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Abstract 

Background:  Emerging evidences show that Piwi-interacting RNAs (piRNAs) play a 
pivotal role in numerous complex human diseases. Identifying potential piRNA-disease 
associations (PDAs) is crucial for understanding disease pathogenesis at molecular 
level. Compared to the biological wet experiments, the computational methods 
provide a cost-effective strategy. However, few computational methods have been 
developed so far.

Results:  Here, we proposed an end-to-end model, referred to as PDA-PRGCN (PDA 
prediction using subgraph Projection and Residual scaling-based feature augmenta-
tion through Graph Convolutional Network). Specifically, starting with the known 
piRNA-disease associations represented as a graph, we applied subgraph projection to 
construct piRNA-piRNA and disease-disease subgraphs for the first time, followed by a 
residual scaling-based feature augmentation algorithm for node initial representation. 
Then, we adopted graph convolutional network (GCN) to learn and identify potential 
PDAs as a link prediction task on the constructed heterogeneous graph. Comprehen-
sive experiments, including the performance comparison of individual components in 
PDA-PRGCN, indicated the significant improvement of integrating subgraph projec-
tion, node feature augmentation and dual-loss mechanism into GCN for PDA predic-
tion. Compared with state-of-the-art approaches, PDA-PRGCN gave more accurate and 
robust predictions. Finally, the case studies further corroborated that PDA-PRGCN can 
reliably detect PDAs.

Conclusion:  PDA-PRGCN provides a powerful method for PDA prediction, which can 
also serve as a screening tool for studies of complex diseases.
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Background
Piwi-interacting RNAs (piRNAs), a special kind of small non-coding RNA molecules 
with 26–31 nucleotides, are important regulatory factors in multiple biological pro-
cesses through interacting with PIWI proteins [1]. Recently, a variety of evidences 
have confirmed that piRNAs play significant roles in transposon silencing and het-
erochromatin [2]. Meanwhile, irregular expression or modifications of piRNA are 
highly associated with complex diseases [3–5]. Owing to their critical role as a type of 
potential biomarker, exploring piRNA-disease associations (PDAs) is not only help-
ful for revealing the molecular mechanisms of diseases at noncoding RNA level, but 
also critical for further boosting the diagnosis, treatment, and prevention of human 
diseases. Conventional biological wet experiments for uncovering PDAs are often 
afflicted with high cost and time-consuming. Hence, it would be imperative to con-
struct efficient and accurate models for identifying potential PDAs via computational 
methods.

Over the past few years, despite several databases involved in piRNAs such as piR-
Base [6], piRDisease [7], piRPheno [8], and MNDR [9] have been released, experimen-
tally verified PDAs are far from comprehensiveness. To date, only several computational 
models have been put forward. Among them, iPiDA-sHN adopted convolutional neu-
ral network (CNN) to extract features and trained Support Vector Machine (SVM) to 
select negative samples to identify potential PDAs [10]. Afterward, iPiDi-PUL extracted 
key features and conducted dimension reduction by principal component analysis over 
feature vector based on positive unlabeled learning [11]. GAPDA treated each known 
piRNA-disease association pair as a node in their reconstructed graph and employed 
graph attention network to make representation learning [12]. SPRDA applied piRNA/
disease similarity network to form a duplex network, then predicted PDAs as a matrix 
completion problem by structural perturbation algorithm [13].

Despite their successes, these models either generally regard known PDAs as fea-
ture data in Euclidean space (e.g., iPiDA-sHN and iPiDi-PUL), or reconstruct an 
abstract graph derived from original PDAs to simply transform link prediction into 
node classification problem (e.g., GAPDA and SPRDA). We argue that PDAs are nat-
urally rich in structural features as a linked graph. Consequently, by implementing 
the raw PDA data as the intrinsic structure of a PDA graph, more accurate predic-
tions are possible.

Beside GAPDA and SPRDA, with recent in-depth advances on graph theory and 
network science, various biomedical entity association prediction (EAP) approaches 
based on graph convolutional network (GCN) [14] have been proposed. In view of 
that, fitting the actual PDAs in GCN may be beneficial. Therefore, it is promising to 
adopt GCN to model PDA data as heterogeneous graph capable of making precise 
PDA prediction.

In this paper, we proposed a method, PDA-PRGCN, which incorporated three sequen-
tial strategies into GCN to detect potential PDAs. Specifically, we first constructed 
piRNA-piRNA and disease-disease subgraph separately by projecting the PDAs as links 
in the piRNA-disease graph. Then, to obtain high-quality initial representations, residual 
scaling-based node feature augmentation was designed to initialize the node feature to 
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be propagated and aggregated in GCN layers. Finally, we introduced a dual-loss mecha-
nism in an end-to-end GCN training process: accurately predicting relations by cross 
entropy-loss; adaptively constraining binary classification error between sensitivity and 
specificity by sensitivity–specificity loss. To evaluate the performance of PDA-PRGCN, 
extensive in silico experiments were performed. PDA-PRGCN achieved AUC of 0.9464, 
AUPR of 0.9190 on main dataset under fivefold cross-validation (5-CV), outperforming 
existing state-of-the-art methods. Case studies further confirmed the efficacy of PDA-
PRGCN on PDA prediction.

Results
Experiment design

To evaluate the overall performance and validate individual components of our model, 
comprehensive experiments were designed. First, 5-CV was conducted. To explore the 
effect of link embedding, clustering of positive and negative links was visually checked. 
Then, prediction performances were compared among PDA-PRGCN and state-of-the-
art methods. Subsequently, we presented the following comparisons: projection sub-
graph verses similarity subgraph; data augmentation similarity subgraph verses original 
similarity subgraph; residual scaling-based node feature augmentation verses original 
feature; balanced samples verse unbalanced samples in term of positive-to-negative 
ratio. The comparisons were made to evaluate the components of PDA-PRGCN and 
each of their influences on PDA identification.

Prediction performance of PDA-PRGCN was evaluated using the area under the 
receiver operating characteristic curve (AUC) and the area under precision–recall curve 
(AUPR). Relevant evaluation metrics include accuracy, precision, recall and F1 (their 
definitions can be found in Additional file 1: Note S1). It is important to note that AUPR 
is more suitable than AUC on evaluating model performance with unbalanced sam-
ples which are overwhelmed by negative samples, since it punishes false positives more 
stringently.

For PDA-PRGCN, the parameter epoch was set to 12,000 after optimization. The 
learning rate was set to 0.002 and the dropout rate was set to 0.2.

Performance of PDA‑PRGCN and comparison with state‑of‑the‑art methods

We conducted 5-CV to compare model performance. Following the setup of previous 
methods, we took known PDAs as positive samples and randomly selected the same 

Table 1  Performance of PDA-PRGCN on main dataset under 5-CV

Fold Accuracy Precision F1-score Recall AUC​ AUPR

1 0.9043 0.9189 0.9027 0.8870 0.9462 0.9215

2 0.8942 0.8931 0.8944 0.8957 0.9228 0.8796

3 0.9123 0.9141 0.9121 0.9101 0.9515 0.9274

4 0.9188 0.9392 0.9169 0.8957 0.9610 0.9412

5 0.8921 0.9256 0.8877 0.8528 0.9505 0.9253

Mean 0.9044 0.9182 0.9028 0.8882 0.9464 0.9190
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number of unlabeled PDAs as negative samples. For each fold, randomly divided subset 
containing positive and equal-size negative samples were held out as training data and 
the rest were used as test data.

As shown in Table 1 and Fig. 1, PDA-PRGCN obtains mean AUC of 0.9464, as well 
as mean AUPR of 0.9190 on the main dataset, which validate the strategies of PDA-
PRGCN on detecting potential PDAs. It is worth noting that although the AUPR in each 
fold is slightly lower than corresponding AUC, the average AUPRs keep at similar level 
with AUCs. This may be attributed to the weight put on the sensitivity–specificity loss 
function in the dual-loss optimization.

Fig. 1  The ROC curves (left) and the (PR) curves (right) of PDA-PRGCN on main dataset under 5-CV

Fig. 2  Visualization of link embedding before (left) and after (right) PDA-PRGCN via t-SNE (top) and UMAP 
(bottom) in 2D. Pink dots denote true (1) associations between piRNA and disease, while blue dots are the 
opposite (0)
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Furthermore, to comprehend learning abilities of PDA-PRGCN, we mapped the link 
embedding derived from node embedding by our model into a 2D space by t-SNE [15] 
and UMAP [16], respectively. As shown in Fig. 2, the predicted PDAs by PDA-PRGCN 
are spatially clustered for positive and negative links. The visualization suggests that 
piRNA-piRNA/disease-disease subgraph construction via median subgraph projection 
and residual scaling-based node feature augmentation are successful for both piRNAs 
and diseases.

Then, we compared our model with existing baseline methods, i.e., iPiDi-PUL, 
iPiDA-sHN, GAPDA, SPRDA and LPI-deepGBDT [17]. For practical machine learn-
ing applications, it is an effective strategy to select negative samples. iPiDA-sHN and 
iPiDA-PUL do well in this point. The main aim of our study is to focus on the model 
performance and generalization ability on balanced sample structure using random 
negative samples that did not make any selection. To better assess the performance of 
PDA-PRGCN, we compared the deep learning-based model (i.e., LPI-deepGBDT) in 
which its feature space was designed in Euclidean space.

As shown in Table 2, our model has optimal prediction performance in six evaluation 
metrics, when applied on independent piRDisease dataset. In comparison with iPiDA-
sHN and iPiDA-PUL, the  performance of PDA-PRGCN is completely advantageous, 
even when unselected its negative samples. For LPI-deepGBDT, despite its success in 
lncRNA-protein interaction identification, the model regarded molecular association 
data as feature data in Euclidean space and adopted CNN to extract features. PDAs 
are naturally rich in structural features as a linked graph. GCN in our proposed PDA-
PRGCN model gave better predictions as an encoder to model and represent features 
than the LPI-deepGBDT would do. Besides, although SPRDA was designed in Graph 
space and shows the next highest AUC, it does not get the same-level AUPR, which 
limits the performance to some extent. For the five methods with uneven AUPR, our 
model shows significant improvements. Together, the consistent prediction perfor-
mances of PDA-PRGCN on the main and piRDisease datasets support the robustness 
of our model.

Impact of various types of subgraph construction on model performance

Following the previous methods, that is, using similarity to construct subgraph, 
we explored the influence of two subgraph construction approaches: projection 

Table 2  Performance comparison of PDA-PRGCN against five baseline methods on piRDisease 
dataset

Method Accuracy Precision F1-score Recall AUC​ AUPR

LPI-deepGBDT 0.480 0.379 0.107 0.062 0.810 0.625

iPiDi-PUL 0.739 0.773 0.722 0.677 0.859 0.875

iPiDA-sHN 0.864 0.855 0.815 0.779 0.887 0.834

GAPDA 0.857 0.855 0.858 0.864 0.904 0.894

SPRDA 0.868 0.900 0.876 0.853 0.916 0.876

PDA-PRGCN 0.928 0.914 0.929 0.945 0.963 0.933
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subgraph and similarity subgraph. Considering different node feature types, we first 
initialized node features for each node (piRNA or disease) respectively, then con-
ducted the comparison to evaluate the impact of similarity-based subgraph con-
struction under 5-CV. Besides, because we have already utilized the similarity to 
construct subgraph, we reset the feature for each node. Here, aside from constant, 
we can take role2vec as node pre-representation. Role2vec has proper representation 
effect and works well in unsupervised graph embedding [18]. Specifically, similar 
to model ablation study, we designed three similarity-based subgraph construction 
models below. For convenience, we use OSG to denote original similarity subgraph, 
NF to denote node feature and rsSG to denote residual scaling-based similarity 
subgraph.

•	 OSG with constant NF: it uses the original similarity to construct subgraph and set all 
node feature to 1.

•	 OSG with role2vec NF: it employs the original similarity to construct subgraph, but 
uses role2vec to learn node primary representation instead of constant.

•	 rsSG with role2vec NF: under the premise of using role2vec for NF, it adopts residual 
scaling-based similarity data augmentation to construct subgraph.

Figure  3 displays the performance comparisons between PDA-PRGCN and the 
three similarity-based subgraph construction methods in terms of AUC and AUPR. 
We observed that using original similarity to construct subgraph has poor perfor-
mance. Particularly, for OSG with constant NF, it has AUC of 0.5 and AUPR of 0.75. 
For OSG with role2vec NF, considering the impact of node initial feature, after con-
ducting node primary representation by role2vec, the model achieved an AUC > 0.9 and 
an AUPR > 0.8. Furthermore, to evaluate the effect of incorporating similarity data aug-
mentation into model, we designed and tested rsSG with role2vec NF. As expected, its 
AUC gets the level of 0.93 and AUPR increases to 0.90. The improvement validates the 
strategy of incorporating data augmentation into similarity subgraph compared with 
original similarity subgraph. Although the setup of similarity subgraph with similar-
ity data augmentation (i.e., rsSG) works well under role2vec, PDA-PRGCN remains the 
best solution.

Fig. 3  The ROC curves (left) and the PR curves (right) of four variations of subgraph construction
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Impact of projection subgraph and node feature augmentation on model performance

In order to investigate the importance of projection subgraph (AM) and node fea-
ture augmentation (NIR), we designed two respective schemes. The first scheme was 
designed for NIR as following. For subgraph, we fixed the projection subgraph; for 
node feature, we only adopted original similarity profile with Stacked Autoencoder 
(i.e., SAE is used to reduce noise). To evaluate the impact of AM, the second scheme 
was designed as following. For node feature, we fixed node features augmentation; for 
subgraph, we integrated original similarity profile information into the projection sub-
graph. Here, the rationale of inputting original similarity profile information into the 
projection subgraph is to examine the influence of perturbations on projection sub-
graph in our model.

As shown in Fig.  4, without node feature augmentation, the first scheme performs 
poorly. By contrast, owing to the incorporation of the residual scaling-based node fea-
ture augmentation, the AUC and AUPR of PDA-PRGCN increase dramatically. It indi-
cates node feature augmentation is a promising strategy for detecting potential PDAs. 
For the second scheme, with some perturbations on similarity profile information, the 
prediction performance decreases sharply. It suggests that the model is sensitive to 
similarity profiles even if node feature augmentation is not changed, thus substantiat-
ing the significant roles of projection subgraph in recognizing possible piRNA-disease 
links. Together, the experiments showed that for node feature augmentation and projec-
tion subgraph, removing either one will seriously hinder the performance of prediction. 
Thus, node feature augmentation and projection subgraph are complementary to each 
other in PDA-PRGCN. Integrating them both into our model can jointly enhance the 
PDA prediction.

Fig. 4  The ROC curves (left) and the PR curves (right) of three schemes

Table 3  Performance of PDA-PRGCN for samples with different positive-to-negative ratios

Dataset Ratio Accuracy Precision F1-score Recall AUC​ AUPR

Main dataset 1:1 0.9044 0.9182 0.9028 0.8882 0.9464 0.9190

1:5 0.9249 0.7526 0.7841 0.8186 0.9503 0.7267

1:10 0.9320 0.6122 0.6286 0.6888 0.9439 0.5952

piRDisease 1:1 0.9278 0.9144 0.9286 0.9445 0.9628 0.9328

1:5 0.9295 0.7285 0.8130 0.9209 0.9630 0.7435

1:10 0.9344 0.5903 0.7165 0.9123 0.9641 0.6263
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Impact of unbalanced sample structure on model performance

For practical applications, it is important to evaluate model performance on unbalanced 
sample structure in terms of positive and negative proportion. We built three sample 
setups with positive-to-negative ratio of 1:1, 1:5, and 1:10, respectively. Then we trained 
and tested our model on the samples under 5-CV. Since AUPR punishes false positives 
more severely than AUC, it is more instructive on model performance when negative 
samples are much more than positives. As shown in Table 3, PDA-PRGCN has reasona-
ble performance in terms of AUPR in all the samples. As expected, AUPR decreases with 
the decease of positive-to-negative ratio from 1:1, 1:5 to 1:10. Nevertheless, the lowest 
AUPRs (0.5952 on main dataset, and 0.6263 on piRDisease dataset) keep at a moder-
ate and practically acceptable level. This behavior suggests a weak dependency of model 
performance on sample structure. In total, our method performs quite well in samples 
with a wide range of positive-to-negative ratios.

Case studies

Case studies on breast neoplasm, renal cell carcinoma, head and neck neoplasms and 
alzheimer disease were conducted to identify the potential piRNAs associated with each 
of the four diseases, respectively. For fairness of comparison, we applied PDA-PRGCN to 
independent dataset in which we ensured node information of collected piRNA-breast 
neoplasm/renal cell carcinoma/head and neck neoplasms/Alzheimer disease data were 

Table 4  Validation of the top ten predicted breast neoplasm-related, renal cell carcinoma-related, 
head and neck neoplasms-related and top five alzheimer disease-related piRNAs by piRDisease

Rank Breast neoplasm Renal cell carcinoma

piRNA piRDisease piRNA piRDisease

1 piR-hsa-2117 Yes piR-hsa-26940 Yes

2 piR-hsa-11360 Yes piR-hsa-26131 Yes

3 piR-hsa-26441 Yes piR-hsa-13940 Yes

4 piR-hsa-23317 Yes piR-hsa-25786 Yes

5 piR-hsa-1282 Yes piR-hsa-2117 Yes

6 piR-hsa-952 Yes piR-has-9010 Yes

7 piR-hsa-11361 Yes piR-has-12719 Yes

8 piR-hsa-12487 Yes piR-has-1282 Yes

9 piR-hsa-6496 Yes piR-has-11362 Yes

10 piR-hsa-27616 Yes piR-has-28478 Yes

Rank Head and neck neoplasms ALZHEIMER disease

piRNA piRDisease piRNA piRDisease

1 piR-hsa-28394 Yes piR-hsa-23210 Yes

2 piR-hsa-27493 Yes piR-hsa-18287 Yes

3 piR-hsa-28187 Yes piR-hsa-1077 Yes

4 piR-hsa-23992 Yes piR-hsa-1849 Yes

5 piR-hsa-1823 Yes piR-hsa-1823 Yes

6 piR-hsa-28395 Yes – –

7 piR-hsa-1282 Yes – –

8 piR-hsa-15399 No – –

9 piR-hsa-28190 No – –

10 piR-hsa-23655 No – –
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included in our training dataset (the main dataset) without edge information. The top 
ten predicted breast neoplasm-related piRNAs, top ten predicted renal cell carcinoma-
related piRNAs, top ten predicted head and neck neoplasms-related piRNAs and top 
five predicted Alzheimer disease-related piRNAs were used to assess the applicability 
of PDA-PRGCN. As shown in Table 4, the predicted piRNAs are confirmed by the inde-
pendent piRDisease database. Together, the case studies further substantiate the supe-
rior performance of PDA-PRGCN on PDA prediction.

Discussion
Based on the performance evaluation and experiments conducted, the advantages of PDA-
PRGCN are summarized as follows. First, it introduced a median subgraph projection 
approach for subgraph construction to capture the most likely links between piRNAs/dis-
eases based on local centrality. This treatment is distinct from the commonly used simi-
larity construction approaches. The outstanding performance suggests the potential of 
applying the strategy on other EAP problems. Second, a residual scaling-based node fea-
ture augmentation was designed and leveraged for a compact and high-quality initial node 
feature representation. Sequence-based k-mer similarity profile of piRNA and semantic 
similarity profile of disease contains redundant information. As a feature augmentation 
technique, residual scaling can effectively improve the final embedding. Third, a dual-loss 
mechanism was introduced, which can optimize the discrimination of binary samples 
especially for data containing unbalanced positive and negative samples.

Most methods of heterogeneous graph/network-based EAP via GCN modeling, by 
their very nature, mainly focus on how to construct the subgraph and initially repre-
sent the node [12, 19, 20]. It should be noted that similarity can be implemented in two 
alternative ways: construct subgraph as similarity graph; characterize the node feature 
as similarity profile. The experiment on our model showed the first way performed not 
well for PDA prediction. Instead, it is better to utilize it as a kind of similarity profile for 
node feature. This way, the enhanced similarity profile information among entities can 
be preserved and propagated with the layer-wise aggregation via GCN, thus, to ensure 
proximity between similar node embeddings and separability between dissimilar ones. 
Working with projection subgraph, the enhanced node features in our model can effec-
tively represent the initially node states for following graph convolution process.

The limited number of known PDAs relative to all piRNA-disease pairs lead to the 
issue of unbalanced sample composition. Notwithstanding, various work train and test 
their models on balanced data [21–23], thereby limiting their applications in many prac-
tical scenarios. Prevailingly, researchers tend to subsample negative samples or equiv-
alently decrease their weights in the optimization process [24]. This way, information 
in the negative samples might be under-represented. In contrast, for PDA-PRGCN, we 
increased the proportion of negative samples in the data as typically practical scenarios. 
The AUC increases with the inclusion of more negative samples, thereby demonstrat-
ing the efficacy of incorporating extra negative samples. We also observed that although 
AUPR decreased significantly at the same time, it is still at a competitive and practically 
acceptable level. It supports the power of dual-loss mechanism on unbalanced binary 
samples. Together, they moderate AUPRs on severely unbalanced samples suggest PDA-
PRGCN as a promising solution on this challenging task.
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Although this study incorporated subgraph projection to facilitate potential PDA pre-
diction, the method involved projection node screening that relies on degree distribu-
tion of original dataset as a relational graph. In the future, we plan to adopt weighted 
subgraph projection to further improve subgraph construction. With more sophisticated 
biological information incorporated, the power of subgraph projection can be fully uti-
lized to decipher biological associations more efficiently and accurately.

Conclusions
In this paper, we proposed PDA-PRGCN, a computational method for potential PDA iden-
tification. Its prediction performance was evaluated by various comparative experiments 
extensively. Compared with the existing methods, PDA-PRGCN shows outstanding per-
formance on PDA prediction. Moreover, competitive AUCs and AUPRs of PDA-PRGCN 
on highly unbalanced samples support its applicability as a screening tool in practice, 
where positive PDAs only represent a small proportion of all piRNA-disease pairs.

Materials and methods
Datasets and preprocessing

The manual-curated piRNA-disease datasets were collected from publicly available piR-
Base2.0 and MNDR v3.1 as the main dataset used in our model. Here, we only chose 
those experimentally verified PDA pairs. The sequence information of each piRNA 
can be obtained in the two databases. We filtered out those non-human PDA pairs 
from MNDR v3.1. Besides, it is worth mentioning that many nodes (i.e., piRNAs) with 
degree = 1 exist in the datasets. Considering the influence of degree on graph-based 
methods, as shown in Additional file 1: Figs. S1 and S2, we filtered out the nodes with 
degree = 1. For a graph containing N nodes, the degree distribution is defined as follows:

where Pk is the degree distribution and Nk denotes the number of nodes with degree = k, 
and Pk should meet 

∞

k=0

Pk = 1.

Finally, after performing the inclusion of identifier unification, de-redundancy and 
deletion of the irrelevant items from the two databases (i.e., piRBase2.0 and MNDR 
v3.1), we got the main dataset including 3446 pairs of known associations among 1478 
piRNAs and 24 diseases.

In addition, for independent piRDisease dataset, generally viewed as benchmark data-
set by the baseline methods, it consists of 4350 piRNAs, 21 diseases and 4993 known 
PDAs. We employed it to make comparisons with the five baseline methods.

Medical Subject Headings (MeSH) descriptor data of diseases were downloaded from 
https://​meshb.​nlm.​nih.​gov/.

Method overview

The backbone of a graph is node and edge. How to effectively mine structural informa-
tion for edges and augment feature information for nodes side by side is a key point 
for graph-based methods. Based on this, the rationale of our method is to construct 

(1)Pk =
Nk

N

https://meshb.nlm.nih.gov/
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appropriate topology associations as adjacency matrix (AM) and enhance node features 
as node initial representation (NIR) on the heterogeneous graph of PDAs. This way, we 
can integrate the two components into a GCN and convert the problem of PDA predic-
tion into a graph link prediction task. The flowchart is shown in Fig. 5.

Composition of the PDA heterogeneous graph

Based on graph theory, we can treat the detection of potential PDAs as a link prediction 
task in graph. Thus, a heterogeneous graph consisting of the piRNA-piRNA subgraph, 
disease-disease subgraph and known piRNA-disease subgraph is established. Specifi-
cally, we can denote them by App, Add, and Apd, then integrate the three subgraphs into 
a heterogeneous graph G. After aligning nodes of different subgraphs according to the 
node map, the final adjacency matrix A ∈ R(N+M)× (N+M) of G is defined as follows:

where N is the number of piRNAs, and M is the number of diseases. App denotes the 
projection matrix of piRNA-piRNA and Add denotes the corresponding disease-disease 
matrix, while Apd denotes the known PDA matrix and (Apd)T denotes its transposition.

Within the full graph, how to effectively construct App and Add subgraph is a key point 
to infer potential PDAs. Different from those shallow embedding methods such as node-
2vec [25], LINE [26], and SDNE [27] etc., we more thoroughly considered node feature 
information combined with PDA heterogeneous graph to jointly learn the node repre-
sentation in each convolution layer. The detailed construction procedure will be shown 
in the following sections.

(2)A =

[

App Apd

(

Apd
)T

Add

]

Fig. 5  The flowchart of PDA-PRGCN. PDA-PRGCN contains the following three parts. First, a median subgraph 
projection algorithm (A) was designed to construct the disease-disease (a1) and piRNA-piRNA subgraph (a2). 
Secondly, a residual scaling-based feature augmentation algorithm (B) was applied for normalized similarity 
profile information (b1) to enhance the node feature (b2). Thirdly, we combined the above two parts using a 
GCN (C) with two layers (c1, c2) by dual-loss mechanism. Finally, a three-layer fully-connected neural network 
predictor (c3) was used to optimize model loss and output the probabilities of potential PDAs for PDA 
prediction
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piRNA/disease subgraph construction

In this study, we adopted bipartite graph projection [28] to construct piRNA subgraph 
and disease subgraph individually. We assume that P = {P1, P2, …, Pn} (n = 1478) is the 
set of piRNA nodes and D = {D1, D2, …, Dm} (m = 24) is the set of disease nodes, while 
PDAs = {Pa Db} (1 ≤ a ≤ n and 1 ≤ b ≤ m) is the set of known piRNA-disease association. 
Given any Pp Di ∈ PDAs and Pq Di ∈ PDAs, (i.e., piRNA p and q are both related to dis-
ease i), we can infer the edge Pp Pq between Pp and Pq and construct the piRNA-piRNA 
subgraph. Same procedure applies to disease-disease subgraph construction. This way, 
the piRNA-piRNA and disease-disease subgraph were built using known PDAs.

It should be noted that piRNAs mostly point to only up to a few diseases. The default 
bipartite graph projection in the graph with a highly skewed degree distribution might 
void the assumption that piRNAs with similar functions are likely to be related to similar 
diseases. Specifically, for hub disease nodes in the piRNA-disease graph, a huge num-
ber, to the order of the square of disease degrees, of piRNA-piRNA connections will be 
generated using the projection rule. To control the inflation, we proposed a sampling 
procedure based on median node centrality. In general, for data with a long-tail distribu-
tion, the median and the region around it (e.g., the box in a boxplot) is appropriate to 
represent the data because the median is not sensitive to extremes. Instead of applying 
subgraph projection on all nodes, the projection is limited to certain number of nodes 
with centralities around the median. Therefore, we proposed a median centrality-based 
subsampling strategy as follows. For node centrality, we adopted the PageRank algo-
rithm [29]. PageRank measures the importance of a node in relation to its linked nodes 
as following:

where, Mi is the set of all webpages that have links to webpage i, L(j) is the number of 
links out of webpage j, N is the total number of webpages and α is set as 0.85 by default.

In the piRNA-piRNA/disease-disease subgraph, we selected k nodes with PR values 
around the median PR. The value of k can be decided as follows:

where for piRNA projection subgraph, Cpd is the number of known PDAs. dmax/dmin 
denotes the maximum/minimum degree of diseases, respectively. Similarly, for disease 
projection subgraph, corresponding dmax/dmin denotes the maximum/minimum degree 
of piRNAs. μ is a hyperparameter as dilution factor chosen from {1.0,10.0,100.0, 1000.0, 
…}. Specifically, to limit k to an integer and in a reasonable range, μ was tested at various 
values and set to 1.0 for disease subgraph and 100.0 for piRNA subgraph, respectively. 
The procedure of constructing piRNA/disease subgraph is presented as the following 
pseudocodes:

(3)PR(i) = α
∑

j∈Mi

PR(j)

L(j)
+

(1− α)

N

(4)k =
Cpd

(dmax − dmin) ∗ µ
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Node feature construction

Similarity features between entities are crucial to characterize the node primary rep-
resentation and are complementary with topological structure information. To felici-
tously apply them, we took them as a type of similarity profile information for node 
feature and proposed a residual scaling-based feature augmentation algorithm to 
comprehend and enhance node diversity.

piRNA similarity profile

We adopted the Jaccard similarity coefficient [30] to calculate the k-mer similarity 
profile [31] for piRNAs. We first obtained the k-mer feature from original piRNA 
sequence information, where the k is empirically selected to 3(i.e.,3-mer). The Jaccard 
similarity coefficient between xi and xj was calculated as follows:
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where xi and xj denote the binary feature vector of entity i and j. |xi ∩ xj| denotes the 
number of cases where both elements in xi and xj are equal to 1,and |xi ∪ xj| denotes the 
number of the cases where either the elements of xi or xj are equal to 1.

Considering the influence of sparsity in piRNA similarity profile matrix, the sparse 
entries can be estimated by mathematical expectation of the similarity between Jac-
card similarity coefficient and Gaussian interaction profile (GIP) kernel similarity 
[32]. The GIP similarity between piRNA i and j was calculated as follows:

where nd is a factor used to control the bandwidth of kernel. We can calculate nd by nor-
malizing the original kernel bandwidth n′d:

where k denotes the number of all diseases and n′d is usually set to 1. Thus, we can obtain 
the integrated piRNA similarity between i and j as follows:

Disease similarity profile

In PDA-PRGCN, each disease including all related annotation terms obtained from 
MeSH descriptors can be represented by hierarchical directed acyclic graphs (DAGs). 
In general, a DAG can be expressed as DAG = (T(d), E(d)), for a given disease d. T(d) 
denotes d itself together with all its ancestor nodes, while E(d) denotes all relation-
ships between nodes in the DAG(d). Dd(t) of a disease t in a DAG to the semantics of 
disease d is defined as follows:

where � is usually set to 0.5 according to previous studies. For a disease d to itself, the 
semantic contribution value is set 1, and with the distance between diseases increasing, 
the semantic contribution value will decrease. Thus, we can define the semantic value of 
disease d as following:

(5)SJ (i, j) =
|xi ∩ xj|

|xi ∪ xj|

(6)SPG(i, j) = exp
(

−nd
∥

∥A(i)− A(j)
∥

∥

2
)

(7)
nd =

n′d

1
k

k
∑

i=1

�A(i)�2

(8)SP(i, j) =

{

1
2SPG(i, j) if Sp(i, j) = 0
SJ (i, j) otherwise

(9)
{

Dd(t) = 1 if t = d
Dd(t) = max

{

� ∗ Dd(t
′)
∣

∣t ′ ∈ children of t
}

if t �= d

(10)DV(d) =
∑

t∈T (d)
Dd(t)
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Following the method previously proposed [33], the semantic similarity score 
between disease i and j can be calculated by:

Similarly, with the same criteria as for piRNA, we can finally obtain the integrated dis-
ease similarity between i and j as follows:

Residual scaling‑based node feature augmentation

In general, individual residual profile has different contributions in similarity matrix. 
Being a kind of local-specific residual, it could efficiently represent the proportions of 
each row and thus characterize the importance of similarity profile for each node. There-
fore, for each row in piRNA/disease similarity profile matrix, we have:

where, Spp (Sdd for disease) is the matrix of original similarity profile of piRNA, diag 
denotes the diagonalization operator. Ri denotes the residual profile and can be defined 
as following.

where, Apd is the known PDA matrix. Here, we only considered the similarity of piRNA/
disease distribution in ith row of Spp. δ i is defined to describe the ratio of row degree 
distribution, while � ∈ {0.1,10,100} denotes the scaling factor and is used to shrink or 
enlarge the difference of distribution among different piRNAs/diseases. Evidently, the 
non-negative residuals are derived as Ri from δ i and mean degree µ. Here, ln(·) and ||·|| 
denotes the Napierian logarithm operator and the non-negative absolute value operator, 
respectively. The procedure of residual scaling-based feature augmentation is presented 
as following pseudocodes (Here, the Stacked Autoencoder [34] was adopted to imple-
ment noise reduction.):

(11)SD(i, j) =

∑

t∈T (i)∩T (j)

(

Di(t)+ Dj(t)
)

∑

t∈T (i) Di(t)+
∑

t∈T (j)Dj(t)

(12)SD(i, j) =

{

1
2SDG(i, j) if SD(i, j) = 0
SD(i, j) otherwise

(13)S′i,j = diag
(

Ri
)

S
pp
i,j

(14)Ri =
∥

∥

∥
ln
(

δi + 1
)

− µ

∥

∥

∥
∗�

(15)δi =

∑

j A
pd
i,j

∑

j S
pp
i,j
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Graph convolution network

We adopted GCN to learn final embedding and finished the link prediction task by an 
end-to-end mode. Specifically, we utilized the GCN with two convolution layers. The 
given graph adjacency matrix A and feature matrix H with the trainable weight vector W 
and the non-linear activation function σ jointly define the neural network f (⋅) as follows:

where G = D(−1/2) A′D(−1/2) with A′ = A+ I and D is the diagonal degree matrix of A′ , 
and ReLU is adopted as σ.

In view of the efficacy of PDA prediction, we designed a predictor of PDA-PRGCN by 
applying a three-layer fully-connected (FC) neural network to output the probability for 
potential links in the PDA graph, corresponding to feature extractor (i.e., GCN). Differ-
ent from conventional dot product method [24, 35], our predictor is based on the end-
to-end mode aiming for a better integration of embeddings and joint optimization of the 
proposed model as well as downstream tasks.

Dual‑loss mechanism

Together with the cross-entropy loss function applied to obtain the optimal classifica-
tions, the sensitivity–specificity loss function [36] was jointly adopted to train PDA-
PRGCN. The dual loss is defined as follows.

where, y(i) is the true label and ŷ(i) is the predicted label. w = {0.1,0.01} represents sensi-
tivity ratio, which can control the balance between sensitivity and specificity. Herein, sp 

(16)H
(l+1) = f

(

H
(l),A

)

= σ

(

GH (l)
W

(l)
)

(17)Loss = LCE + LSS

(18)LCE = −

N
∑

i=1

y(i)logŷ(i) +
(

1− y(i)
)

log
(

1− ŷ(i)
)

(19)LSS = w ∗ sp+(1− w) ∗ se
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denotes Specificity = TN
TN+FP and se denotes Sensitivity = TP

TP+FN with FN, TN, TP and FP 
denoting false negative, true negative, true positive and false positive, respectively.
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