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Abstract 

Background:  Knowing the responses of a patient to drugs is essential to make 
personalized medicine practical. Since the current clinical drug response experiments 
are time-consuming and expensive, utilizing human genomic information and drug 
molecular characteristics to predict drug responses is of urgent importance. Although 
a variety of computational drug response prediction methods have been proposed, 
their effectiveness is still not satisfying.

Results:  In this study, we propose a method called LGRDRP (Learning Graph Repre-
sentation for Drug Response Prediction) to predict cell line-drug responses. At first, 
LGRDRP constructs a heterogeneous network integrating multiple kinds of information: 
cell line miRNA expression profiles, drug chemical structure similarity, gene-gene inter-
action, cell line-gene interaction and known cell line-drug responses. Then, for each 
cell line, learning graph representation and Laplacian feature selection are combined to 
obtain network topology features related to the cell line. The learning graph represen-
tation method learns network topology structure features, and the Laplacian feature 
selection method further selects out some most important ones from them. Finally, 
LGRDRP trains an SVM model to predict drug responses based on the selected features 
of the known cell line-drug responses. Our five-fold cross-validation results show that 
LGRDRP is significantly superior to the art-of-the-state methods in the measures of the 
average area under the receiver operating characteristics curve, the average area under 
the precision-recall curve and the recall rate of top-k predicted sensitive cell lines.

Conclusions:  Our results demonstrated that the usage of multiple types of informa-
tion about cell lines and drugs, the learning graph representation method, and the 
Laplacian feature selection is useful to the improvement of performance in predicting 
drug responses. We believe that such an approach would be easily extended to similar 
problems such as miRNA-disease relationship inference.

Keywords:  Drug response, Learning graph representation, Laplacian feature selection, 
Network topology feature
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Background
Personalized medicine focuses on finding appropriate drugs for individual patients. 
Since the same drugs have different effects on different patients, knowing the responses 
to drugs for each individual is a prerequisite of personalized medicine [1]. Since clini-
cal drug response experiments are time-consuming and expensive, computational drug 
response prediction methods based on the related information of drugs and cell lines are 
of urgent practical importance and have attracted many researchers [2]. A variety of drug 
response prediction methods have been proposed, and they are mainly based on existing 
biological databases [3], of which Genomics of Drug Sensitivity in Cancer (GDSC) [4] 
and Cancer Cell Line Encyclopedia (CCLE) [5] are the two most famous. GDSC contains 
known cancer cell-drug responses and the corresponding cell lines’ profiles [4]. CCLE 
provides public access to the gene expression, gene methylation and mutation data of 
over 1100 cell lines [5]. These databases provide researchers with benchmark data to test 
drug response prediction methods.

Based on cell line gene expression data, Torkamani et  al. [6] used PCA to extract 
gene expression features, and constructed a linear regression model to predict drug 
responses. Gupta et  al. [7] proposed a prediction model based on genomic character-
istics such as copy number variations of cancer cell lines. Based on the CCLE dataset, 
Fang et al. [8] used a quantile regression forest method to predict drug response. Based 
on a support vector machine and a recursive feature selection tool, Dong et al. [9] used 
the gene expression and drug sensitivity data in CCLE to build a drug response predic-
tor. Using the same data set, Geeleher et al. [10] proposed a ridge regression prediction 
model. Liu et al. [11] proposed an ensemble learning method that integrated a low-rank 
matrix completion model and a ridge regression model to predict drug responses. By 
integrating the pathways of drug targets and the related gene sets, Ammad et  al. [12] 
proposed a kernelized Bayesian matrix factorization with component-wise multiple ker-
nel learning to predict drug responses.

Based on the gene expression features of cell lines and the chemical features of drugs, 
Li et  al. [13] developed a deep learning architecture to learn a prediction model. Yan 
et al. [14] proposed an interpretable model to predict drug responses, which integrated 
drug features, cell line features and drug responses using triple matrix factorization, and 
Guvencpaltun et  al. [15] proposed a framework of Bayesian importance-weighted tri-
matrix and two-matrix factorization to predict drug responses. These methods mainly 
considered the basic information of cell lines and drugs, and obtained good prediction 
performance for some certain drugs. However, they neglected other useful information 
such as the relationship between different cell-lines and the relationship between differ-
ent drugs [16].

Based on the assumption that similar cell-lines tend to respond similarly to similar 
drugs, a lot of network-based drug response prediction methods have been proposed 
recently. For example, after integrating different kinds of information such as

gene mutation, DNA copy number and mRNA expression data of cell lines and com-
pound molecular properties, ATC-codes and side-effects of drugs, Wang et al. [17] built 
similarity networks for cell lines and drugs, and proposed an SVM classifier model. Stan-
field et al. [18] integrated cell line gene mutations, known cell line-drug responses and 
protein-protein interactions (PPIs), and built a heterogeneous network consisting of the 
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genes, cell lines and drugs. They utilized a random walk with restart (RWR) in the net-
work to predict drug responses. Similarly, Zhang et al. [19] used cell line gene expres-
sion data to build a cell line similarity network, used drug chemical structures to build a 
drug similarity network, and used PPIs to build a gene-gene interaction network. They 
combined the networks with known cell line-drug associations and drug-target (gene) 
interactions into a heterozygous network and proposed a prediction model. Based on a 
cell line similarity network and a drug similarity network, Liu et al. [20] adopted a neigh-
bor-based collaborative filtering with global effect removal method, Zhang et  al. [21] 
adopted a hybrid interpolation weighted collaborative filtering method, and Guan et al. 
[22] utilized weighted graph regularized matrix factorization to predict drug responses.

In most network based drug response prediction methods, heterogeneous data are 
integrated using a weighted graph (i.e., a network), how to capture useful topologi-
cal information of a graph is important for the efficiency of drug response prediction. 
Recently many learning graph representation methods have been introduced, and 
GraRep [23] is a state-of-the-art one that could learn a global representation of a graph, 
which contains the topological information of the graph and is convenient to use as 
input features of machine learning methods.

In the paper, we formulate the drug response prediction problem as a classification 
task as most of the existing methods: for each drug, classify cell lines into two groups: 
sensitive and resistant according to the cell lines’ features. To improve drug response 
prediction performance, we integrate several available related data such as known cell 
line-drug associations, miRNA expression profiles of cell lines, chemical structures of 
drugs, PPIs, cell line gene sequence variations and hypermethylation informtion into a 
heterogeneous network. Then GraRep [23] and Laplacian Feature Selection are used to 
learn the cell lines’ features in the network and features reduction, respectively. Finally, 
an SVM model [24] for the classification task is trained on the network. Our method is 
called LGRDRP (a Learning Graph Representation method for Drug Response Predic-
tion) and is illustrated in Fig. 1.

Results and discussion
We conducted a series of 5-fold cross-validation experiments to test the performance of 
LGRDRP and some other state-of-the-art drug response prediction methods. The cross-
validations were done for each drug. When a query drug was selected, all the cell lines 
with known responses (sensitive or resistant) to the drug were randomly divided into 5 
groups. We randomly select one group as the test data and the other four as the training 
data. The heterogeneous network of the train data was obtained by removing the edges 
between the query drug vertex and the test cell line vertices.

For each cell line, a drug response prediction method calculated a score, and the test 
cell lines were sorted according to their scores. With a fixed threshold, if the score of 
one cell line is below the threshold, it is labeled as negative (resistant), and if it is known 
sensitive to the query drug, it is a false negative; if it is known resistant to the drug, it is 
a true negative. When the prediction score of a cell line is equal to or above the thresh-
old, it is viewed as positive, and if it is known sensitive to the query drug, it is a true 
positive; if it is known resistant to the drug, it is a false positive. The true positive rate 
(TPR), the false positive rate (FPR), the precision ratio (Prec) and the recall ratio (Rec) 
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can be computed as follows: TPR = TP/(TP + FN), FPR = FP/(FP + TN), Prec = TP/
(TP + FP), Rec = TP/(TP + FN), where TP, FN, FP and TN are the numbers of cell lines 
that are true positive, false negative, false positive and true negative, respectively.

With the threshold increases from the smallest score to the highest score, a receiver 
operating characteristic (ROC) curve is drawn according to the varying TPRs and FPRs 
as X-axis values and Y-axis values respectively.

The area under the ROC curve (AUC) is calculated to evaluate the prediction perfor-
mance. Since in our data set, the number of resistant responses is much larger than the 
sensitive responses. To better measure the prediction performance, we also used another 
metric: the area under the precision-recall (PR) curve (AUPR). A PR curve is a trajectory 
of the performance at a plane with the precision ratio as Y-axis value and recall ratio as 
X-axis value when the threshold changes.

Furthermore we may be more interested in the cell lines at the top of the sorted list. 
Therefore, the percentages of the true sensitive cell lines in the top 10, 20, 50, 100 of the 
sorted cell lines according to their response scores to the query drug were also used to 
evaluate the prediction performance.

Parameters selection

There are three parameters K, d and t need to set for LGRDRP, where K denotes the 
maximal transit steps, d determines the dimension of representation vectors and t is the 
number of features remained after the feature selection procedure. We tested the per-
formance of LGRDRP with different K, d and t. Figure 2 shows the average AUC over 
different combinations of K, d and t. In the left panel, t was set 64. Please note, when the 

Fig. 1  The flowchart of LGRDRP. LGRDRP consists of four steps: A Construction of a heterogeneous network. 
B Learning representation vectors using a learning graph representation (LGR) method. C Feature selection 
and SVM model training. D Drug response prediction
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length K × d of the final representation vector is less than 64, all features are kept. It 
can be observed when K increased, the average AUC of LGRDRP increased accordingly. 
However, when K increased from 6 to 7, the performance of LGRDRP didn’t improve too 
much, but the computing time increased significantly. When d increased from 16 to 256, 
AUC increased accordingly. However, when d is set 512, AUC begins to decrease. The 
reason may be that the overfitting model results in poor generalization.

With d = 256 and K = 6 , experiments were also conducted with varying t, and the 
results are shown in the right panel of Fig. 2. It indicates that the average AUC reached 
the best when t = 64 . When t is too small, the left features can’t capture enough struc-
ture information, but when t is too large, too many features may include some unimpor-
tant information which may disturb the prediction ability [25].

In the following tests, K = 6, d = 256 and t = 64 without specific description.

Performance evaluation

We compared the prediction performance of LGRDRP with three other art-of-the-state 
methods: HNMDRP [19], SVMDRP [17] and Stanfield’s method [18]. The parameters 
of HNMDRP, SVMDRP and Stanfield’s method were set as recommended by the cor-
responding literature. We compared their performances over 226 drugs of the GDSC 
dataset via the same five-fold cross-validation experiments, and the results are shown 
in Fig. 3. Figure 3A–C displays their ROC curves on three drugs: VX-680, Erlotinib and 
Nilotinib. It can be observed that for each case the ROC curve of LGRDRP is clearly 
above those of the others, which implies the prediction performance of LGRDRP is the 
best. Figure 3D illustrates the AUCs over all drugs with the comparison results reported 
as boxplots, which shows LGRDRP is generally more accurate than other methods. 
HNMDRP performs slightly better than SVMDRP, and SVMDRP better than Stanfield’s 
method, which indicates that protein information is not sufficient to reveal the cell line-
drug association and integration of multi biological information could improve the pre-
dictive power. The average AUC of LGRDRP over all drugs is 0.8131, and achieves the 
highest value 0.9422 as regarding to drug SNX-2112, an oral anti-tumor drug as a Hsp90 
inhibitor. For 50% drugs, the AUCs of LGRDRP are larger than 0.8229, and for 25% 
drugs, the AUCs of LGRDRP are larger than 0.8734.

Fig. 2  Performances of LGRDRP with different values of parameters K, d and t. The value of t is set 64 in the 
left panel, and K = 6 and d = 256 in the right panel
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Figure  4A–C illustrates the PR curves of LGRDRP, HNMDRP, SVMDRP and Stan-
field’s method on three drugs FMK, AP-24534 and BMS-345541. The PR curves of 
LGRDRP also lie above those of the other methods. The average AUPR of LGRDRP 
over all drugs is 8.52%, 11.63%, 16.79% higher than those of HNMDRP, SVMDRP and 
Stanfield’s method respectively. The AUPRs of the methods over all drugs are shown in 
Fig. 4D. The experiment results indicate that LGRDRP is successful to accomplish the 
prediction task even with the greatly unbalanced data set, demonstrating its reliability 
and prediction capability.

Figure 5 shows the retrieved number of real sensitive cell lines in the predicted top 10, 
20, 50, 100 sensitive cell lines for drugs CAY10603 and NVP-BHG712, and LGRDRPP 
shows a significant advantage over the other methods again.

Conclusion

In this paper, we propose a drug responses prediction method called LGRDRP. It first 
uses the cell line miRNA expression profile to build a cell line similarity network, drug 
chemical structures to build drug similarity network, cell line gene variations and meth-
ylation data to build cell line-gene interaction network. By integrating the known cell 
line-drug responses into the above networks, LGRDRP constructs a heterogeneous net-
work. Then LGRDRP uses a learning graph representation method GraRep to obtain 
the representation vectors as the topology structure features of vetices in the network. 
To avoid overfitting causing by using too many features, a Laplacian score method is 

Fig. 3  Prediction performances of LGRDRP and the other three methods (HNMDRP, SVMDRP and Stanfield’s 
method) based on their ROC curves and AUCs. A–C The ROC curves of four methods on drugs: VX-680, 
Erlotinib and Nilotinib, respectively. D The AUCs over all drugs
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adopted to pick out some important features. Finally, LGRDRP learns an SVM model 
which is used to predict drug responses. Extensive 5-fold cross-validation experiments 
showed that LGRDRP was generally superior to three art-of-the-state methods HNM-
DRP, SVMDRP and Stanfield’s method. The success of our method is based on the effec-
tive integration of diverse biological information, the good graph representation of the 
topology structure of the network, and the effective feature selection. After minor modi-
fications or simple extensions, LGRDRP can also be employed in other biological predic-
tions such as gene-disease [26], drug-target [27] and microRNA-disease [28], and the 

Fig. 4  Prediction performances of LGRDRP, HNMDRP, SVMDRP and Stanfield’s method based on their PR 
curves and AUPRs. A–C The PR curves on drugs: FMK, AP-24534 and BMS-345541. D The AUPRs over all drugs

Fig. 5  The retrieved number of sensitive response cell lines in the TOP10, TOP20, TOP30, TOP50, TOP100 
predicted sensitive cell lines
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prediction performance can be further improved by admitting other appropriate biolog-
ical information, such as gene function annotations and drug semantic annotations. In 
clinical practice, some combinations of multiple drugs can increase treatment efficacy, 
and the response prediction of a cell line response to a drug combination is an impor-
tant extension of the single drug response prediction [29]. In the future, we are going to 
improve LGRDPR so that it could deal with the drug combination response prediction.

Methods
Construction of the heterogeneous network

The heterogeneous network consists of a drug similarity network, a cell line similarity 
network, a gene similarity network, a cell line-drug interaction network, and a cell line-
gene interaction network, as shown in Fig. 1A.

The drug similarity network is based on the chemical structure data of 226 frequently 
used drugs, which consists of a 3D structure similarity matrix of the drugs and was 
downloaded from PubChem (http://​pubch​em.​ncbi.​nlm.​nih.​gov/). To avoid disturbing 
from noises and make sure the network has a clear biological meaning, the elements 
smaller than 0.2 in the similarity matrix were set as 0. The drug similarity network con-
sists of 226 vertices and 24456 edges, where each vertex denotes a drug and each edge 
has a similarity score weight ( ≥ 0.2).

miRNA expression information of cell lines could be used to classify cancer cell lines 
into subtypes [30], and our cell line similarity network was built on the miRNA expres-
sion data of 968 cancer cell lines, which was from CCLE (http://​www.​broad​insti​tute.​org/​
ccle). The Pearson correlation coefficient of the miRNA expressions of two cell lines is 
regarded as the similarity between them, and is used as the weight of the corresponding 
edge in the network. Protein-protein interactions (PPIs) have been extensively studied, 
and we used the interactions between the proteins to represent the interactions between 
the genes coding the proteins. The gene-gene similarity network is based on the PPI data 
from iRefIndex [31], which contains 2981 genes and 53409 gene-gene interactions, with 
each gene possessing at least 5 interactions.

The cell line-drug interaction network is based on the drug response data of the 968 
cell lines and the 226 drugs from GDSC (http://​www.​cance​rrxge​ne.​org/). The responses 
have been divided into two types sensitive and resistant according to the log-normalized 
IC50 threshold, and there are 20346 sensitive responses and 155277 resistant responses. 
Accordingly, there are 20346 interaction edges with weight 1 in the cell line-drug inter-
action network.

The copy number variation, somatic mutation and hypermethylation are called Cancer 
Functional Events (CFEs). The CFE data of the cell lines have been downloaded from 
GDSC and were used to build the cell line-gene interaction network. Similar to previous 
literature [32], we classified the cell line-gene relationship into associated and unassoci-
ated according to whether the coverage percentage of CFEs in the gene of the cell line is 
higher than 5%. Finally, we obtained a cell line-gene interaction network of 14330 asso-
ciations between the 968 cell lines and the 2981 genes. The network is a bipartite graph 
consisting of gene vertices and cell line vertices and edges with weight 1 indicating cor-
responding cell line-gene associations.

http://pubchem.ncbi.nlm.nih.gov/
http://www.broadinstitute.org/ccle
http://www.broadinstitute.org/ccle
http://www.cancerrxgene.org/
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Finally, we constructed a heterogeneous network including 226 drugs vertices in the 
drug similarity network, 2981 gene vertices in the gene similarity network, and 968 
cell line vertices in the cell line similarity network. The network is represented as a 
weighted graph G = (V ,E) . The vertex set of G is V = {v1, v2, . . . , vn} whose element 
denotes a drug, a cell line or a gene. The edge set of G is E = {ei,j} whose element 
denotes the relationship between vertex vi and vertex vj , and the weight of an edge ei,j 
is set as described above.

Learning graph representation

As most similar works, we assume that similar cell lines tend to have similar responses 
to the same drug, and predict the response of a query cell line to a certain drug by 
utilizing the similarity between the query cell line and other cell lines with known 
responses to the drug. Since the heterogeneous network has integrated multiple types 
of information related with cell-lines and drugs, the neighbourhood of cell-lines in 
the network could be used to measure the similarity between cell-lines. Based on the 
idea, we use the learning graph representation method GraRep [23] to obtain repre-
sentation vectors as the topology structure features of the vertices in the network.

Given a graph G, Learning Graph Representation (LGR) aims to learn a feature vec-
tor Fi ∈ Rd for vertex vi such that the global topology structure information (i.e. the 
neighbourhood) of the vertex is captured in the vector. In our method, the global 
topology structure information is represented by the distinct connections in different 
transitional steps between vertices, which is calculated by the process of LGR and is 
described as follows.

We use an n× n adjacent matrix M to represent the heterogeneous network G, and 
element Mij is the weight of the edge between the vertices vi and vj . Based on M, a 
weighted degree matrix W is calculated according to Eq. (1).

An edge of G implies an association relation. Considering transition between vertices, 
larger Mij means larger transition probability from vi to vj . Hence the 1-step probability 
transition matrix T is calculated according Eq. (2).

where the element Tij is the transition probability from vertex vi to vj with exact one step. 
A k-step probability transition matrix Tk is calculated according Eq. (3).

where Tk
ij  is the transiting probability from vertex vi to vj with exact k steps.

For a drug d and a cell line c, let the representation vectors of d and c are �d and �c 
respectively, and we model the possibility P(E = 1 | d, c) that c is sensitive to d (i.e. 
there is an edge between the vertices d and c in G) as follows:

(1)Wij =
p=1,..,n Mip, if i = j

0, if i �= j

(2)T = W−1M,

(3)Tk = T · · ·T
︸ ︷︷ ︸

k

,
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where σ(.) is the sigmoid function. Accordingly, P(E = 0 | d, c) denotes the possibil-
ity that c is resistant to d (i.e. there is no edge between the vertices d and c in G) and 
P(E = 0 | d, c) = σ(−�d · �c).

Our objective is to maximize P(E = 1 | d, c) for the observed edge (d, c) in G while maxi-
mizing P(E = 0 | d, c) for the resistant response that there is no edge between the vertices 
d and c. Therefore, the following log-likelihood ℓ of G is our global objective function.

where VD and VC are the drug vertex set and the cell line vertex set respectively, and 
E(d, c) indicates whether there is an edge between the drug vertex d and the cell line 
vertex c: E(d, c) = 1 if there is an edge, otherwise, it is 0. N is the number of resistant 
responses, and E is the expectation value of the log-likelihood of resistant responses and 
is defined as Eq. (6).

where pE(c) is the transiting probability from the drug vertex d to the cell vertex c.
Let x = �d · �c , and maximizing ℓ requires the derivative of ℓ with respect to x be 0, there-

fore Eq. (7) follows.

Let Di denotes the representation vector of ith drug vertex, Cj denotes the representation 
vector of jth cell line vertex, and Yij = Di · Cj . According to Eq. (7), we have:

where T is the probability transition matrix of graph G.
Considering k-step random walks and based on Eqs. (3) and (8), we obtain Eq. (9).

In order to obtain the representation vectors of the drug vertices and the cell line verti-
ces, we apply a popular singular value decomposition (SVD) method to factorize Y.

The representation vector matrix of k-step random walks Fk is calculated as follows.

(4)P(E = 1 | d, c) = σ(�d · �c) =
1

1+ e−
�d �c

,

(5)ℓ =
∑

d∈VD

∑

c∈VC

E(d, c)(log σ(�d · �c)+ NEcN∼PE

[

log σ
(

−�d · �cN

)])

,

(6)
EcN∼PE

[

log σ
(

−�d · �cN

)]

=
∑

cN∈VC
pE(cN ) log σ

(

−�d · �cN

)

= pE(c) log σ(−�d · �c)+
∑

cN∈VC\{c}
pE(cN ) log σ

(

−�d · �cN

)

,

(7)x = �d · �c = log

(
pE(c | d)|E|

pE(d)pE(c)

)

− logN

(8)Yij = Di · Cj = log

(

Tij
∑n

p=1 Tij

)

− logN ,

(9)Y k
ij = log

(
Tk
ij

∑n
p=1 T

k
ij

)

− logN

(10)
[

Uk ,�k ,
(

V k
)T

]

= SVD
(

Y k
)
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In Eqs. (10) and (11), �k
d is the matrix composed by the top d singular values and Uk

d  
is the first d columns of Uk , which are the first d eigenvector of Y k(Y k)T . For k = 1 to 
K, we calculate K representation vector matrices, and concatenating them obtains an 
n× Kd matrix F, whose rows are the representation vectors of the vertices in G. F will be 
used as the input features in the following classification.

Classification via support vector machine

As we have assumed before, cell lines with similar topology structures in the network 
tend to have similar responses to the same drug. Since cell lines with similar topology 
structures are more similar with respect to the representation vectors, we construct a 
binary classification model using the representation vectors of the cell lines as the input 
features and output their responses (sensitive or resistant) to a query drug. To integrate 
comprehensive similarity information between cell lines, we consider all k-step repre-
sentations with k = 1, 2, . . . ,K  . Using a larger K could capture more distant similarity 
information but also introduce more noise.

In case that drug vertices and genes vertices have few edges with cell line vertices in 
the heterogeneous network, there would be a large number of poor features for some 
cell lines. When K and d are large numbers, the number of features ( i.e., the length 
K × d of the representation vector) will be too large, and the overfitting problem will 
occur. To deal with the problem, we use a Laplacian score method [24] to select out most 
valuable features from the K × d features. For each feature, the Laplacian score method 
assesses the ability to represent the graph structure and calculate a corresponding score. 
We only use the features with top t Laplacian scores for the classification. The values of 
K, d, and t are determined by 5-fold cross-validation experiments as described earlier in 
the subsection Parameters Selection.

In the heterogeneous network, the number of sensitive drug responses is 20346, while 
the number of resistant drug responses is 155277, which is a great imbalance of positive 
and negative samples. Since the support vector machine (SVM) method could effectively 
deal with the imbalance problem by assigning different weights to positive and negative 
samples, we chose SVM to conduct the classification task. In the following experiments, 
we employed LIBSVM [24] to do the classification. LIBSVM is an integrated software 
package including diverse SVM models, which can be chosen by setting some options. 
We set the options of LIBSVM as follows: the SVM_type was set as the default C-SVC, 
the kernel type was set as polynomial

and the order of the polynomial kernel took the default value 3, the weights for 
the positive class and the negative class were set as the number of negative samples, 
and positive samples, respectively, and the other options were left default. For each 
drug, LIBSVM can learn an SVC model on the training data, and for each cell line, the 
model outputs a decision score. If the decision score is larger than 0, the cell line is 
predicted sensitive to the drug, and a larger score indicates that the prediction is more 
convinced.

(11)Fk = Uk
d

(

�k
d

)1/2
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