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Background
Functional interaction networks connect genes which operate in the same biological 
process or pathway. Systematic genetic interaction surveys in yeast showed that genes 
with similar genetic interaction profiles across dozens [1] to thousands [2, 3] of strains 
showed high likelihood of functional interaction. In human cells, genome-scale pooled 
library knockdown [4] or CRISPR-mediated gene knockout screens [5–9] enabled the 
comparison of gene loss of function fitness vectors across cell lines, which show the 
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same tendency toward co-functionality. As the number of cell line CRISPR screens has 
grown [10], these coessentiality networks have become a powerful method for inferring 
gene function and understanding the modular architecture of the cell [11].

Though informative, there has to date been no systematic evaluation of the quality 
of each of these networks—nor even consensus on how to measure quality. There are 
numerous algorithms for transforming raw gRNA read count data from pooled library 
CRISPR screens into quantitative measurements of gene fitness effect, including Bagel2 
[12], Castle [13], Ceres [14], Chronos [15], JACKS [16], MAGECK [17], and a Z-score 
approach [18] optimized for finding genes with positive instead of negative knockout fit-
ness effects.

After combining gRNA-level fold changes into gene-level scores, each published 
approach uses different sample-level variance normalization. Kim et  al. [8] use quan-
tile normalization with no reference distribution, which resets the value of each gene 
to the mean of all gene fitness scores at that rank. Boyle et al. [7] subtract the top prin-
ciple components of the fitness matrix of a set of reference nonessential genes (olfac-
tory receptors), to remove artifactual components. Wainberg et  al. [9] go further and 
implement a covariance whitening method based on Cholesky decomposition, which 
normalizes both variance and covariance and minimizes the effect of uneven sample 
distribution—a potentially serious source of bias, since, for example, there are more than 
ten times as many lung cancer cell lines in DepMap as prostate cancer lines. The simi-
larity of gene vectors is frequently measured by Pearson correlation coefficient (PCC), 
though Wainberg et  al. argue that inflated P-values from PCC lead to numerous false 
positives and that ordinary least squares (OLS) after Cholesky whitening—collectively 
Generalized Least Squares (GLS) —is a better approach.

In this study, we systematically compare combinations of essentiality scoring algo-
rithms, variance and covariance normalization methods, and similarity measures to 
determine an optimal strategy for building a functional interaction network from coes-
sentiality data. We show that results are highly dependent on data processing steps, and 
that covariance whitening is a critical step in improving the predictive power of net-
works. We further show that, after covariance normalization, PCC and OLS are math-
ematically identical, and demonstrate how PCC and partial correlation can be employed 
to extract context-dependent interactions from global coessentiality networks.

Results
To assess an optimal functional interaction network from coessentiality data, we first 
acquired gene knockout fitness data from CRISPR knockout screens from the Cancer 
Dependency Map project [10]. A typical network construction pipeline involves con-
verting raw read count data into a matrix of gene knockout fitness scores, performing 
variance and/or covariance normalization across samples, and measuring similarity of 
all pairs of gene fitness profiles across samples (Fig. 1). We constructed networks using 
all combinations of alternatives at each step and evaluated the quality of each network 
using a log likelihood framework that measures the enrichment for gene pairs that 
belong to the same annotated biological process or pathway.

Gene knockout fitness effects (“essentiality scores”) were calculated using four recent 
algorithms designed explicitly for the analysis of CRISPR pooled library knockout 
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screens. Bayes Factors (BF) were calculated using the BAGEL2 algorithm [12]; Ceres [14] 
and Chronos [15] scores were downloaded from the Dep Map portal [10], and Z-scores 
were calculated from a two-component Gaussian mixture model of average fold changes 
as described in Lenoir et al. [18]. We selected the intersection of all genes and samples 
measured by all algorithms, resulting in a matrix of 17,834 genes by 730 cell lines, ensur-
ing a comparable result from each algorithm.

We previously used quantile normalization as a method of sample-level variance nor-
malization, where each gene’s fitness score is normalized to the rank mean (see Meth-
ods). An alternative approach described in Boyle et  al. [7] that uses singular value 
decomposition of a reference set of nonessential genes to identify and remove “arti-
factual” components is functionally equivalent to sample-level variance normalization 
(Additional file 1: Fig. S1) and is therefore included here.

Covariance normalization or “whitening” can be an important step to prevent corre-
lated samples from biasing results; e.g. when specific tissue types or oncogenic muta-
tions are overrepresented in the cell lines. PCA-based whitening is one such approach. 
Wainberg et al. [9] introduce Cholesky decomposition as a covariance normalization in 
their coessentiality network which, coupled with ordinary least squares (OLS) regres-
sion, they apply as a generalized least squares (GLS) approach. We apply Cholesky whit-
ening (covariance normalization) and OLS (similarity measure) separately to evaluate 
the relative contributions of each and include the commonly used Pearson correlation 
coefficient (PCC) as an alternative similarity measure. See Fig. 1 for an overview of the 
processing steps applied, and Methods for implementation details.

To evaluate the ability of a coessentiality network to identify co-functional gene pairs, 
we compared the most similar (top 50  k) gene pairs from each network to annotated 
pathway databases. We measured enrichment by applying the log likelihood frame-
work developed for functional interaction networks [19], where gene pairs belonging to 
the same annotated pathway are considered true positives and pairs belonging to dif-
ferent pathways are false positives (Fig. 2A). The log likelihood scheme evaluates each 
network’s ability to recreate known gene pathways, by measuring the frequency of true 

Fig. 1  The network construction pipeline. We generated coessentiality networks using all combinations of 
essentiality scoring, variance normalization, covariance normalization, and similarity measurement methods, 
and each network is evaluated for pathway enrichment. All networks are built from the same raw read count 
data
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Fig. 2  Evaluation of network construction methods. A The Log-likelihood framework for evaluating 
a network for pathway enrichment. Gene pairs in the sample are compared against reference set 
CleanReactome. Pairs annotated in the same Reactome pathway are counted are true positives, while pairs 
annotated in different pathways are false positives. B Top ranking 50 k gene pairs from networks created 
with and without applying Boyle PCA normalization are binned in bins of 1000 pairs, and evaluated with LLS 
scheme. For each network, LL scores are plotted versus the number of unique genes in each bin, calculated 
cumulatively. C LLS and recall for networks created with and without Quantile-normalization applied. D LLS 
and recall for networks created with and without Cholesky Whitening. E LLS and recall for networks where 
PCA-whitening was used as covariance normalizations, compared to networks where Cholesky-whitening 
was used. F LLS and recall, for networks with Cholesky-whitening applied, using PCC as similarity measure 
versus using OLS. G Recall for all 56 networks at the bin where the networks LLScore is approximately equal 
to the Humap2 LLS
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positives versus false positives observed in the given network and comparing it to the 
background expectation. The background expectation is given by the frequency of link-
ages between all annotated genes operating in the same pathway versus operating in 
different pathways. We explored several pathway annotation databases, including Reac-
tome [20], KEGG [21], and the GO Biological Process tree [22], and determined that 
Reactome offered the most complete coverage (Additional file 1: Fig. S2). Interestingly, 
we found that a very large number of genes and gene pairs in the annotated set belonged 
to just six annotated pathways involving mitochondrial translation and oxidative phos-
phorylation. Since the number of edges in a fully connected network grows with the 
square of the number of nodes, the large size of the mitochondrial ribosome and ETC 
Complex I result in a very large number of “true positive” hits that can overestimate 
the quality of the remaining network (Additional file 1: Fig. S2). Since oxphos genes are 
known to be a source of bias in coessentiality networks and differential essentiality [23], 
we removed these six pathways from the Reactome reference set, hereafter referred to as 
CleanReactome.

We evaluated the cumulative (Fig.  2B–F) and local (Additional file  1: Fig. S3) func-
tional enrichment LLS for the top 50,000 gene pairs in each network, in bins of 1000 
gene pairs, and plotted coverage (total number of genes in the network) versus func-
tional enrichment (LLS score). Both Boyle (Fig. 2B) and quantile normalization (Fig. 2C) 
significantly improved both the coverage and accuracy of the Bayes Factor and Z-score 
networks, but had lesser impact on the Ceres and Chronos data, likely because both of 
these methods contain a functional equivalent to sample variance normalization.

In contrast to sample variance normalization, global covariance normalization dra-
matically improved both the coverage and accuracy of networks derived from all four 
essentiality scores. Cholesky whitening (Fig. 2D) increased recall and functional enrich-
ment for both Ceres and BF networks to nearly match that of the hu.MAP 2.0 compen-
dium of human protein complexes, derived from integration of numerous large-scale 
affinity purification/mass spectrometry and other protein–protein interaction data [24]. 
PCA whitening (Fig. 2E) closely matched the improvement of the Cholesky approach, 
with trivial incremental improvement in some cases.

A key conclusion of the Wainberg et  al. study is that GLS, implemented there as 
Cholesky whitening plus OLS, is superior to PCC-derived functional interaction net-
works. However, after covariance normalization, OLS is mathematically identical to 
Pearson correlation (see “Methods” section). This is reflected in the identical LLS curves 
generated by PCC or OLS derived similarity scores after Cholesky whitening (Fig. 2F).

We summarized each network’s performance by calculating its recall at the functional 
enrichment level offered by hu.MAP2 (Fig.  2G). Raw or sample-normalized networks 
offered weak performance compared to pipelines that include covariance normalization. 
Unsurprisingly, sample variance normalization steps (Boyle, quantile normalization) 
provide no incremental improvement when covariance normalization is applied, OLS 
and PCC are identical after covariance normalization, and different covariance normali-
zation methods give very similar results. Perhaps more surprising is the significantly bet-
ter coverage of networks generated with Ceres or BF scores relative to Z-scores or the 
newer Chronos scores, the current method of choice for reporting DepMap hits.
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Though these networks may yield equivalent scores of global accuracy, it is not nec-
essarily the case that they contain identical information. To assess systematic differ-
ences between high-scoring networks, we examined differences between the covariance 

Fig. 3  Comparison of top networks. A Schema for enrichment comparison of top scoring networks. 
Ceres, BF, and Chronos scores were subjected to identical processing pipelines and the resulting networks 
compared. B Venn diagrams depicting the numbers of genes and edges exclusive to the top 17 k edges in 
the network created with Ceres + PCAwhitening + PCC versus the top 15 k edges in the network created with 
BF + PCAwhitening + PCC. C Pearson’s correlation coefficients of common edges, and of exclusive edges to 
each of the networks (Ceres vs BF). D Venn diagrams depicting the numbers of genes and edges exclusive to 
the top 17 k edges in the network created with Ceres + PCAwhitening + PCC versus the top 12 k edges in the 
network created with Chronos + PCAwhitening + PCC. E Pearson’s correlation coefficients of common edges, 
and of exclusive edges to each of the networks (Ceres vs Chronos). F Enrichment of the gene set exclusive to 
Ceres + PCAwhitening + PCC (when compared to Chronos). Only the top 30 enriched GO and Kegg terms are 
listed in the graph
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normalized Ceres network (top 17,000 edges) and the normalized BF (top 15,000 edges) 
and Chronos (top 12,000 edges) networks (Fig. 3A). The functional enrichment level of 
hu.MAP2 was used as a threshold for the three top scoring networks. The Ceres and BF 
networks share only ~ 7000 edges and ~ 6500 genes, while each network contains more 
than 2500 unique genes (Fig. 3B). Common edges are generally correlated but both net-
works contain high-scoring edges that are unique to that processing pipeline (Fig. 3C). 
However, the genes unique to each pipeline show no functional enrichment for GO or 
KEGG pathways, suggesting no functional bias. Likewise, the Ceres and Chronos net-
works share nearly 8000 edges and 6000 genes (Fig. 3D) and common edges are highly 
correlated (Fig.  3E). The Ceres network, larger because of its greater recall at the 
hu.MAP2 LLS threshold, has 3202 unique genes that are highly enriched for core cellular 
processes such as transcription and translation, suggesting that these genes are depleted 
in the Chronos network (Fig. 3F). This is not solely a result of the smaller Chronos net-
work; a similar analysis of identical-sized networks yields the same results (Additional 
file 1: Fig. S4), suggesting a systematic limitation of the Chronos scoring scheme relative 
to Ceres.

Wainberg et  al. argue that the GLS approach, combining covariance normalization 
with OLS, is superior to PCC because the P-values of PCC networks can be inflated 
by unequally weighted samples [9], leading to false positives. However, PCC and OLS 
are mathematically equivalent after covariance normalization, and this is reflected in 
the identical performance curves of the PCC and OLS similarity measures as shown in 
Fig. 2F. One advantage of Pearson correlation is that it is far less computationally inten-
sive; an all-by-all gene correlation matrix takes only a few seconds (and one line of code) 
to calculate while OLS requires setting up the regression for each gene pair individually, 
which can take orders of magnitude longer. Notably, global PCC values after whitening 
are significantly smaller in magnitude than PCC before whitening, leading to some coun-
terintuitive results; at the same rank, post-whitening PCC is often considerably weaker 
than pre-whitening PCC (Additional file 1: Fig. S5) despite showing a significantly higher 
enrichment for functional interaction (Fig. 2D).

A second advantage of the Pearson correlation approach is that it facilitates the use 
of partial correlation to detect conditional interactions between sets of genes. Partial 
correlation can measure the similarity of two gene knockout profiles after removing 
the effect of a third gene, set of genes, or another vector. If the functional relationship 
between two genes varies across the assayed cell lines, the observed correlation can be 
diluted by the presence of samples in which the relationship is severed [25]. For exam-
ple, consider common oncogenes KRAS and NRAS, two members of the MAP kinase 
signaling pathway whose mutually exclusive mutations mean they are essential in dif-
ferent cell lines (Fig.  4A). Downstream signaling partner RAF1 is also essential in the 
presence of either KRAS or NRAS (Fig.  4A). The PCC of RAF1-NRAS ρRAF1,NRAS is 
significant, ranking in the top 0.003% of global correlation pairs, but the partial cor-
relation of RAF1-NRAS with respect to KRAS ρRAF1,NRAS_KRAS is even higher. Like-
wise, ρRAF1,KRAS_NRAS > ρRAF1,KRAS , indicating higher correlation after removal of 
the NRAS signal, while the mutual exclusivity of KRAS and NRAS mutations results 
in ρKRAS,NRAS < 0 (Fig. 4B). This can be considered a case of a protein “moonlighting” 
where RAF1 interacts with either KRAS or NRAS depending on the context.
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We conducted a systematic search for these moonlighting trios, where the candidate 
moonlighting gene has a positive PCC with each candidate “parental” gene, the par-
tial correlation with each parent gene is boosted after controlling for the other parent, 
and the PCC of the two parents is negative. We discovered several cases that reflect 
known examples of context-dependent interaction. D cyclin CCND1 interacts with 
cyclin-dependent kinases CDK4 and CDK6, which are mutually exclusive in DepMap 
data (Fig. 4C). Similarly, protease CPD interacts independently with insulin-like growth 

Fig. 4  Detecting moonlighting interactions using partial correlation. A Heatmap showing KRAS, NRAS, BRAF 
essentiality in selected cell lines. KRAS, NRAS, and BRAF are mutually exclusive, while RAF1 is essential in KRAS 
and NRAS backgrounds. B KRAS-NRAS-RAF1 moonlighting trio, with PCC and Partial correlation coefficients 
listed by the respective edges. Red edges indicate negative correlation coefficient, while blue edges indicate 
positive correlation coefficient. C CDK6-CDK4-CCND1 moonlighting trio, with correlation coefficients of 
edges listed. D IGF1R-MET-CPD moonlighting trio, with correlation coefficients of edges listed. E Network 
illustrating Ragulator complex, HOPS and CORVET complexes with shared subunits. Red colored edges 
indicate negative PCC, blue colored edges indicate boosted partial correlation coefficient, black colored 
edges are positive PCC. The yellow nodes depict genes recovered using partial correlation, orange nodes 
are genes recovered with PCC, and gray nodes depict genes annotated to be in the complex, that were not 
present in our top-ranking pairs
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factor receptor IGF1R and hepatocyte growth factor receptor MET (Fig. 4D). CPD pro-
tein is known to process pro-IGF1R into its mature form [26] and we recently showed 
that CPD is also involved in maturation of MET receptor protein specifically in glioma 
cells [25].

More complicated conditional interaction subnetworks can also be informative, 
including at least one instance where partial correlation can disambiguate protein com-
plexes with overlapping membership (Fig. 4E). The CORVET and HOPS complexes are 
functionally related molecular machines that play important roles in endocytosis [27], 
with the CORVET complex being primarily involved in early endocytosis and being 
replaced by HOPS at the late endosome/lysosome stage [28]. The Ragulator complex is 
a multisubunit complex that sits at the lysosome and acts as an activator of mTORC1 
complex in the presence of amino acids, and is itself regulated by the HOPS complex 
[29]. Partial correlation analysis differentiates shared CORVET/HOPS subunits VPS33A 
and VPS18 from CORVET-specific subunit VPS8, while their partial correlation with 
Ragulator subunits LAMTOR1-4 are boosted after removing VPS8 effects (Fig.  4E). 
HOPS-specific subunit VPS39 is correlated with the Ragulator independent of COR-
VET-specific VPS8.

Discussion
Coessentiality networks offer a powerful method for inferring gene function from panels 
of CRISPR knockout screens in cell lines, but “coessentiality” is a catchall term describ-
ing an informatic pipeline with a variety of choices. We systematically explored the most 
common of these options to determine which combination of fitness scores, variance 
normalizations, and similarity measures gave maximal coverage of known co-functional 
relationships. We found that covariance normalization or “whitening” gives the largest 
boost to performance, regardless of fitness scoring, but also that coessentiality networks 
derived from covariance-normalized Bayes Factor and Ceres fitness scores markedly 
outperformed both the Chronos and Z-score approaches. Interestingly, after covariance 
normalization, the top two similarity measures, Pearson correlation and Ordinary Least 
Squares (OLS), are mathematically identical and give the same ranking for gene pairs.

Though genes which operate in the same biological process or pathway have similar 
knockout fitness profiles, genes whose functional interaction is context-dependent can 
have their profile similarities weakened by inclusion of cell lines or contexts where the 
interaction is not present. We [25] and others [30] have recently shown how analysis of 
CRISPR genetic screen data can reveal proteins that have multiple roles in a cell, lead-
ing to functional interactions with mutually exclusive partners. We extend the Pear-
son correlation network by using partial correlation to identify these “moonlighting” 
genes, whose interactions with one gene are boosted when the effect of a second gene is 
removed (and vice versa).

Conclusions
This work reinforces studies that show that coessentiality networks are among the most 
powerful predictors of mammalian gene function. Properly constructed, these net-
works contain more than 10,000 unique genes—more than half of the protein-coding 
genome—despite individual screens rarely recording more than 2000 genes with fitness 
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defects and entire categories of genes, e.g. those involved in secretory pathways or cell–
cell communication, being systematically absent from pooled library screens. Moreover, 
the accuracy of these networks is comparable to that of the hu.MAP integrated map of 
protein complexes. Nevertheless, the systematic discovery and elucidation of context-
dependent and pleiotropic gene functions across the DepMap cell lines has only just 
begun and promises to increase our insight into the organization and function of mam-
malian cells.

Methods
Data and essentiality scoring

The data used in this study comes from publicly available CRISPR knockout screens 
datasets, downloaded from the Cancer Dependency Map database (Avana dataset) 
[10]. Four different pipelines for measuring gene knockout fitness effects (gene essen-
tiality) were used: BAGEL2 [12], Z-score model [18], Ceres [14], and Chronos [15]. The 
BAGEL2 algorithm generates log Bayes Factors (BF) to report gene essentiality for each 
cell line, with positive scores indicating essentiality. Z-score values are generated using 
a Gaussian mixture model, with negative scores indicating essentiality. The Ceres algo-
rithm removes principle components highly related to copy-number-specific effects and 
scales the data so that median essential score is − 1, and median non-essential score is 
0. Chronos models the read-count data assuming a negative binomial distribution and 
removes copy-number related bias, with the scores scaled similar to Ceres.

Bayes Factors (BF) and Z-scores were calculated using raw read count data from the 
DepMap 20Q4 release. Ceres scores were downloaded from the 20Q4v2 release, and 
Chronos gene effect scores were downloaded from the 22Q2 release. We considered 
only the common genes and cell lines of BF, Z-scores and Ceres scores, which resulted 
in genes-by-cell lines data matrices of size 17,834 × 730. The Chronos data was pro-
cessed to include only genes and cell lines present in the intersection with Ceres, BF and 
Z-score, resulting in a data matrix of size 17,662 × 727.

Normalization techniques

We compared four normalization techniques, two of which perform as variance normal-
ization methods and the other two are covariance normalization methods. The quan-
tile normalization technique executes variance normalization, applied to mitigate screen 
quality bias and to allow comparison between different samples. Quantile normalization 
first ranks the genes by magnitude, calculating the mean for genes in the same rank, and 
substituting the values of all genes in that rank with the mean value, and then reorders 
the genes in the original order. The Boyle principal component analysis approach aims 
to remove the technical confounding introduced by olfactory receptor genes that have 
highly correlated profiles across different genetic backgrounds [7]. This method applies 
principal component analysis of the gene-by-cell-line essentiality matrix across olfactory 
receptors, and then subtracts the first four principal components from the original score 
matrix, implemented here as in Wainberg et al. methods [9].

The covariance normalization methods, also known as whitening or sphering transfor-
mations, aim to remove dependencies between features in the data matrix. These meth-
ods involve linear transformation of the data matrix X using a “whitening” matrix W, 
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such that the resulting normalized data matrix X̃ has a covariance matrix equal to the 
identity matrix (Eq. 1). To perform this, the data matrix is first centered, subtracting the 
mean across all samples, and the covariance matrix is computed, denoted by � (Eq. 2). 
The covariance matrix is positive semi-definite, meaning it is symmetric with non-neg-
ative eigenvalues, thus it can be inverted, and it can be decomposed as a product of two 
simpler matrices. There are many “whitening” matrices that can do the linear transfor-
mation described above, and we used two different options that satisfy the condition. 
One of the techniques of calculating W, described in Wainberg et al. [9], uses a Cholesky 
decomposition of the inverse covariance matrix (Eq. 3), and the linear transformation 
is done as described in (Eq. 4). Another technique termed PCA whitening utilizes the 
Eigen-decomposition of the covariance matrix (Eq. 5), and the PCA whitening transfor-
mation is done as described in (Eq. 6).

Cholesky whitening:

PCA whitening:

where D = diag(�) , a diagonal matrix containing the eigenvalues �i on the diagonal; and 
E is the orthogonal matrix of eigenvectors.

Statistical measures of similarity

We utilized two statistical measures to quantify co-essentiality, Pearson’s correlation and 
Ordinary Least Squares. Using Pearson’s correlation, we calculate the correlation coef-
ficient for all possible gene pairs (Eq. 7), resulting in a gene-by-gene correlation matrix. 
We rank the gene pairs by the correlation coefficient values.

Using ordinary least squares (implemented in Python3 using the numpy.linalg.lstsq 
function), we estimate the parameter vector b in the linear regression model y = bx + ε , 
where y is set to be the essentiality scores for one of the genes and x is a two-column 
matrix, with the first column being the other gene’s essentiality scores and the second 
column is the intercepts, set to a vector of all ones. We ran OLS for each gene pair, 

(1)X̃ = WX , s.t. Cov X̃ = I

(2)Let Cov(X) = �

(3)�−1
= LLT

(4)Let W = LT → X̃ = LTX .

(5)� = EDE−1

(6)Let W = D−1/2ET
→ X̃ = D−1/2ETX

(7)ρx,y =
cov

(

x, y
)

σxσy
, where σ denotes standard deviation
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and calculated log P-values, resulting in a gene-by-gene matrix of P-values. When the 
Cholesky whitening transformation is applied, both x and y are transformed by the tri-
angular Cholesky matrix, and this constitutes the Generalized least squares method 
described in Wainberg et al. [9]. We rank the gene pairs by the log P values.

It is important to note that in least squares linear regression the slope b is given by 
(Eq. 8). Rewriting it as in (Eq. 9) and substituting (Eq. 7), shows how the correlation coef-
ficient ρ factors in. When covariance normalization is applied, whether with Cholesky or 
PCA whitening, the transformed data has identity covariance, meaning all features are 
independent and the variance along each of the features is one. With the variance ( σ 2 ) 
equal to one in the covariance normalized data, PCC and OLS yield equivalent results.

Evaluation of pathway enrichment with log‑likelihood scoring

For each method, we took the top 50,000 ranking gene pairs, and bin them into bins 
of 1000 gene pairs for further analysis. To evaluate the performance of these methods, 
we conducted pathway enrichment tests with a log-likelihood scheme described by 
Lee et al. [19], using multiple annotated pathway databases. The log likelihood scoring 
quantifies the accuracy of each network and their ability to reconstruct known biologi-
cal pathways and processes. The pathway databases we considered are: Kegg [21], Gene 
Ontology (GO) Biological Processes [22], and Reactome [20]. Additionally, we consid-
ered pre-processed versions of GO and Reactome, in which pathways that contained 
gene sets involved in mitochondrial translation and oxidative phosphorylation were 
removed. We refer to these versions as CleanGO and CleanReactome. Only six pathways 
were removed from Reactome in this process, and the bulk of our analysis was done with 
the resulting CleanReactome. In the log-likelihood scoring pipeline, we filter through the 
pathways within a reference file, to only include those pathways that have a minimum of 
5 genes and maximum of 400 genes.

Using the gene pairs from each bin and the annotated reference set, we measure if 
both genes in the sample pair are annotated in the same pathway (true positive), or if 
they are annotated in different pathways (false positive). If a gene from our sample is not 
annotated in any pathways in the reference set, we do not count the pair in our calcula-
tion. We then compare the ratio of the frequencies of true positives and false positives 
in our sample with the background expectation, meaning the ratio of frequencies of all 
annotated genes operating in the same pathway and genes operating in different path-
ways in the reference set. The log-likelihood score is given by (10).

(8)b =
cov

(

x, y
)

σ 2
x

(9)
cov

(

x, y
)

σ 2
x

=
cov

(

x, y
)

σxσy
×

σy

σx
= ρx,y

σy

σx

(10)LLS = log2

(

Pr (true pos)/Pr
(

false pos
)

Pr
(

all reference pos
)

/Pr
(

all reference neg
)

)
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Scores above zero indicate that the method tends to link genes in the same pathway, 
and high scores indicate more confident linkages. The log-likelihood scoring was per-
formed cumulatively, as well as locally for each method.

The hu.MAP 2.0 Protein Complexes List was downloaded from the humap2 website 
(http://​humap2.​prote​incom​plexes.​org/​static/​downl​oads/​humap2/​humap2_​compl​exes_​
20200​809.​txt) [24]. We created a list of unique gene pairs from each protein complex, a total 
of 57,911 gene pairs, and calculated overall LLS for this list. The LL score for hu.MAP 2.0 
was 4.75, with coverage of 10,060 unique genes. We used this score as a reference against 
which to compare the performance of the networks formed with the various methods.

Gene set enrichment analysis

To analyze the differences between the highest scoring networks, we looked at the 
enrichment from genes exclusive those networks. We used the hu.MAP2 LL Score as 
a cut-off for the PCA-whitening covariance normalized Ceres, Bayes Factors, and 
Chronos networks. We identified edges and genes exclusive to each network, and con-
ducted enrichment analysis on the exclusive gene sets using the GSEAPY “enrichr” 
python module [31] with the reference sets ‘KEGG_2021_Human’, ‘GO_Biological_Pro-
cess_2021’, ‘GO_Cellular_Component_2021’, ‘GO_Molecular_Function_2021’.

Partial correlation

We utilized partial correlation to reveal the conditional relationship between two genes, 
after controlling the effect of a third gene. We calculate partial correlation of two genes x 
and y , while controlling the effect of a third gene z , using the recursive formula (Eq. 11). 
For each pair of genes x and y with 

∣

∣ρx,y
∣

∣ > 0.15 , we calculate partial correlation with 
respect to every other gene in the network, and look for the gene that yields the high-
est partial correlation coefficient. To quantify the change in correlation coefficient after 
accounting for the effect of a third gene, we calculate a ratio between the two coefficients 
with the formula (Eq. 12).

Our partial correlation analysis revealed many gene trios (x–y–z), where positive cor-
relation coefficients between genes x and y and between genes y and z are boosted after 
controlling for the effect of the other, while the correlation coefficient between genes 
x and z is negative. A master data list of these trios is available in Additional file  2: 
Table S1. We created a network with these moonlighting trios, consisting of gene pairs 
with the edge being the positive partial correlation coefficient, as well as gene pairs with 
negative PCC edge. The network can be viewed in Cytoscape [32], and the data table 
used to create the network is available in Additional file 2: Table S2.

(11)
ρx,y_z =

ρx,y − ρx,zρy,z
√

(

1− ρ2
x,z

)

(

1− ρ2
y,z

)

(12)
ρ2
x,y_z

ρ2
x,y

http://humap2.proteincomplexes.org/static/downloads/humap2/humap2_complexes_20200809.txt
http://humap2.proteincomplexes.org/static/downloads/humap2/humap2_complexes_20200809.txt
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The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​05078-y.

Additional file 1. Figure S1. Boyle PCA as variance normalization. A Bar plot showing the percentage of variance 
explained by each principal component of the Boyle PCA approach across Olfactory receptor genes, applied to 
the Z-score data matrix. B Scatter plot of the standard deviation of the screen, using Z-scores data matrix, versus 
the screen-wise projection onto the first Principal component from the Boyle approach. Figure S2. LLS with other 
reference sets. A Ceres+PCC network evaluated using 3 different reference sets in the Log-likelihood analysis. 
Cumulative LL Scores and number of co-functional interactions in bins are plotted for the network, evaluated with 
Kegg, Reactome and GO reference sets. B Pathways containing genes associated with mitochondrial translation 
and oxidative phosphorylation were removed from Reactome and GO, to create CleanReactome and CleanGO. 
Cumulative LL Scores and number of co-functional interactions in bins are plotted for the Ceres+PCC network, 
evaluated with Kegg, Reactome and CleanReactome, GO and CleanGO reference sets. C Comparison of LLS scores 
and co-functional interactions of Ceres based networks using the full Reactome reference set and D the CleanRe-
actome reference set in the LLS evaluation. Figure S3. Local LLS. A Local log-likelihood scores calculated per bin, 
using CleanReactome, for Ceres-based networks; B Chronos-based networks; C Bayes Factors based networks and 
D Z-scores based networks. Figure S4. Enrichment analysis for Ceres and Chronos based networks of equal size. A 
Venn diagrams depicting the numbers of genes and edges exclusive to the top 17k edges in the network created 
with Ceres+PCAwhitening+PCC versus the top 17k edges the network created with Chronos+PCAwhitening+PCC. 
B Enrichment of the gene set exclusive to Ceres+PCAwhitening+PCC. Only the top 30 enriched GO and Kegg 
terms are listed in the graph. C Enrichment of the gene set exclusive to Chronos+PCAwhitening+PCC. Figure S5. 
Pearson’s correlation coefficients of the edges of the same rank in the Ceres+PCA Whitening+PCC and Ceres+PCC 
networks.

Additional file 2. Table S1. Table of the moonlighting gene trios with PCC and partial correlation details.

Additional file 3. Table S2. Table of the network constructed using the partial correlation approach.
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