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Abstract 

Neglected tropical diseases affect millions of individuals and cause loss of productivity 
worldwide. They are common in developing countries without the financial resources 
for research and drug development. With increased availability of data from high 
throughput screening, machine learning has been introduced into the drug discovery 
process. Models can be trained to predict biological activities of compounds before 
working in the lab. In this study, we use three publicly available, high-throughput 
screening datasets to train machine learning models to predict biological activities 
related to inhibition of species that cause leishmaniasis, American trypanosomia-
sis (Chagas disease), and African trypanosomiasis (sleeping sickness). We compare 
machine learning models (tree based models, naive Bayes classifiers, and neural 
networks), featurizing methods (circular fingerprints, MACCS fingerprints, and RDKit 
descriptors), and techniques to deal with the imbalanced data (oversampling, under-
sampling, class weight/sample weight).
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Introduction
Leishmaniasis, African trypanosomiasis (sleeping sickness), and American trypanoso-
miasis (Chagas disease) have been listed in the top list of global burden diseases by the 
World Health Organization. Leishmaniasis affects 12 million people worldwide, and 
is considered to be one of the world’s most neglected diseases [1–3]. It is caused by a 
Trypanosomatid protozoan parasite from the genus Leishmania. American trypanoso-
miasis, also known as Chagas disease, affects more than 7 million people worldwide and 
is caused by the protozoan parasite Trypanosoma cruzi [2–4]. African Trypanosomiasis, 
also known as sleeping sickness, affects 300,000 people worldwide and is caused by the 
parasite Trypanosoma brucei.

The only approved therapeutics for the treatment of these diseases are expensive, not 
very effective and have adverse side effects [5–7]. Thus it is important to keep search-
ing for new treatments. Target-based drug discovery involves “screening a library of 
compounds against a protein and then optimizing the compounds for potency against 
the enzyme, selectivity, cellular activity, and pharmacokinetic properties” [8]. As the 
screening process can involve tens of thousands of compounds, it is often costly and 
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time-consuming. We hope to save time and cut costs by using machine learning in the 
screening process and only testing compounds in the lab which are predicted to be use-
ful by the models. In this study, we train machine learning models (using data from high-
throughout screenings) to predict whether a compound will inhibit a disease-causing 
parasite. Different models, types of features, and techniques to deal with imbalance data-
sets are compared. For more on using machine learning in drug discovery for neglected 
tropical diseases, see [5, 6, 9–12].

Methods
Bioassays and data sources

The three datasets used were downloaded from PubChem, a database collecting infor-
mation on small molecules and datasets on high throughput biological assays and main-
tained by the National Center for Biotechnology Information.

Leishmaniasis The assay used to train models for Leishmaniasis has PubChem AID 
1721. The target is the enzyme pyruvate kinase from Leishmania mexicana. Of the 
292,732 compounds tested, only 1088 are active ( ≈ 0.37% active).

African trypanosomiasis The assay used to train models for African trypanosomiasis 
has PubChem AID 485367. The target is the enzyme phosphofructokinase from T. bru-
cei. Of the 330,677 compounds tested, only 557 are active ( ≈ 0.17% active).

American trypanosomiasis The assay used to train models for American trypanoso-
miasis has PubChem AID 1885. Of the 303,218 compounds tested, only 4394 are active 
( ≈ 1.45% active).

All three assays were luminescence-based assays. Decreased luminescence indicates 
inhibition of the target and therefore the corresponding compound may kill the parasite.

Preprocessing and featurizing

The structure of each compound was downloaded from PubChem in the Structural Data 
Format (SDF). We then used the python packages DeepChem [13] and RDKit [14] to 
generate descriptors for each compound.

Circular fingerprints Circular fingerprints are a type of hashed fingerprint. All sub-
structures up to a given diameter are enumerated and converted to numeric values using 
a hash function. These values are used to indicate bit positions in the fingerprints. Thus 
each compound is represented by a vector of 0s and 1s, with the 1s indicating presence 
of a substructure. Each position in the vector corresponds to more that one possible 
substructure (leading to possible “bit collisions”), with longer fingerprints having fewer 
bit collisions [15]. We used fingerprints of sizes 256 and 1024 in this study.

MACCS fingerprints The MACCS (Molecular ACCess System) fingerprints are similar 
to circular fingerprints because they are vectors of 0s and 1s with each 1 indicating pres-
ence of a substructure. MACCS fingerprints are generated using a fixed list of 166 sub-
structures and were developed by Molecular Design Limited, Inc. [16].

RDKit descriptors The python package RDKit has a module RDKit.Chem.Descriptors 
that calculates 208 chemical properties of each compound. A list can be found at [17].

Concatenations of different descriptors We also trained our models using concatena-
tions of different features. We used the concatenation of MACCS fingerprints with 
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RDKit features, the concatenation of 1024 fingerprints with RDKit features, and the con-
catenation of MACCS fingerprints, 1024 fingerprints, and RDKit features.

Since the data is so imbalanced, we used a random stratified splitter to split the entire 
set of compounds into 80% training set and 20% test set. This preserves the ratio of 
active to inactive. We used three different splits for training and testing and averaged the 
results.

Machine learning models

We trained our machine learning models using the scikit-learn (sklearn) library in 
python [18] and used the default parameters from sklearn. It should be noted that the 
performance of the models will most likely improve with hyperparameter tuning. The 
Keras library was used for neural networks. Early stopping with a patience of 2 was used 
for the neural network models. A 10% validation set was split from the training set for 
this.

Naive Bayes classifiers The Naive Bayes classifier (NB) is based on Bayes’ Theorem. 
The “naive” assumption we make is that the descriptors are independent.

Tree based classifiers Both of the tree-based models we used are examples of “boost-
ing”. In machine learning, boosting is used to convert many weak models into a single 
strong model. Gradient Boosted Decision Tree (GBDT) models are based on a method 
introduced by Friedman [19]. The idea is to use gradient descent to adjust the parame-
ters of a tree in order to decrease a differentiable loss function. The default loss function 
for GBDT in sklearn is Friedman mean squared error. Adaboost can be thought of as a 
special case of GBDT in which the loss function is the exponential loss function. It was 
introduced by Freund and Schapire [20].

Neural networks Artificial Neural Networks are models that (very roughly) mimic the 
complex structure and functioning of the brain [21]. A fully connected neural network 
can be described by the number of neurons in each hidden layer. We used two different 
networks, one with a single hidden layer of 100 neurons and one with five hidden layers: 
100–100–100–100–20.

Imbalanced data

The three datasets used to train our models are all very imbalanced. The ratio of active to 
inactive compounds is very low (ranging from 0.17 to 1.45%), This presents difficulties in 
both training and evaluation of the models.

Measuring success of a model

A common metric for measuring success of a classifier is accuracy score:

If a model were to predict all 330,677 compounds in PubChem AID 485367 are inactive, 
then the accuracy of that model would be ≈ 0.9983 . However, we would miss all 557 
active compounds and we are interested in identifying active compounds. A metric bet-
ter suited to imbalanced data sets is the balanced accuracy score (BA). It is the average 

Accuracy =
TP + TN

TP + TN + FP + FN
.
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of the true positive rate TPR (also known as sensitivity) and true negative rate TNR (also 
known as specificity):

where TPR =
TP

P
 and TNR =

TN

N
 . The balanced accuracy score of a model predicting all 

compounds in PubChem AID 485367 to be inactive would only be 0.5. We use the bal-
anced accuracy as our primary measure of success of our models, but also report accu-
racy, true positive rate and false positive rate ( FPR =

FP

N
).

Training models with imbalanced data

We used three techniques to adjust our models to perform better with imbalanced data: 
oversampling, undersampling, and sample weights.

When we train models using oversampling, active compounds in the training dataset 
are randomly duplicated until the dataset has the same number of actives and inactives. 
When using undersampling, a subset with the same size as the set of active compounds 
is randomly selected from the set of inactive compounds in order to create a balanced 
training set.

If the sample weights of active compounds are higher than that of inactive compounds, 
then a misclassified active compound results in a greater contribution to the loss func-
tion than a misclassified inactive compound. This also causes the model to predict more 
active compounds. In our study, all inactive compounds had weight 1. We started with (# 
of compounds)/(# of active compounds) and experimented to find a range of weights for 
the active compounds to test.

It should be noted that models trained using oversampling, undersampling, or class 
weights (with actives weighted more than inactives) also tend to predict more false posi-
tives. We stopped increasing the class weights of the actives when the false positive rate 
exceeded 20%.

Results and discussion
For each of the three PubChem datasets, we trained five different types of models: Two 
neural networks (NN1: one hidden layer with 100 neurons, NN2: five hidden layers 
100–100–100–100–20), naive Bayes classifier (NB), adaboost tree model (Adaboost), 
and gradient boosted decision tree (GBDT). Each of these models was trained using five 
different types of features: Circular fingerprints of size 256 (256FP), circular fingerprints 
of size 1024 (1024FP), MACCS fingerprints (MACCS), RDKit descriptors (RDKit), and 
the concatenations (MACCS/RDKit, 1024FP/RDKit, 1024FP/MACCS/RDKit). For each 
model-feature combination, we trained a model using no imbalance technique, one 
using oversampling, one using undersampling, and six using different sample weights. 
Every combination was trained three times using different train-test splits, giving a total 
of 2520 trained models.

BA =
TPR+ TNR

2
,
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Models

Figure 1 shows overall performance of the models, with balanced accuracy score shown 
on the vertical axis. This includes all 2520 models, including training without oversam-
pling, undersampling, or sample weights. Overall, the highest median and mean bal-
anced accuracy score is achieved by GBDT models, with a median balanced accuracy 
score of 0.762 and mean of 0.738. The neural networks have the highest individual scores 
but also have higher variance. NN2 has the lowest median balanced accuracy score of 
0.705 while NN2 has the second lowest at 0.708.

Fig. 1  Overall model performance

Table 1  Top model performance on AID 1721

Model BA TPR FPR Accuracy

NB 0.825 0.794 0.143 0.857

GBDT 0.858 0.794 0.077 0.923

Adaboost 0.830 0.835 0.174 0.830

NN1 0.875 0.844 0.094 0.906

NN2 0.868 0.844 0.109 0.891

Table 2  Top model performance on AID 1885

Model BA TPR FPR Accuracy

NB 0.724 0.731 0.281 0.719

GBDT 0.783 0.804 0.238 0.762

Adaboost 0.767 0.811 0.276 0.725

NN1 0.817 0.838 0.203 0.797

NN2 0.813 0.784 0.158 0.841

Table 3  Top model performance on AID 485367

Model BA TPR FPR Accuracy

NB 0.784 0.706 0.139 0.861

GBDT 0.811 0.706 0.084 0.916

Adaboost 0.763 0.706 0.179 0.820

NN1 0.787 0.676 0.102 0.898

NN2 0.810 0.765 0.146 0.854
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Tables 1, 2 and 3 show the top model of each type for each of the three assays. The 
top models for both AID 1721 and AID 1885 are the neural networks. The neural net-
works had the second and third highest balanced accuracy scores on AID 485367 behind 
GBDT. The best performance among the three assays is achieved by NN1 on AID 1721 
with a balanced accuracy score of 0.875, TPR 0.844, and FPR 0.094.

Figure 2 shows model performance on each of the three bioassays.

Imbalance techniques

Without oversampling, undersampling, or using sample weights, the performance of 
all the models is poor. Over 80% of these models have TPR < 0.1 and over 44% have 
TPR = 0 (i.e., predicting every compound is inactive). Of the Adaboost models without 
oversampling, undersampling, or sample weights, over 60% have TPR = 0 . Only two 

Fig. 2  Performance of models on different assays

Fig. 3  Using imbalance techniques versus not. These plots were created using the entire set of trained 
models

Table 4  Using oversampling (OS), undersampling (US), or sample weights (SW) versus not

For each group, the mean balanced accuracy score (BA), true positive rate (TPR) and false positive rate (FPR) are shown

Model Without OS/US/SW With OS/US/SW

BA TPR FPR BA TPR FPR

NB 0.581 0.181 0.020 0.724 0.706 0.258

GBDT 0.512 0.023 0.000 0.767 0.716 0.183

Ada 0.503 0.006 0.000 0.735 0.706 0.235

NN1 0.539 0.078 0.000 0.722 0.516 0.071

NN2 0.508 0.017 0.000 0.717 0.523 0.095
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models trained without oversampling, undersampling, or sample weights have balanced 
accuracy score above 0.70. Both are Naive Bayes classifiers.

Figure  3 shows the effect of using imbalance techniques for each model. The per-
formance increases significantly for all models. Table 4 shows mean scores for models 
trained with oversampling, undersampling, or sample weights versus those trained with-
out oversampling, undersampling, or sample weights.

In Fig.  4, oversampling, undersampling, and class weights are compared for each 
model type. The boosts in performance of the Naive Bayes models and decision tree 
classifiers are similar for the three imbalance techniques, while the same is not true 
for the neural networks. Oversampling does not work as well as using class weights or 
undersampling for the neural networks.

Fig. 4  Comparison of imbalance techniques

Fig. 5  Performance of each feature type when using different models
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Features

Figure 5 shows performance of the models, grouped by type of features used. The 1024 
circular fingerprints outperform the 256 circular fingerprints, but the results are simi-
lar in terms of which models perform better or worse when using circular fingerprints. 
The 1024FP/RDKit and 1024FP/MACCS/RDKit features have a similar pattern to the 
circular fingerprints. For these feature types, gradient boosted decision trees are the top 
performer, followed by naive Bayes classifier and then adaboost. The neural networks 
were the worst performers when using circular fingerprints, 1024FP/RDKit, or 1024FP/
MACCS/RDKit.

However, the neural networks outperformed all other models when using RDKit 
descriptors, MACCS fingerprints, or the MACCS/RDKit features. It is interesting to 
note that dropping 1024FP from 1024FP/RDKit or 1024FP/MACCS/RDKit significantly 
improves performance of the neural networks.

Figure  6 is another look at how the different models perform when using different 
types of features. The highest median and overall highest balanced accuracy score were 
obtained when using MACCS/RDKit features with NN1.

Table 5 shows the top balanced accuracy scores by model and feature type.

Fig. 6  Same scores as shown in Fig. 5, grouped by model

Table 5  Top performing models (highest balanced accuracy score) by model and feature type

Model Feature type

256FP 1024FP MACCS RDKit MACCS/RDKit 1024/RDKit 1024/
MACCS/
RDKit

NB 0.757 0.772 0.740 0.777 0.757 0.789 0.825

GBDT 0.796 0.811 0.831 0.828 0.837 0.850 0.858

Ada 0.739 0.761 0.801 0.790 0.814 0.830 0.794

NN1 0.798 0.853 0.811 0.870 0.875 0.858 0.849

NN2 0.788 0.835 0.801 0.837 0.868 0.853 0.861
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Training and prediction time

Table 6 shows mean training and prediction times by model. The decision tree models 
take much longer to train than the neural networks or Naive Bayes classifier. Training 
the gradient boosted decision trees is very time-intensive, taking 10 times longer than 
the neural networks and over 4000 times longer than the Naive Bayes classifier. On the 
other hand, the neural networks take longer during the inference stage.

Table 7 shows mean training and prediction times by feature type. It is not surprising 
that combined features take the longest for training and predicting, while the times were 
shortest for MACCS fingerprints (the shortest fingerprints used).

Using undersampling is fast compared to using class weights or oversampling. The 
mean training time for a model using undersampling is 3.8 s. The mean training times 
when using class weights and oversampling are 314.9 s and 551.6 s respectively.

Conclusion
Neglected tropical diseases affect millions of people worldwide and there is an urgent 
need to develop new treatments. Identifying compounds that interact with appropri-
ate drug targets is an important part of the drug discovery process. In this project, we 
trained machine learning models to predict biological activity of drug compounds and 
compared the results using test data. We used publicly available data to train and test 
our models. All three datasets are very imbalanced with many more inactive compounds 
than active. We compared different models, feature types, and ways to deal with the data 
imbalance.

Without using oversampling, undersampling, or class weights, the models did not per-
form well, with balanced accuracy scores not much higher than 0.5. After either using 
class weights or oversampling, many of the models were quite accurate. Oversampling, 

Table 6  Mean training and prediction times by model

Model Training time (s) Prediction 
time (s)

NB 0.31 0.31

GBDT 1172.3 2.23

Ada 212.0 18.7

NN1 72.5 18.0

NN2 72.5 21.3

Table 7  Mean training and prediction times by feature type

Feature type Training time (s) Prediction 
time (s)

256FP 126.0 9.1

1024FP 440.0 15.2

MACCS 79.6 8.9

RdKit 185.3 8.9

MACCS/RDKit 188.4 8.3

1024/RDKit 469.0 15.6

1025/MACCS/RDKit 704.3 18.7
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undersampling, and class weights resulted in a similar boost in performance for the 
Naive Bayes, Adaboost, and gradient boosted decision tree models, while oversampling 
did not perform as well as undersampling and class weights for the neural networks. 
Undersampling has the additional advantage of using less time and memory.

The gradient boosted decision tree models were consistently accurate while using dif-
ferent feature types, but took far longer to train than the other models. The Naive Bayes 
classifiers have an acceptable performance and are much faster to train. Several of the 
best single models were neural networks, but the neural networks had a larger range of 
balanced accuracy scores and more worse performing models.

Overall, training with concatenations of the RDKit features, 1024 fingerprints, and 
MACCS fingerprints yielded more accurate models than using a single type of feature, 
but also lead to longer training times. The neural networks performed better when using 
only MACCS/RDKit features while other models performed better when using all three 
1024FP/MACCS/RDKit features. Among the single feature types, the RDKit descriptors 
produced the best models.

These models can used to prioritize compounds in screening experiments and we 
hope such techniques lead to a more efficient drug discovery process.
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