34.05%)

33.5066 
(11th)

TLayers 0.6375 
(27.55%)

0.6997 
(22.71%)

0.5648 
(51.77%)

0.5696 
(31.78%)

0.5999 
(14.94%)

0.8067 
(1.29%)

0.2595 
(− 52.95%)

0.0330 
(− 53.64%)

0.6608 
(6th)

CSMCA 0.8029 
(1.27%)

0.8489 
(1.14%)

0.7903 
(8.47%)

0.6878 
(9.13%)

0.6643 
(3.79%)

0.8063 
(1.34%)

0.1537 
(− 20.56%)

0.0193 
(− 20.73%)

57.9753 
(12th)

LATLRR 0.7196 
(12.99%)

0.7041 
(21.94%)

0.7971 
(7.54%)

0.7398 
(1.46%)

0.6175 
(11.66%)

0.8065 
(1.31%)

0.1639 
(− 25.50%)

0.0158 
(− 3.16%)

7.9590 
(8th)

DTNP 0.7905 
(2.86%)

0.8489 
(1.14%)

0.8291 
(3.39%)

0.6961 
(7.83%)

0.6671 
(3.36%)

0.8064 
(1.33%)

0.1239 
(− 1.45%)

0.0322 
(− 52.48%)

14.0796 
(9th)

VANet 0.8131 
(1st)

0.8586 
(1st)

0.8572 
(1st)

0.7506 
(1st)

0.6895 
(2nd)

0.8171 
(1st)

0.1221 (1st) 0.0153 (1st) 0.1649 
(3rd)
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In Tables 3 and 4, it can be seen that the VAnet model is outstanding on Qw, Qe, SSIM, 
LABF, NABF and NCIE. On VIF and FMI, the performance of VAnet is lower than that 
of the LATLRR algorithm and the CSR model respectively, which may be related to the 
feature extraction method. However, the fused images obtained by LATLRR algorithm 
and CSR model lack different color information, which makes them unable to provide 
reliable information for doctors. In contrast, the images fused by VANet model can 
obtain more complete color information,which may be helpful for treating hypertensive 
encephalopathy.

Cavernous angioma

The experimental data is from a 26-year-old woman with a ten-year history of head-
aches. Recently, she received radiosurgery due to progressive weakness of the right arm 
and leg. Her MR images show obvious hemangiomas. Her SPECT image is marked with 
technetium. Among them are blood clots and scarred brains, surrounded by crystalline 
old blood products. The lesion can not fill the marked red blood cells, indicating that 
they are not open to circulating blood. In order to assist the doctor in completing the 
diagnosis and treatment of her disease better, her two sets of registered images were 
chosen to be fused. Figures 12 and 13 show the fusion results of two sets of images under 
different algorithms, respectively. The fused images obtained based on NSCT, WLS 
and CSMCA algorithms lack the low-frequency energy of the SPECT image, result-
ing in its dim brightness. The fused image obtained by LPSR algorithm is seriously dis-
torted. The brightness of the fused image obtained by IGM, LRD and DTNP algorithms 
is too high, which affects the description of the texture information. The fused images 
obtained based on GFF, CSR and LATLRR algorithms describe the blood circulation 
process poorly. The fused image obtained by TLayers algorithm is relatively blurry and 
can not describe the nuclide information. The fused image obtained by VANet model is 
superior to other algorithms in terms of brightness, contrast and description of nuclide 
information.

Tables 5 and 6 show the objective representation of all algorithms on the above two 
sets of images, respectively. With the exception of VIF and Qe, VANet achieves opti-
mal solutions on all other metrics. Although the images obtained by IGM algorithm and 
DTNP algorithm are optimally solved in terms of visual fidelity and Qe metrics, respec-
tively. Their poor performance in the fusion results has seriously affected the doctor’s 
observation of texture details. In summary, the fused images obtained by VANet model 
can help doctors complete to observe and diagnose glioma diseases better.

Metastatic bronchogenic carcinoma

The experimental data comes from a 42-year-old woman who has been smoking for a 
long time and the sudden increase in headaches caused her to go to the hospital for a 
check-up. After examination, a large number of lumps appeared in her brain. The MR 
image demonstrates the tumor as an area of high signal intensity on proton density (PD) 
and T2-weighted (T2) images in a large left temporal region. Perfusion SPECT image 
shows very low blood flow to the lesion. In order to further combine tissue structure 
information and blood flow conditions to accelerate the diagnostic process, two sets 
of registered medical images are selected for fusion. Figures 14 and 15 show the fusion 
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results of two sets of images under different algorithms, respectively. The fused image 
obtained by TLayers algorithm is blurred in texture detail. The fused images obtained 
based on NSCT and CSMCA algorithms have a dim brightness and lose the low-fre-
quency energy in the SPECT image. The fused images obtained by LPSR and LATLRR 
algorithms show color distortion. The fused images obtained based on GFF and CSR 
algorithms lose the ability to describe the blood flow levels of tissues. The brightness of 

(a) MR-T2 (b) SPECT-Tl

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 12 The first set of fused MRI-SPECT images from 9 methods on cavernous angioma
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the fused images obtained by IGM, WLS, LRD and DTNP algorithms is too large, which 
seriously affects the expression of image color information. The fused image obtained by 
VANet model has a appropriate contrast and can help doctors judge the adhesion rela-
tionship between brain tissue and metastatic cancers.

Tables  7 and 8 show the objective representations of all fusion results of these 
two sets of images, respectively. The VANet model has a significant performance 

(a) MR-T2 (b) SPECT-Tl

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 13 The second set of fused MRI-SPECT images from 9 methods on cavernous angioma
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Table 5 The objective evaluation scores about group 5 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.6587 
(14.86%)

0.7006 
(9.08%)

0.5287 
(23.45%)

0.4139 
(18.50%)

0.5287 
(32.59%)

0.8034 
(1.47%)

0.1494 
(− 9.71%)

0.0215 
(− 59.07%)

0.4724 (5th)

GFF 0.6701 
(12.91%)

0.7315 
(4.47%)

0.6062 
(7.67%)

0.3778 
(29.80%)

0.6284 
(11.55%)

0.8087 
(0.80%)

0.1402 
(− 3.78%)

0.0144 
(− 38.89%)

0.0578 (2nd)

IGM 0.7298 
(3.67%)

0.7205 
(6.06%)

0.6385 
(2.22%)

0.5036 
(− 2.60%)

0.6965 
(0.65%)

0.8064 
(1.09%)

0.1410 
(− 4.33%)

0.0185 
(− 52.43%)

2.0005 (7th)

LPSR 0.7047 
(7.36%)

0.7125 
(7.26%)

0.6219 
(4.95%)

0.4595 
(6.75%)

0.6657 
(5.30%)

0.8033 
(1.48%)

0.1618 
(− 16.63%)

0.0231 
(− 61.90%)

0.0247 (1st)

WLS 0.7045 
(7.40%)

0.7083 
(7.89%)

0.6056 
(7.78%)

0.4619 
(6.19%)

0.6773 
(3.50%)

0.8042 
(1.37%)

0.1405 
(− 3.99%)

0.0209 
(− 57.89%)

0.1582 (3rd)

CSR 0.7030 
(7.62%)

0.7414 
(3.08%)

0.6436 
(1.41%)

0.3838 
(27.80%)

0.6903 
(1.55%)

0.8061 
(1.13%)

0.1354 
(− 0.37%)

0.0148 
(− 40.54%)

17.4229 
(10th)

LRD 0.7205 
(5.01%)

0.6979 
(9.50%)

0.5983 
(9.09%)

0.4746 
(3.35%)

0.6525 
(7.43%)

0.8049 
(1.28%)

0.1572 
(− 14.19%)

0.0185 
(− 52.43%)

33.8562 
(11th)

TLayers 0.5773 
(31.06%)

0.5562 
(37.40%)

0.4715 
(38.43%)

0.4370 
(12.24%)

0.5808 
(20.70%)

0.8046 
(1.32%)

0.2029 
(− 33.51%)

0.0206 
(− 57.28%)

0.5873 (6th)

CSMCA 0.6918 
(9.37%)

0.7160 
(6.73%)

0.5484 
(19.02%)

0.4331 
(13.25%)

0.6678 
(4.97%)

0.8038 
(1.42%)

0.1578 
(− 14.51%)

0.0146 
(− 39.73%)

51.0000 
(12th)

LATLRR 0.6370 
(18.78%)

0.6201 
(23.24%)

0.5052 
(29.20%)

0.4660 
(5.26%)

0.6163 
(13.74%)

0.8044 
(1.34%)

0.2482 
(− 45.65%)

0.0133 
(− 33.83%)

8.1679 (8th)

DTNP 0.7465 
(1.35%)

0.7563 
(1.04%)

0.6407 
(1.87%)

0.4816 
(1.85%)

0.6605 
(6.13%)

0.8046 
(1.32%)

0.1536 
(− 12.17%)

0.0221 
(− 60.18%)

13.8429 
(9th)

VANet 0.7566 
(1st)

0.7642 
(1st)

0.6527 
(1st)

0.4905 
(2nd)

0.7010 
(1st)

0.8152 
(1st)

0.1349 (1st) 0.0088 0.1549 (4th)

(1st)

Table 6 The objective evaluation scores about group 6 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.7484 
(16.02%)

0.8219 
(9.32%)

0.6544 
(22.65%)

0.6402 
(27.87%)

0.5931 
(23.22%)

0.8042 
(1.80%)

0.0823 
(− 39.00%)

0.0125 
(− 58.40%)

0.4863 
(5th)

GFF 0.8299 
(4.63%)

0.8976 
(0.10%)

0.7024 
(14.27%)

0.7604 
(7.65%)

0.7281 
(0.37%)

0.8156 
(0.38%)

0.0610 
(− 17.70%)

0.0106 
(− 50.94%)

0.0581 
(2nd)

IGM 0.8450 
(2.76%)

0.8872 
(1.27%)

0.7128 
(12.60%)

0.8046 
(1.74%)

0.6976 
(4.76%)

0.8107 
(0.99%)

0.0639 
(− 21.44%)

0.0111 
(− 53.15%)

1.9547 
(7th)

LPSR 0.8537 
(1.71%)

0.8762 
(2.55%)

0.7949 
(0.97%)

0.7977 
(2.62%)

0.6733 
(8.54%)

0.8049 
(1.71%)

0.0554 
(− 9.39%)

0.0123 
(− 57.72%)

0.0265 
(1st)

WLS 0.7715 
(12.55%)

0.8268 
(8.67%)

0.7131 
(12.55%)

0.7568 
(8.17%)

0.6401 
(14.17%)

0.8049 
(1.71%)

0.0707 
(− 29.00%)

0.0108 
(− 51.85%)

0.1880 
(4th)

CSR 0.8479 
(2.41%)

0.8976 
(0.10%)

0.7185 
(11.70%)

0.7564 
(8.22%)

0.6674 
(9.50%)

0.8083 
(1.29%)

0.0636 
(− 21.07%)

0.0134 
(− 61.19%)

16.7486 
(10th)

LRD 0.8175 
(6.21%)

0.8342 
(7.71%)

0.6873 
(16.78%)

0.7523 
(8.81%)

0.6032 
(21.15%)

0.8058 
(1.60%)

0.0851 
(− 40.41%)

0.0055 
(− 5.45%)

33.5259 
(11th)

TLayers 0.6448 
(34.66%)

0.6804 
(32.05%)

0.5475 
(46.59%)

0.7318 
(11.86%)

0.5420 
(34.83%)

0.8053 
(1.66%)

0.1068 
(− 53.00%)

0.0101 
(− 48.51%)

0.5913 
(6th)

CSMCA 0.7560 
(14.85%)

0.8245 
(8.98%)

0.6417 
(25.07%)

0.6641 
(23.26%)

0.6468 
(12.99%)

0.8044 
(1.78%)

0.0826 
(− 39.23%)

0.0088 
(− 40.90%)

52.2731 
(12th)

LATLRR 0.7278 
(19.30%)

0.7980 
(12.59%)

0.6670 
(20.33%)

0.6053 
(35.24%)

0.6416 
(13.90%)

0.8048 
(1.73%)

0.0952 
(− 47.27%)

0.0095 
(− 45.26%)

8.0273 
(8th)

DTNP 0.8610 
(0.85%)

0.8989 
(− 0.04%)

0.7486 
(7.21%)

0.7926 
(3.28%)

0.6768 
(7.98%)

0.8077 
(1.36%)

0.0506 
(− 0.79%)

0.0133 
(− 60.90%)

14.3408 
(9th)

VANet 0.8683 
(1st)

0.8985 
(2nd)

0.8026 
(1st)

0.8186 
(1st)

0.7308 
(1st)

0.8187 
(1st)

0.0502 (1st) 0.0052 (1st) 0.1653 
(3rd)
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improvement over other algorithms, except the LPSR algorithm. Although the LPSR 
algorithm and the VANet model perform equally well on all metrics, the images 
obtained by LPSR algorithm describe color information very poorly. In summary, the 
VANet model is more suitable for processing image fusion of bronchial cancer meta-
static disease, which can provide great help to doctors.

(a) MR-T2 (b) SPECT-Tl

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 14 The first set of fused MRI-SPECT images from 9 methods on metastatic bronchogenic carcinoma
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Mild Alzheimer’s disease

The experimental images are taken from a 70-year-old man with memory difficulties.MR 
images showed globally widened hemispheric sulci, which is more prominent in parietal 
lobes. In his PET images, regional cerebral metabolism is markedly abnormal with hypo-
metabolism in anterior temporal and posterior parietal regions. To further observe the 
metabolic status of the tumor location, his two sets of images are removed for fusion. 

(a) MR-T2 (b) SPECT-Tl

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 15 The second set of fused MRI-SPECT images from 9 methods on metastatic bronchogenic carcinoma
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Table 7 The objective evaluation scores about group 7 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.7509 
(20.14%)

0.8181 
(5.55%)

0.6777 
(11.04%)

0.5685 
(14.35%)

0.6642 
(10.07%)

0.8047 
(1.55%)

0.1030 
(− 15.92%)

0.0502 
(− 59.96%)

0.4689 (5th)

GFF 0.7665 
(17.69%)

0.8449 
(2.20%)

0.6652 
(13.12%)

0.4967 
(30.88%)

0.7013 
(4.25%)

0.8099 
(0.90%)

0.1012 
(− 14.43%)

0.0234 
(− 14.10%)

0.0493 (2nd)

IGM 0.7006 
(28.76%)

0.7303 
(18.24%)

0.6630 
(13.50%)

0.5555 
(17.03%)

0.6748 
(8.34%)

0.8058 
(1.41%)

0.1656 
(− 47.71%)

0.0205 
(− 1.95%)

2.0595 (7th)

LPSR 0.8925 
(1.08%)

0.8493 
(1.67%)

0.7439 
(1.16%)

0.5919 
(9.83%)

0.6994 
(4.53%)

0.8055 
(1.45%)

0.0930 
(− 6.88%)

0.0272 
(− 26.10%)

0.0291 (1st)

WLS 0.7348 
(22.77%)

0.7947 
(8.66%)

0.6723 
(11.93%)

0.5562 
(16.88%)

0.7000 
(4.44%)

0.8052 
(1.49%)

0.1122 
(− 22.82%)

0.0268 
(− 25.00%)

0.4363 (4th)

CSR 0.7924 
(13.84%)

0.8525 
(1.29%)

0.6861 
(9.68%)

0.5013 
(29.68%)

0.7216 
(1.32%)

0.8087 
(1.05%)

0.0998 
(− 13.23%)

0.0264 
(− 23.86%)

15.2319 
(10th)

LRD 0.7346 
(22.80%)

0.7702 
(12.11%)

0.6780 
(10.99%)

0.5789 
(12.30%)

0.6733 
(8.58%)

0.8059 
(1.40%)

0.1319 
(− 34.34%)

0.0255 
(− 21.18%)

33.7116 
(11th)

TLayers 0.6140 
(44.92%)

0.6327 
(36.48%)

0.5154 
(46.00%)

0.5052 
(28.68%)

0.5979 
(22.28%)

0.8056 
(1.44%)

0.2092 
(− 58.60%)

0.0233 
(− 13.73%)

0.5990 (6th)

CSMCA 0.7661 
(17.75%)

0.8310 
(3.91%)

0.6494 
(15.88%)

0.5457 
(19.13%)

0.6941 
(5.33%)

0.8051 
(1.50%)

0.1125 
(− 23.02%)

0.0291 
(− 30.93%)

52.2022 
(12th)

LATLRR 0.6683 
(34.98%)

0.6577 
(31.29%)

0.6807 
(10.55%)

0.6404 
(1.51%)

0.6402 
(14.20%)

0.8053 
(1.48%)

0.1557 
(− 44.38%)

0.0221 
(− 9.05%)

8.0074 (8th)

DTNP 0.7707 
(17.05%)

0.8253 
(4.63%)

0.7343 
(2.48%)

0.6077 
(6.98%)

0.6898 
(5.99%)

0.8058 
(1.41%)

0.0876 
(− 1.14%)

0.0281 
(− 28.47%)

14.7256 
(9th)

VANet 0.9021 
(1st)

0.8635 
(1st)

0.7525 
(1st)

0.6501 
(1st)

0.7311 
(1st)

0.8172 
(1st)

0.0866 (1st) 0.0201 (1st) 0.1682 (3rd)

Table 8 The objective evaluation scores about group 8 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.7198 
(8.38%)

0.7889 
(4.61%)

0.6766 
(14.32%)

0.5852 
(18.46%)

0.6610 
(10.53%)

0.8058 
(1.35%)

0.1347 
(− 7.13%)

0.0309 
(− 29.13%)

0.4892 
(5th)

GFF 0.6909 
(12.91%)

0.8037 
(2.69%)

0.5700 
(35.70%)

0.5854 
(18.41%)

0.6503 
(12.35%)

0.8083 
(1.04%)

0.1428 
(− 12.39%)

0.0311 
(− 29.58%)

0.0519 
(2nd)

IGM 0.7345 
(6.21%)

0.7079 
(16.58%)

0.7045 
(9.79%)

0.6300 
(10.03%)

0.6548 
(11.58%)

0.8067 
(1.24%)

0.2042 
(− 38.74%)

0.0248 
(− 11.69%)

2.0109 
(7th)

LPSR 0.7703 
(1.27%)

0.8153 
(1.23%)

0.7619 
(− 1.10%)

0.6425 
(7.89%)

0.6979 
(4.69%)

0.8063 
(1.29%)

0.1287 
(− 2.80%)

0.0277 
(− 20.94%)

0.0194 
(1st)

WLS 0.7548 
(3.35%)

0.7954 
(3.76%)

0.7350 
(2.52%)

0.6220 
(11.45%)

0.6976 
(4.73%)

0.8066 
(1.25%)

0.1341 
(− 6.71%)

0.0348 
(− 37.07%)

0.1492 
(3rd)

CSR 0.7190 
(8.50%)

0.8114 
(1.71%)

0.6851 
(9.98%)

0.5134 
(35.02%)

0.7199 
(1.49%)

0.8085 
(1.01%)

0.1314 
(− 4.79%)

0.0427 
(− 48.71%)

14.1277 
(10th)

LRD 0.7659 
(1.85%)

0.7926 
(4.13%)

0.7408 
(1.71%)

0.6434 
(7.74%)

0.6906 
(5.79%)

0.8071 
(1.19%)

0.1476 
(− 15.24%)

0.0283 
(− 22.61%)

33.3678 
(11th)

TLayers 0.6722 
(16.05%)

0.6572 
(25.58%)

0.6010 
(25.37%)

0.5653 
(22.63%)

0.6069 
(20.38%)

0.8068 
(1.23%)

0.2768 
(− 50.80%)

0.0307 
(− 28.66%)

0.5858 
(6th)

CSMCA 0.7364 
(5.93%)

0.8006 
(3.09%)

0.6697 
(12.51%)

0.6004 
(15.46%)

0.6644 
(9.96%)

0.8062 
(1.30%)

0.1509 
(− 17.10%)

0.0226 
(− 3.09%)

36.0721 
(12th)

LATLRR 0.6630 
(17.66%)

0.6412 
(28.71%)

0.6851 
(9.98%)

0.6830 
(1.49%)

0.6242 
(17.03%)

0.8062 
(1.30%)

0.2045 
(− 38.83%)

0.0233 
(− 6.01%)

7.8907 
(8th)

DTNP 0.7593 
(2.74%)

0.8044 
(2.60%)

0.7531 
(0.05%)

0.6357 
(9.05%)

0.6706 
(8.95%)

0.8065 
(1.26%)

0.1272 
(− 1.65%)

0.0353 
(− 37.96%)

14.0789 
(9th)

VANet 0.7801 
(1st)

0.8253 
(1st)

0.7535 
(2nd)

0.6932 
(1st)

0.7306 
(1st)

0.8167 
(1st)

0.1251 (1st) 0.0219 (1st) 0.1579 
(4th)
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Figures 16 and 17 show all the fusion results of the two sets of images, respectively. The 
brightness of the fused images obtained based on NSCT and CSMCA algorithms is too 
dark and the energy information of the PET image is lost. The image obtained by CSR 
algorithm loses almost all metabolic information. The fused image obtained by GFF 
algorithm shows serious color distortion. In the fused images obtained by IGM, DTNP 
and WLS algorithms, the brightness of them is too high, resulting in loss of information. 

(a) MR-T2 (b) PET

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 16 The first set of fused MRI-PET images from 12 methods on mild Alzheimer’s disease
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The fused images obtained by LRD, LPSR and LATLRR algorithms have low contrast 
in the upper right corner and the outline is not obvious. The fused image obtained by 
TLayers algorithm has a severe blurry texture. The fused image obtained by VANet 
model can contain rich texture information and complete metabolic information.

Tables 9 and 10 show the objective performance of the two sets of images in differ-
ent fusion algorithms. Compared with other algorithms, the VANet model achieves 

(a) MR-T2 (b) PET

(c) NSCT (d) GFF (e) IGM

(f) LPSR (g) WLS (h) CSR

(i) LRD (j) TLayers (k) CSMCA

(l) LATLRR (m) DTNP (n) VANet

Fig. 17 The second set of fused MRI-PET images from 12 methods on mild Alzheimer’s disease
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Table 9 The objective evaluation scores about group 8 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.6619 
(5.03%)

0.7205 
(4.34%)

0.5230 
(18.66%)

0.3252 
(23.37%)

0.5823 
(17.19%)

0.8041 
(1.77%)

0.1627 
(− 5.16%)

0.0203 
(− 29.56%)

0.4960 (5th)

GFF 0.5010 
(38.76%)

0.6234 
(20.60%)

0.4489 
(38.25%)

0.2924 
(37.21%)

0.5768 
(18.31%)

0.8040 
(1.78%)

0.1681 
(− 8.20%)

0.0141 
(1.42%)

(2nd) 0.0576

IGM 0.6933 
(0.27%)

0.6888 
(9.14%)

0.6100 
(1.74%)

0.3427 
(17.07%)

0.6593 
(3.50%)

0.8058 
(1.55%)

0.1946 
(− 20.70%)

0.0169 
(− 15.38%)

2.1689 (7th)

LPSR 0.6702 
(3.73%)

0.6314 
(19.07%)

0.5468 
(13.50%)

0.3356 
(19.55%)

0.6295 
(8.40%)

0.8044 
(1.73%)

0.2195 
(− 29.70%)

0.0199 
(− 28.14%)

0.0287 (1st)

WLS 0.6945 
(0.10%)

0.7113 
(5.69%)

0.5794 
(7.11%)

0.3299 
(21.61%)

0.6332 
(7.77%)

0.8046 
(1.70%)

0.1689 
(− 8.64%)

0.0216 
(− 33.80%)

0.3690 (4th)

CSR 0.5427 
(28.10%)

0.7421 
(1.30%)

0.5168 
(20.09%)

0.2623 
(52.95%)

0.6826 
(− 0.03%)

0.8078 
(1.30%)

0.1745 
(− 11.58%)

0.0219 
(− 34.70%)

(10th) 
16.0802

LRD 0.6594 
(5.43%)

0.6651 
(13.04%)

0.5523 
(12.37%)

0.2968 
(35.18%)

0.6162 
(10.74%)

0.8043 
(1.74%)

0.1920 
(− 19.64%)

0.0328 
(− 56.40%)

34.4963 
(11th)

TLayers 0.5511 
(26.15%)

0.6077 
(23.71%)

0.5020 
(23.63%)

0.3219 
(24.63%)

0.5406 
(26.23%)

0.8042 
(1.75%)

0.2835 
(− 45.57%)

0.0152 
(− 5.92%)

0.6978 (6th)

CSMCA 0.6476 
(7.35%)

0.7360 
(2.15%)

0.5095 
(21.81%)

0.3072 
(30.60%)

0.6455 
(5.72%)

0.8045 
(1.71%)

0.1617 
(− 4.58%)

0.0161 
(− 11.18%)

48.1738 
(12th)

LATLRR 0.61550 
(12.95%)

0.6219 
(20.89%)

0.4556 
(36.22%)

0.3935 
(1.96%)

0.5997 
(17.79%)

0.8047 
(1.69%)

0.1983 
(− 22.19%)

0.0173 
(− 17.34%)

7.9532 (8th)

DTNP 0.6888 
(0.93%)

0.7171 
(4.84%)

0.5754 
(7.86%)

0.3496 
(14.76%)

0.6080 
(12.24%)

0.8048 
(1.68%)

0.1549 
(− 0.39%)

0.0223 
(− 35.87%)

14.8684 
(9th)

VANet 0.6952 
(1st)

0.7518 
(1st)

0.6206 
(1st)

0.4012 
(1st)

0.6824 
(2nd)

0.8183 
(1st)

0.1543 (1st) 0.0143 
(2nd)

0.1702 (3rd)

Table 10 The objective evaluation scores about group 9 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF Time

NSCT 0.6196 
(6.71%)

0.6521 
(8.28%)

0.4803 
(17.34%)

0.3041 
(25.35%)

0.6051 
(24.03%)

0.8041 
(1.26%)

0.1813 
(− 4.69%)

0.0184 
(− 33.70%)

0.5007 
(5th)

GFF 0.5237 
(26.26%)

0.5326 
(32.57%)

0.5235 
(7.66%)

0.2902 
(31.36%)

0.7507 
(− 0.03%)

0.8041 
(1.26%)

0.2208 
(− 21.74%)

0.0143 
(− 14.69%)

0.0588 
(2nd)

IGM 0.6499 
(1.74%)

0.6212 
(13.67%)

0.5451 
(3.39%)

0.3047 
(25.11%)

0.6594 
(13.82%)

0.8056 
(1.07%)

0.2274 
(− 24.01%)

0.0136 
(− 10.29%)

2.1402 
(7th)

LPSR 0.6362 
(3.93%)

0.6200 
(13.89%)

0.4923 
(14.48%)

0.2959 
(28.83%)

0.6360 
(18.00%)

0.8043 
(1.23%)

0.2014 
(− 14.20%)

0.0184 
(− 33.70%)

0.0299 
(1st)

WLS 0.6581 
(0.47%)

0.6496 
(8.70%)

0.5311 
(6.12%)

0.2988 
(27.58%)

0.6417 
(16.95%)

0.8047 
(1.18%)

0.1918 
(− 9.91%)

0.0188 
(− 35.11%)

0.3217 
(4th)

CSR 0.4737 
(39.58%)

0.6853 
(3.04%)

0.5151 
(9.42%)

0.2782 
(37.02%)

0.6853 
(9.51%)

0.8073 
(0.85%)

0.1935 
(− 10.70%)

0.0241 
(− 49.38%)

15.9263 
(10th)

LRD 0.6306 
(4.85%)

0.5689 
(24.12%)

0.4794 
(17.56%)

0.2857 
(33.43%)

0.5982 
(25.46%)

0.8046 
(1.19%)

0.2465 
(− 29.90%)

0.0165 
(− 26.06%)

34.3784 
(11th)

TLayers 0.4955 
(33.44%)

0.5391 
(30.98%)

0.4427 
(27.31%)

0.3121 
(22.14%)

0.5526 
(35.81%)

0.8047 
(1.18%)

0.3045 
(− 43.25%)

0.0128 
(− 4.69%)

0.7025 
(6th)

CSMCA 0.5997 
(10.26%)

0.6884 
(2.57%)

0.4814 
(17.08%)

0.2915 
(30.77%)

0.6579 
(14.08%)

0.8046 
(1.19%)

0.1726 
(1.16%)

0.0141 
(− 13.48%)

44.3954 
(12th)

LATLRR 0.5703 
(15.94%)

0.5673 
(24.47%)

0.4253 
(32.52%)

0.3641 
(4.70%)

0.5921 
(26.75%)

0.8048 
(1.17%)

0.2246 
(− 23.06%)

0.0169 
(− 27.81%)

8.0570 
(8th)

DTNP 0.6508 
(1.60%)

0.6474 
(9.07%)

0.5099 
(10.53%)

0.3212 
(18.68%)

0.5796 
(29.49%)

0.8047 
(1.18%)

0.1798 
(− 3.89%)

0.0192 
(− 36.46%)

15.0684 
(9th)

VANet 0.6612 
(1st)

0.7061 
(1st)

0.5636 
(1st)

0.3812 
(1st)

0.7505 
(2nd)

0.8142 
(1st)

0.1728 
(2nd)

0.0122 (1st) 0.1759 
(3rd)
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suboptimal values on the FMI metric and performs best on the remaining metrics. Com-
bined with the fusion result, the medical images fused by VANet model can provide 
great help to doctors in the process of treating mild Alzheimer’s disease.

Ablation study

The core of the VANet model is the attention-multiscale fusion network. Among 
them, the attention mechanism branch is to fuse the global context of medical images; 
the residual multi-scale detail processing branch is to fuse the local context of medi-
cal images. In order to verify the influence of the two branches on the fusion results, 
the section chooses to ignore one of the branches and use the other branch for fusion. 
The experimental data are 60 groups of registered MRI and their corresponding nuclear 
medicine images, from which we randomly select the fusion results of three groups of 
images and show them in Fig. 18.

First, in order to verify the influence of global context on the fused images, the atten-
tion mechanism branch is ignored. The fusion results are shown in Fig.  8c, h and m. 
When the global context fusion is blocked, the fused image suffers from severe color 
distortion, resulting in a large deviation in the description of tissue metabolic informa-
tion. Then, the residual multi-scale detail branch is ignored to verify the effect of local 
context on the fused images. The fusion results are shown in Fig. 8d, i and n. It can be 
clearly found that some detailed texture information is blurred, which affects the doc-
tor’s observation of key tissue information. Table 1 shows the statistical results of objec-
tive metrics of the VANet model ablation experiment and the optimal value is selected 
in bold.

In Table 11, it can be seen that the performance of the VANet model with the atten-
tion branch removed is significantly weaker on most metrics, especially in SSIM, FMI, 

(a)MR-T2 (b)SPECT-Tl (c)non-attention (d)non-multiscale (e)VANet

(f)MR-T2 (g)PET (h)non-attention (i)non-multiscale (j)VANet

(k)MR-T2 (l)SPECT-Tc (m)non-attention (n)non-multiscale (o)VANet
Fig. 18 Influence of attention mechanism branch and residual multi-scale detail processing branch in VANet 
model on fusion results respectively
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and LABF. It shows that the global context plays an important role in the medical image 
fusion. The VANet model with the residual multiscale detail processing branch removed 
has the worst performance on the metric of NABF, which indicates that the local context 
affects the description of detail information in the fused image. Without this branch, 
the fused image would have more noisy information. In contrast, the complete VANet 
model considers the representation of image global information and local information, 
which improves the quality of fused images.

Time complexity analysis

The image obtained by the VAnet model has been subjectively analyzed and objectively 
evaluated before. This section will evaluate the VANet model and other algorithms from 
the perspective of time complexity. The time cost of each algorithm on each set of exper-
imental images has been shown in Tables 1 to 10. From all the tables, it can be found that 
the LPSR algorithm takes the shortest time and the CSMCA algorithm takes the longest 
time. The time consumption of the LRD mehod is second only to the CSMCA algorithm. 
The time consumption of the CSR method and the DTMP algorithm also exceeded 10 
seconds. The VAnet model takes some time to train. After the model is trained, the time 
it takes to fuse images is comparable to that of the WLS algorithm. However, the fusion 
effect of the VANet is much better than the WLS and the LPSR algorithms.

Statistical test

When comparing algorithms, it is often necessary to perform statistical tests on experi-
mental results. Friedman test is a type of nonparametric test used to measure the per-
formance of multiple algorithms on different datasets. However, Friedman test can only 
detect whether there are differences between the performance of multiple algorithms. 
Once there is a difference, a post-hoc test is needed to find out which algorithms have 
statistical differences in their performance. Nermenyi test is a commonly used method 
for subsequent testing. It uses Tukey’s distribution to complete the critical difference 
(CD) calculation. The level difference of any two methods is larger than the value of 
CD, which proves that there is a significant difference between the two methods. In 
Fig. 19, the values of the objective evaluation indicators in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10 are used to calculate the level of each fusion algorithm. Combining the above two test 

Table 11 The objective evaluation scores about group 10 fused images

Methods Metrics

Qw Qe SSIM VIF FMI NCIE LABF NABF

1 Non-attention 0.7893 0.7953 0.6770 0.5371 0.6796 0.8063 0.1403 0.0127

Non-multiscale 0.8072 0.8154 0.6965 0.5146 0.7066 0.8086 0.1287 0.0198

VANet 0.8231 0.8297 0.7048 0.5642 0.7126 0.8125 0.0947 0.0063

2 Non-attention 0.6582 0.7126 0.5219 0.2977 0.6234 0.8121 0.1876 0.0223

Non-multiscale 0.6473 0.6972 0.5312 0.3109 0.6324 0.8098 0.1768 0.0267

VANet 0.6675 0.7304 0.5429 0.3343 0.6588 0.8168 0.1584 0.0126

3 Non-attention 0.8124 0.8452 0.8494 0.5954 0.6201 0.8112 0.1945 0.0218

Non-multiscale 0.7993 0.8344 0.8561 0.6137 0.6315 0.8095 0.1232 0.0253

VANet 0.8329 0.8603 0.8752 0.6318 0.6682 0.8163 0.1014 0.0189



Page 29 of 32Guo et al. BMC Bioinformatics          (2022) 23:548  

results, we can find that the VANet model has obvious performance advantages com-
pared with other fusion algorithms. In the evaluation of the selected objective indica-
tors, the VAnet model has certain statistical significance.

Conclusions
In this study, we propose a novel fusion model for medical image fusion. Aiming at the 
challenges faced by medical image fusion, first, the model uses the five blocks of VGG-
16 to build an encoder to obtain feature maps containing image context information. 
Second, the model constructs an AM fusion network with the attention mechanism 
as the core. The network builds blocks around the channel attention mechanism to 
enhance salient features and weaken redundant features. In order to get more texture 
details, the network uses different convolution kernels to construct detail information 
patches to obtain multi-scale features of the image. Finally, all the acquired features are 
reconstructed by the decoder. The experimental results on the Harvard Medical School 
brain medical image dataset show that the fused images obtained by the VAnet model 
are superior to the current more advanced fusion algorithms in terms of structural infor-
mation and metabolic condition expression. Since the VAnet model can avoid the prob-
lem of image fusion sequences, it can be further extended to the field of three medical 
images fusion.

Abbreviations
VGG-16  Visual Geometry Group network with 16 layers
MR  Magnetic resonance
PET  Positron emission tomography
AE  Autoencoders
CNN  Convolutional neural network
GAN  Generative Adversarial Network
PD  Proton density
T2  T2-weighted
SSIM  Structural similarity
AG  Average gradient
VIF  Visual information fidelity
FMI  :Future mutual information
MSE  Mean square error
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Fig. 19 The time complexity of different types of medical images
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LPSR  Laplacian pyramid sparse representation
LRD  Laplacian re-decomposition
SPECT  Single-Photon Emission Computed Tomography
MSDNet  Multi-Scale Dense Convolutional Networks
TAcGAN  Tissue-aware conditional generative adversarial network
TV  Total variation
WLS  Weighted least square optimization
CSR  Convolutional sparse representation
TLayers  Three-layer medical image fusion
CSMCA  Medical image fusion via convolutional sparsity based morphological component analysis
LATLRR  Latent low-rank representation
DTNP  Dynamic threshold neural p systems medical image fusion
NCIE  Nonlinear correlation information entropy.
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