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Abstract 

Background:  Recent increasing evidence indicates that three-dimensional chromo‑
some structure plays an important role in genomic function. Topologically associating 
domains (TADs) are self-interacting regions that have been shown to be a chromo‑
somal structural unit. During evolution, these are conserved based on checking syn‑
teny block cross species. Are there common TAD patterns across species or cell lines?

Results:  To address the above question, we propose a novel task—TAD recognition—
as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, 
thus re-casting TAD recognition as image pattern recognition, for which we use a con‑
volutional neural network and a residual neural network. In addition, we propose an 
elegant way to generate non-TAD data for binary classification. We demonstrate deep 
learning performance which is quite promising, AUC > 0.80, through cross-species and 
cell-type validation.

Conclusions:  TADs have been shown to be conserved during evolution. Interest‑
ingly, our results confirm that the TAD recognition model is practical across species, 
which indicates that TADs between human and mouse show common patterns from 
an image classification point of view. Our approach could be a new way to identify 
TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are 
conserved if the two classification models are exchangeable.
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Introduction
Emerging evidence suggests that the structures of chromosomes and genome interac-
tions are highly related [1]; deciphering the relationship between them will aid in our 
understanding of genetic function. Chromosome conformation capture (3C), which 
was developed to gain better insight into three-dimensional chromatin structures [2], 
requires a set of target gene loci, making chromatin-wide structures studies impossible. 
During the last decade, extensions to 3C such as 4C [3], 5C [4], and Hi-C [5] have been 
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developed to determine spatial chromosomal interaction within a chromosome region, a 
chromosome, or an entire genome with unprecedented resolution and accuracy.

In 2009, Liebermann-Aiden proposed high-throughput chromosome conformation 
capture (Hi-C), which identifies long-range interactions in an unbiased, genome-wide 
fashion via high-throughput sequencing and bioinformatics analysis to understand the 
genome-wide relationship between chromosome organization and genome activity [5]; a 
resulting matrix of interaction frequencies shows the relative spatial disposition between 
two genomic regions in chromosome 3D space [5]. In short, Hi-C allows us to evaluate 
contact frequency between any pair of genomic loci.

Topologically associating domains (TADs)

Recent studies on Hi-C data have demonstrated the existence of a type of chromatin struc-
ture known as a topologically associating domain (TAD) in which interactions are highly 
enriched inside each segment and are significantly depleted between adjacent segments; 
these can be seen as continuous square (blocks) domains of highly self-interacting regions 
along the diagonal of the Hi-C contact matrix [6, 7]. TADs are considered to be the struc-
tural and functional unit of a chromosome, at least in Drosophila and mammalian genomes 
[7, 8]. The functions of TADs are not fully understood, but some work shows that disturbing 
TAD boundaries affects the expression of nearby genes and is associated with disease [9].

TAD identification is an important problem for bioinformatics. In recent years, several 
different tools (TAD callers) have been made available for TAD detection from Hi-C. 
These can be divided into four categories: linear score, clustering, statistical model, and 
network features [10–12] (a list in Additional file 1: Table S1); however, it is not clear 
how to evaluate the accuracy of a TAD caller with no stable ground truth, given that 
TAD predictions vary significantly between different callers [10].

Deep learning for image recognition

In 1980, Fukushima proposed the neocognitron [13], a hierarchical neural network (NN) 
used for tasks such as recognizing patterns by learning the shapes of the target objects. 
The neocognitron was inspired by simple and complex cells and is considered the proto-
type of the modern convolutional neural network (CNN). In 1998, Yann Lecun proposed 
the famous LeNet, the first CNN [14].

Jonathan Long proposed a fully convolutional neural network (FCN) for image seg-
mentation [15] which performs end-to-end and pixel-to-pixel semantic segmentation. 
The final image segmentation is constructed from deconvolution based on upsampling.

A residual neural network (ResNet) is a CNN milestone, owing to its winning the first 
place in the ILSRVC competition and COCO contest in 2015 [16]. ResNet is outstand-
ing when dealing with degradation because of its unique trick: the shortcut connection. 
It skips one or a few layers, utilizing residual mapping and adding this to the output of 
the stacking layers. Also, short connections require only the mapping to have the same 
shape as the output layers. This thus entails neither extra parameters nor extra computa-
tional complexity in the networks, such that nothing extra is required to train the resid-
ual network through the common backpropagation process.

A squeeze-and-excitation network (SENet) reinforces important features to increase 
prediction accuracy by modeling correlation between feature maps [17]. It won the first 



Page 3 of 14Yang and Chang ﻿BMC Bioinformatics          (2021) 22:634 	

place in ILSRVC2017. Specifically, a SENet is merely the application of SE blocks in any 
neural network. A SE block consists of two major operations: squeeze and excitation. 
The squeeze operation shrinks the input feature maps through spatial dimensions via 
global average pooling (GAP) to generate smaller feature maps with overall information 
for each of their corresponding feature maps, after which the excitation operation calcu-
lates the weights of each feature map through extra fully connected layers and non-linear 
layers. We multiply these weights with the original feature maps to yield the final result.

Deep learning is gaining popularity for Hi-C data analysis. Henderson et al. achieved 
96% accuracy in predicting TAD boundaries based on DNA sequences with three convo-
lutional layers followed by a long short-term-memory layer [18]. Yan Zhang et al. applied 
a deep CNN to infer high-resolution Hi-C interaction matrices from low-resolution 
Hi-C data by considering the Hi-C map as an image [19].

TAD recognition using deep learning

Although 3D chromatin is dynamic during cell differentiation [20] and even in daily life 
[21], the TAD boundary varies little [22, 23]. Dixon and colleagues [6] found the domain 
boundaries to be largely invariant between cell types when comparing mouse ES cells 
and cortex cells, or human ES cells and IMR90 cells. Regarding the evolution of chro-
mosomal topology, they investigated TAD conservation between mouse and human and 
establish similar chromatin structure in syntenic regions where 53.8% of human bound-
aries are present in mouse boundaries and 75.9% of mouse boundaries in human bound-
aries. Going further, Rudan et al. observed the extensive conservation of chromosomal 
structure across four mammalian species (mouse, dog, rabbit, and macaque) [24].

It has been shown that CTCF binding is maintained at TAD boundaries [25]. Apart 
from genomic sequence patterns in TAD boundaries, are there any common TAD pat-
terns across species or cell type? To address this question, we formalize a TAD recogni-
tion problem, determining whether a given genomic region is a TAD or not. In practice, 
could we build a TAD binary classification model of one species or one tissue, and then 
apply this to other species or tissue? If yes, we could conclude there is an exchange pat-
tern across species or tissues.

Here, we are the first to consider TAD recognition as image recognition, i.e., predict-
ing whether a given Hi-C region (an image) is a TAD or not (non-TAD). To increase 
feature maps, we use the SE-FCN and SE-ResNet (FCN and ResNet with SE blocks, 
respectively) deep learning models. Based on cross-species evaluation, prediction accu-
racy is reasonably high (~ 80%).

Results
Five‑fold cross validation with a species‑specific dataset

We performed five-fold cross validation using species-specific datasets _Human and _
Mouse to evaluate the performance of the two deep learning methods. Table 1 shows 
that SE-ResNet is competitive with SE-FCN on both datasets. Interestingly, the per-
formance of SE-ResNet is also more stable than that of SE-FCN across the five folds 
(detailed information on the individual folds are provided in Additional file 1: Tables S2–
S3 for Human and S4–S5 for Mouse, respectively). Then, we validated the effect of label 
imbalance using three different ratios between TAD (positive) and non-TAD (negative). 
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SE-ResNet shows steadier performance on the human set (0.89–0.91) compared with the 
mouse set (0.79–0.86) across evaluation metrics (complete metrics in Additional file 1: 
Tables S2–S5). More specifically, the ratio-1:1 model exhibited the least metric variation. 
Clearly, the more imbalanced the data is, the more challenging it is to train the model. 
Thus, SE-ResNet based on 1:1 (TAD:non-TAD) is used in the following experiments.

Cross cell line, cross‑species test

We validated the generalization ability of SE-ResNet across species and cell types in the 
following three different experiments (Table 2, detailed confusion matrix in Additional 
file 1: Table S6).

First, SE-ResNet was trained on ES cells and tested on other cell types for the same 
species, i.e., _Human.ES was trained on human ES cells and tested on human hIMR 
cells; _Mouse.ES was trained on mouse ES cells and tested on mouse mCO cells. All 
_Human.ES metrics are higher than those of _Mouse.ES (Same species, cross cell types 
in Table 2). This indicates that mouse data is more heterogeneous than human data; that 
is, models trained on ES cells are less efficient in classifying TAD of mCO cell lines.

Following the above test, we attempted to increase the training power for ES cells by 
merging human and mouse data into one set. Thus, we trained the _ES model on both 
human and mouse ES cells and tested it on human hIMR and mouse mCO cells. The 
resultant _ES performance was as expected, falling between _Human.ES and _Mouse.
ES, except for TNR and precision (Cross cell types, Table 2). This shows that increasing 
the training data yields improved TAD classification for mCO but decreases the specific-
ity of hIMR TADs.

Table 1  Average of five-fold cross validation of deep learning models in Human and Mouse Hi-C 
datasets given various TAD: non-TAD ratios

Models 1:1 1:1.5 1:2

Acc. F1 AUC​ Acc. F1 AUC​ Acc. F1 AUC​

_Human

 SE-FCN 0.892 0.894 0.889 0.914 0.895 0.914 0.915 0.872 0.905

 SE-ResNet 0.877 0.869 0.877 0.897 0.867 0.888 0.898 0.835 0.873

_Mouse

 SE-FCN 0.836 0.825 0.836 0.857 0.809 0.846 0.879 0.817 0.866

 SE-ResNet 0.868 0.853 0.856 0.883 0.856 0.883 0.880 0.812 0.858

Table 2  SE-ResNet performance for three different experimental settings

Methods TPR TNR Precision Acc. F1 AUC​

Same species, cross cell types

 SE-ResNet_Human.ES 0.922 0.832 0.846 0.877 0.882 0.877

 SE-ResNet_Mouse.ES 0.853 0.763 0.783 0.808 0.817 0.808

Cross cell types

 SE-ResNet_ES 0.907 0.841 0.851 0.874 0.878 0.874

Cross species

 SE-ResNet_Human 0.876 0.864 0.862 0.870 0.869 0.870

 SE-ResNet_Mouse 0.837 0.900 0.893 0.868 0.864 0.868
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We then validated the effectiveness of SE-ResNet by a cross-species test. We trained 
a model on one species and tested it on other species, i.e., _Human trained in human 
ES and hIMR cells and tested on mouse ES and Cortex cells. On average, the model 
achieved reasonable performance, exceeding 0.80 for all metrics (Cross species, Table 2). 
TAD has been shown to be conserved across species [6]. Here, we confirm that the clas-
sification power of TAD transfers across species.

In sum, we evaluated the generalization power of the TAD classification model from 
different angles. The results show that model performance is affected little by the train-
ing species or cell lines. We are confident the proposed model will prove useful in other 
Hi-C datasets. Further, our approach could be a new way to test TAD variations or pat-
terns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if two 
classification models are exchangeable.

Discussion
TAD patterns

CNN-based approaches for classification are becoming more popular. However, despite 
their strong performance, their training processes are difficult to unravel. We know only 
the inputs and outputs; everything else is a black box. In 2015, class activation mapping 
(CAM) was proposed by Zhou et al. [26]. The concept of CAM is intuitive: connect the 
GAP layer before the final classifier and sum all the feature vectors, multiplying by their 
corresponding weights given the specified label. This reveals which part of the image the 
model is focusing on [26].

CAM affords a clearer look at how the trained models classify a given input, indirectly 
proving that CNNs can localize a given discriminative pattern. In Fig. 1, we visualize the 
focused parts of SE-ResNet_Human on two cross-species testing cases. The first case, 
mES_chr1, is a TAD and the model predicts it as such. The next, mES_chr8, is non-TAD 
and the model also makes a correct prediction. CAM visualization of the two classifiers 
shows different discriminative patterns. Non-TAD focuses on the middle part whereas 

Fig. 1  CAM of SE-ResNet_Human model applied on mES_chr1 and mES_chr8, where the model emphasizes 
and ignores parts colored in red and blue, respectively
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TAD focuses on the two ends of the region, which might be related to the enrichment 
of the CTCF binding site around TAD boundary [25, 27]. Whether TAD or non-TAD 
is predicted depends on which corresponding classifier output has a higher softmax 
probability.

TAD identification

We have successfully classified TAD and non-TAD, which has not been addressed 
before. We extend a classification step to TAD identification. We develop a TAD caller, 
TADL, based on dynamic programming, which involves solving a problem by break-
ing it down into small easy sub-problems. The solution of the original problem is then 
based on the solutions of the sub-problems. That is, we simplify the complicated TAD 
identification of the whole genome by breaking it down into TAD recognition of specific 
regions in a recursive manner via dynamic programming. The algorithm for the TADL is 
provided in the following.

We start from the beginning of the Hi-C map and extend one bin (line 8 and 10). Then 
the region is classified as TAD or non-TAD using the previous trained model (line 14). 
If the TAD prediction probability of the region is more than 0.95, its beginning and end 
positions are saved (line 16). Otherwise, we enlarge the region one bin more within TAD 
size limit (line 10) and repeat the above classification step (line 14). After the enlarging 
step, if there is a saved region (line 18), the last saved one is returned as one TAD (line 
19) and its end position is then taken as the starting point for the next process (line 20).

Here, Fig. 2 demonstrates the performance of the proposed TAD caller in a cross-spe-
cies test in which TADs of mES Hi-C identified based on the SE-ResNet_Human TAD 
classifier, TADL(SE-ResNet_Human, mES Hi-C, 11), (top-right) are compared with 
those identified by the direction index (DI) [6] (bottom-left). Although they are not iden-
tical, most are consistent with each other, falling in Case A or B in Fig. 7a [28].
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It has been shown that TAD boundaries have an enrichment of CTCF binding sites 
[25, 29]. We take mouse cortex and mESC CTCF ChIP-Seq [30] as an evaluation crite-
rion to quantify the number of called TAD boundaries overlapped with CTCF peaks. 
The peak position is binned at a 40 kb resolution to ensure consistency with the Hi-C 
map resolution used here. This yields 22,535 and 22,505 CTCF peaks of mES and mCO, 
respectively. We benchmarked the performance of the SE-RestNet_Human TADL clas-
sifier on the mES and mCO datasets with DI and ClusterTAD [28], which is consistent 
and complementary with existing methods. The TAD boundary of DI is from publicly 
available data [31]. We run ClusterTAD locally with default parameters at a 40 kb resolu-
tion and use the TADs defined in BestTAD_*.txt file.

Table 3 summarizes the results of TAD and CTCF evaluation. The proposed method 
tends to generate more and smaller TADs compared with DI and ClusterTAD. Cluster-
TAD detects fewer TADs than originally reported [31] due to the larger Hi-C bin size 

Fig. 2  TAD caller demonstrated on mES chromosome 15:0..32000000. Lower blue triangles are TADs 
identified by directionality index, and upper pink triangles are TADs identified by TADL, SE-ResNet_Human

Table 3  TADs of mES and mCO Hi-C using DI, ClusterTAD, and TADL  SE-RestNet_Human; the 
corresponding evaluation, the number of CTCF peaks overlapping the TAD boundary based on 
original boundary and extended positions

Method TAD # of overlapping CTCF

Number Size (bin) Original Extended

mES

 ClusterTAD 1224 46.91 1565 3883

 DI 2200 27.54 2951 3981

 TADL 3732 15.15 2849 4986

mCO

 ClusterTAD 1226 46.22 1500 3887

 DI 1519 37.67 1970 2691

 TADL 3390 14.68 2695 4765
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used here. Although DI detects fewer TADs, most match accurately with the CTCF 
peaks (higher precision). Interestingly, if we relax the overlapping peaks within the TAD 
boundary interval ± 1 bin size (“Extended” in Table  3), our method detects far more 
TADs matching CTCF points than DI (higher recall). ClusterTAD is the most precise 
method in the extended metrics.

Conclusion
We are the first to propose TAD classification as image classification, where Hi-C data 
is re-cast as an image. We explore deep learning methods including CNN, ResNet, and 
SENet to classify TADs from sub-kb high-resolution chromatin capture experiments. To 
train a binary classification model, we generate negative cases (non-TAD). The useful-
ness of the model is validated through cross-species tests. Model accuracies exceed 80% 
and the other metrics are also decent. Further, some are extremely close to the accuracy 
metric, indicating that the model’s performance is not biased toward a specific class, 
TAD or non-TAD. Deep learning technology has progressed rapidly for image classifica-
tion. By re-framing the problem as image classification, TAD classification performance 
will continue to improve as deep learning progresses. TAD has shown to be conserved 
during evolution. Interestingly, our results confirm that the TAD classification model is 
practical across species. This indicates TADs between human and mouse show common 
patterns from an image classification perspective. Our approach could be a new way to 
test TAD variations or patterns in Hi-C maps. For example, TADs of two Hi-C maps are 
conserved if two classification models are exchangeable.

Our model was trained using a Hi-C contact matrix at a 40 kb bin-size resolution. It 
would be instructive to evaluate the 40 kb model capacity in other resolutions, in par-
ticular higher resolutions, e.g., 1  kb bin-size, which are currently available for many 
species [20, 29, 32]. Alternatively, the same deep learning architecture could be further 
re-trained using higher-resolution Hi-C maps.

Methods
Hi‑C data preparation

The Hi-C dataset we used consists of mouse embryonic stem cell (mESC) and mouse 
cortex (mCO) mouse types as well as human embryonic stem cell (hESC) and human 
IMR90 fibroblasts (hIMR) human types. All interaction matrices were created using a 
40 kb bin size throughout the genome. The Hi-C dataset was already normalized using 
an integrated probabilistic background model [33] to estimate its parameters and renor-
malize the Hi-C data (downloaded from [34] with 40 kb resolution).

The Hi-C data is a contact matrix featuring spatial chromosomal interaction within a 
chromosome region. Because the Hi-C contact matrix is symmetric, only the contacts in 
the upper triangle along the diagonal of the contact matrix were considered. We added 1 
to all elements in the matrix to avoid 0 elements, and then applied log2 for transforma-
tion purposes. Dividing the whole contact matrix by the maximum element yielded a 
matrix whose element values ranged from 0 to 1.

We also knew the locations of each of the TADs that we called in the Hi-C data 
(downloaded from [34]). The TADs for each dataset were provided as bed files, with 
each line containing three types of TAD information: chromosome, domain start, and 
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domain end. As the TADs were called using the normalized data with a bin size of 
40 kb, each start and end position was a multiple of 40 k.

Non‑TAD generation

For training in the TAD binary classification problem, we collected positive (TAD) 
and negative (non-TAD) data. Generally, TAD callers search only for TADs in Hi-C 
contact matrices and do not provide non-TAD instances. Hence, we generated a non-
TAD set from the Hi-C contact matrix.

First, we defined regions that do not belong to TAD domains as non-TAD points 
(Fig. 3, orange squares). To ensure a similar size distribution between TAD and non-
TAD sets, one TAD was randomly selected among all TADs and its size was used to 
generate a non-TAD instance (e.g., size = 6). Then, we randomly chose one non-TAD 
point as an anchor point (Fig.  3, the purple square). Finally, a non-TAD (Fig.  3, the 
red triangle) was generated by arbitrarily mapping a selected rectangle (Fig.  3, red 
squares) to the anchor point. To evaluate the capacity of the model with imbalanced 
labels, we repeated the above process to generate three different amounts of non-
TAD sets. As the model should be able to identify positive cases among noisy nega-
tive cases, three upsampled negative sets were constructed with positive-to-negative 
ratios of 1:1, 1:1.5, and 1:2 (Table 4).

HiC data transformation to image

Both TAD and non-TAD datasets were resized to 60X60 and saved as image files using 
the opencv library’s cv2.resize and cv2.imwrite functions, respectively. The image 
files are publicly available at https://​doi.​org/​10.​6084/​m9.​figsh​are.​96974​51. The final 
dimension of our data was 60 × 60 × 3, where 3 corresponds to the RGB channels.

Fig. 3  Generation of non-TADs. Orange squares are non-TAD points; a purple square is a randomly selected 
anchor point; the number of red squares corresponds a random TAD size; green triangles are TADs, and a red 
triangle is a non-TAD instance resulting from this procedure

Table 4  Numbers of TADs and non-TADs given different upsampling ratios

Type (ratio) Mouse ES Mouse cortex Human ES Human IMR90

TAD 2200 1519 3127 2349

Non-TAD

 1.0 2200 1519 3127 2349

 1.5 3292 2273 4684 3517

 2.0 4400 3038 6254 4698

https://doi.org/10.6084/m9.figshare.9697451


Page 10 of 14Yang and Chang ﻿BMC Bioinformatics          (2021) 22:634 

Deep learning models

We evaluated two CNN models: a fully convolutional network (FCN) and a residual neural 
network model (ResNet). We added to both models squeeze-and-excitation (SE) blocks to 
increase feature maps, and named these the SE-FCN and SE-ResNet models, respectively. 
We implemented the models in Keras, a high-level neural network API written in Python 
which runs on top of TensorFlow, CNTK, or Theano.

Model architectures

We first explored the SE-FCN model, which is based on squeeze-and-excitation and fully 
convolutional networks (Fig. 4). Filter sizes 8, 5, and 3 are labeled on the convolutional 
block from left to right with the same kernel size, 128. The output of the convolution 
layer passes through a batch normalization (BN) layer (BatchNormalization layer, Keras) 
with ReLU activations. We use BN to mitigate internal covariate shift [35]. To intensify 
features, only the first block has a SE block. Finally, the result flows into the GAP layer 
with a softmax layer. For binary classification, softmax is applied to the output to deter-
mine which of TAD or non-TAD is more reliable; this yields a set of probabilities.

SE-ResNet, the second model, is composed of a series of SE-FCN blocks, the differ-
ence being that the SE block is placed after convolutional blocks with filter sizes of 3 
[26]. Also, the input values are regulated by the kernels and added to the output of the 
SE blocks. An operation that directly adds the input to the output of the following block 
is called a shortcut (Fig. 5).

Fig. 4  SE-FCN model combined with three blocks, where (8, 8), (5, 5), and (3, 3) correspond to the filter size 
and 128 is the kernel size

Fig. 5  SE-ResNet model, combined with three SE-FCN blocks and additional components marked in red
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Evaluation

Experimental design

To estimate the performance of the deep learning models, we conducted experiments in 
two phases: training and independent test.

•	 Training: We applied five-fold cross validation to estimate the model’s performance 
on new data. The dataset was split into two non-overlapping sets, training and vali-
dation, at a 4:1 ratio. The former was used to train the weights of the model, and the 
latter was used to evaluate the predictive ability of the trained model. We used the 
Adam optimizer to minimize binary cross-entropy loss. The training period was set 
to 400 epochs and the batch size to 48 using the KFold function from the Sklearn 
package.

•	 Independent test: As a Hi-C map is an abstract representation of 3D chromosome 
structure, a cell type should contain its own structure pattern such that its Hi-C map 
might be different from those of other cell types. For a trained model, it is interesting 
to test the upper bound of classification power on Hi-C maps of other types. We per-
formed the following experiments to train the model on one type and independently 
test it on a different type (Table 5).

•	 Same species, Cross cell types

•	 Human.ES: trained on human ES cell and tested on human IMR90 cell
•	 Mouse.ES: trained on mouse ES cell and tested on mouse cortex cell

•	 Cross cell types (ES): trained on both human and mouse ES cells and tested on 
human IMR90 and mouse cortex cells

•	 Cross species

•	 Human: trained on human ES and IMR90 cells and tested on mouse ES and 
cortex cells

•	 Mouse: trained on mouse ES and cortex cells and tested on human ES and 
IMR90 cells

Table 5  Training and test data used in independent test phase

*A label is added to the deep learning models as a suffix to indicate which experimental design was used. For example, 
SE-ResNet_Human indicates a SE-ResNet model trained on Human data and tested on Mouse data

Label* Mouse ES Mouse cortex Human ES Human IMR90

Same species, cross cell 
types

 Human.ES – – Train Test

 Mouse.ES Train Test – –

Cross cell types

 ES Train Test Train Test

Cross species

 Human Test Test Train Train

 Mouse Train Train Test Test
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Metrics

We used six different metrics to evaluate the performance of the proposed models 
from different perspectives: precision, recall (true positive rate, TPR), true negative rate 
(TNR), accuracy (Acc.), F1 score, and area under the curve (AUC). Precision is the frac-
tion of the corresponding TADs among the retrieved TADs:

The relative frequencies of the correct results obtained on the set of all instances are 
defined as TPR (recall) and TNR, which are shown as

Accuracy (Acc.) can be seen as the total correct number of classifications, formulated 
as

The F1 score is the harmonic average of precision and recall. The F1 score is usually 
better than accuracy, especially given an uneven class distribution.

AUC is a performance measurement for classification problems at various threshold 
settings. Briefly, it indicates how well the model distinguishes between classes. A good 
model has an AUC close to 1, indicating good separation between positive and nega-
tive labels. In contrast, a poor model has an AUC near to 0, indicating poor separation 
between labels.

Because Accuracy does not take into account a model’s differential performance 
between two classes, metrics such as precision, TPR, TNR, and the F1 score provide 
supplemental information on whether the model performance is biased toward a specific 
class. AUC generally shows how a model performs across different thresholds applied to 
the probability of prediction. The model is considered reliable if the six metrics are sta-
ble on the validation set.
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