Jiang et al. BMC Bioinformatics

(2022) 23:525

BMC Bioinformatics

https://doi.org/10.1186/512859-022-05082-2

®

Check for

An unbiased kinship estimation method
for genetic data analysis

Wei Jiang'", Xiangyu Zhang'", Siting L%, Shuang Song®* and Hongyu Zhao'"

"Wei Jiang and Xiangyu Zhang
contributed equally to this work

*Correspondence:
hongyu.zhao@yale.edu

! Department of Biostatistics,
School of Public Health, Yale
University, New Haven, USA

2 Department of Biomedical
Data Science, Geisel School

of Medicine, Dartmouth College,
Hanover, USA

3 Center for Statistical Science,
Tsinghua University, Beijing,
China

4 Department of Industrial
Engineering, Tsinghua University,
Beijing, China

B BMC

Abstract

Accurate estimate of relatedness is important for genetic data analyses, such as herit-
ability estimation and association mapping based on data collected from genome-
wide association studies. Inaccurate relatedness estimates may lead to biased herit-
ability estimations and spurious associations. Individual-level genotype data are often
used to estimate kinship coefficient between individuals. The commonly used sample
correlation-based genomic relationship matrix (scGRM) method estimates kinship
coefficient by calculating the average sample correlation coefficient among all single
nucleotide polymorphisms (SNPs), where the observed allele frequencies are used to
calculate both the expectations and variances of genotypes. Although this method

is widely used, a substantial proportion of estimated kinship coefficients are nega-
tive, which are difficult to interpret. In this paper, through mathematical derivation,
we show that there indeed exists bias in the estimated kinship coefficient using the
scGRM method when the observed allele frequencies are regarded as true frequencies.
This leads to negative bias for the average estimate of kinship among all individuals,
which explains the estimated negative kinship coefficients. Based on this observation,
we propose an unbiased estimation method, UKin, which can reduce kinship estima-
tion bias. We justify our improved method with rigorous mathematical proof. We have
conducted simulations as well as two real data analyses to compare UKin with scGRM
and three other kinship estimating methods: rGRM, tsGRM, and KING. Our results
demonstrate that both bias and root mean square error in kinship coefficient estima-
tion could be reduced by using UKin. We further investigated the performance of UKin,
KING, and three GRM-based methods in calculating the SNP-based heritability, and
show that UKin can improve estimation accuracy for heritability regardless of the scale
of SNP panel.

Keywords: Kinship estimation, Genomic relationship matrix, Unbiasedness

Introduction

Accurate estimation of relatedness among individuals is important in genetic data anal-
ysis. For example, in both population-based and family-based genome-wide associa-
tion studies (GWAS) with uncertain relationships among study subjects, it is critical to
appropriately account for cryptic relatedness because incorrect estimates can decrease
power and inflate false positive rates of association tests [1-3]. It has been demonstrated
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that proper consideration of genetic relatedness can also benefit estimation of trait
heritability based on GWAS data in the presence of pedigree structures [4, 5]. Several
methods have been proposed to adjust for relatedness in large-scale human genetic asso-
ciation studies, such as introducing a genomic relationship matrix (GRM) as an augment
into well-developed linear mixed model (LMM) [6-8]. For example, genome-wide com-
plex trait analysis (GCTA) software models the GRM in the relationship between vari-
ance of phenotypes and the component explained by SNPs, and estimates heritability by
the restricted maximum likelihood (REML) approach [4]. The GRM can also be incorpo-
rated to improve the performance of polygenic risk prediction, such as the genomic best
linear unbiased prediction (gBLUP) method [9].

In order to adjust for cryptic relatedness in genetic studies like association mapping
and heritability estimation, individual-level genotype data are often used to estimate
pairwise kinship coefficients, which is defined as the probability that two homologous
alleles drawn from each of two individuals are identical by descent (IBD). The meth-
ods can be mainly divided into likelihood estimators and method-of-moments estima-
tors. The likelihood methods are preferable to identify potential relationships [3, 10,
11]. For instance, Choi et al. [3] introduced a maximum likelihood estimator to esti-
mate the probabilities that a pair of individuals share neither, one or both of their two
alleles at a locus being IBD. They used the EM algorithm to find maximum-likelihood
estimators. The method-of-moments are more efficient with the growing sample sizes
of GWAS studies [12—-14]. For example, the sample correlation-based genomic relation-
ship matrix (scGRM) method estimates kinship coefficient by calculating the sample
correlation coefficient between a pair of subjects among all single nucleotide polymor-
phisms (SNPs), in which the observed allele frequencies are used for the calculation of
both expectation and variance of genotypes [15, 16]. Some variants of methods based
on GRM were also proposed to increase the robustness and efficiency of the estima-
tion, such as the robust GRM (rGRM) [17] and two-step GRM (tsGRM) [18]. KING [19]
introduced an alternative and fast moment estimator framework under the random mat-
ing assumption and can be extended to population with unknown population structure.

We note that most association mapping and heritability estimation packages use this
method as their default setting for calculating GRM, such as GCTA, GEMMA and
FaSTLMM [4, 8, 20]. Although this method is widely used, researchers have noted that
a substantial proportion of the estimated kinship coefficients are negative, regardless of
the actual genetic structure [21]. However, by definition of the kinship coefficient (see
“Method” section), negative values from estimators are difficult to interpret, and are
treated as due to sampling errors [13, 21-23].

In this paper, through mathematical derivation, we first show that there indeed exists
bias in the estimated kinship coefficients using the scGRM method. The bias exists
because the observed allele frequencies are regarded as true frequencies. We also prove
analytically that the bias essentially results in a negative average for all estimates, which
explains the large proportion of negative values. Based on this observation, we pro-
pose an improved kinship estimation method, UKin, which can remove bias. We pro-
vide a mathematical proof for the unbiasedness of the UKin estimator. Simulations and
real data analyses also demonstrate that both bias and standard deviation (SD) can be
reduced by replacing the scGRM method with our UKin method. In real data analyses,



Jiang et al. BMC Bioinformatics (2022) 23:525 Page 3 of 22

we apply our method to two studies, young-onset breast cancer (BC) and familial intrac-
ranial aneurysm (FIA), which have pedigree information to evaluate our results. For fur-
ther comparison, we also include another widely used relationship inference method:
KING [19], and two other estimators in the framework of GRM: robust GRM (rGRM)
[17] and two-step GRM (tsGRM) [18], in our simulations and real data analyses. With an
alternative framework, KING provides a robust and efficient relationship estimate. How-
ever, as it was pointed out in the original paper, KING becomes less reliable with a small
number of SNPs, especially for distant relatives. Results from both simulation and real
data analyses suggested that compared with scGRM, rGRM, tsGRM and KING, UKin
has lower bias in relationship inference. Besides, UKin performed well for SNP panels
from only a few thousand markers to hundreds of thousands of markers.

To further demonstrate the practicability of UKin, we conducted experiments in esti-
mating trait heritability based on real genotype data collected from the young-onset
breast cancer (BC) and familial intracranial aneurysm (FIA) studies. Results from these
analyses suggest that compared with KING, scGRM, rGRM and tsGRM, UKin achieved
more accurate estimation in trait heritability and its performance was also stable with
respect to the size of SNP panel.

We summarize the contribution of our method as follows:

1 We prove that the bias exists in the estimation of kinship coefficients using the
scGRM method.

2 We analytically show that the bias essentially results in a negative average, explaining
the large proportion of negative values in the estimates.

3 We propose an unbiased method for kinship estimation, UKin. We further prove the
unbiasedness of the UKin estimator.

4 Simulations and real data applications demonstrate that UKin leads to more accurate
estimates compared with the state-of-the-art methods.

The paper is organized as follows. In the “Method” section, we present the theoretical
details which show the scGRM is biased, propose our UKin method and give the cor-
rectness proof, as well as its connection with the scGRM estimator. In the “Results” sec-
tion, we evaluate the performance of UKin through several simulations and two real data
sets in BC and FIA to validate our theoretical derivation and demonstrate the effective-
ness of UKin estimator in reducing bias for relationship inference and heritability esti-
mation. Technical details such as mathematical derivations are provided in Additional
file 1.

Method

Alleles are said to be identical by descent (IBD) if they are inherited from a com-
mon ancestor. To describe the average amount of IBD sharing at the genome level,
we often adopt the concept of kinship coefficient [18]. For two individuals indexed
by a and b, their kinship coefficient, ¢, is defined as the probability that two alleles
sampled at random from two individuals at the same autosomal locus are IBD. Let
Koab» K1ap» koqp denote the probability that individuals a and b share zero, one and two
alleles IBD, respectively. The definition of kinship coefficient indicates that ¢,; can
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be expressed as a function of those IBD-sharing probabilities, to be more explicit,
bab = K1ap/% + koup/2. Table 1 lists values of kinship coefficients, their corresponding
IBD-sharing probabilities and the inference criteria of ¢, derived using powers of 2
[19] for various relative pairs under the assumption of no inbreeding.

Suppose we have genotype data of # individuals, for each person we consider his/
her genotypes at m SNP markers respectively. For 1 <i <n,1 <j < m, let X;; be the
number of reference alleles (with label A) for individual i at SNP marker j. Thus Xj;
takes values 0, 1, or 2 according to whether individual i has, respectively, 0,1, or 2
copies of allele A at marker j.

To simplify the illustration, we denote (; and sz as the expectation and variance of
Xjj, respectively. In other words, E(Xjj) = u;, Var(X;) = ajz. We assume the popula-
tion variance for each marker is already known throughout our derivation. In prac-
tice, we can use sample variance, an unbiased estimator of population variance, as a

substitute. Now we consider a pair of individuals i and i. We use P ; to denote the

correlation coefficient between X;; and X/ Besides, we let p; be the average of p,; j

among all the individual pairs, i.e.

n

=1 227 i1 Pid
nn—1)/2

pj =

If we further assume all individuals are sampled from a homogeneous population, we
can derive the following relationship among those correlations:

Property 1. Assume all individuals are sampled from a homogeneous population,
then for1 < ii <mn,1<j<m,wehave

i'pii/,j = ’Ol'l'/’ 16 = 5
py =26y

This property has also been mentioned in other articles, for example, see [16]. A proof
of this property is given in Additional file 1. Now we summarize the conclusions of this

property as follows:

Table 1 Kinship coefficients for different relative pairs

Relationship bab (Koab, K1ab, Kaab) Inference criteria
MZ twins 0.5 0,0, 1) > 23%
Parent-offspring 0.25 0,1,0) (75%, 7;7)

Full sibs 025 (0.25,05,0.25) (52, 59

Half sibs 0.125 (05,05, 0) (5. 5)
Uncle-niece 0.125 (0.5,0.5,0) (27‘T 25‘/2)

First cousin 0.0625 (0.75,0.25,0) (79%, 7;/2)
Unrelated 0 (1,0,0) < 1
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Result i. implies that the correlation between X;; and Xl./]. is irrelevant to which SNP
we choose and depends only on the pair of individuals we select. Result ii. provides
the quantitative relation between the kinship coefficient and the correlation of geno-
types, which indicates that the estimation of kinship coefficient ¢;, is equivalent to
estimating the correlation coefficient of genotypes between individual i and i (0;7)-

Estimating kinship coefficient by calculating the average sample pairwise correla-
tion among all genetic variants has been taken by many methods. Following this prin-
ciple, a natural estimator of p,; is

1IN (X X)(X/ - X))
,5 z%z 2 ] ) (1)

/

where )_(] = % ) Xj; is the average counts of reference alleles (with label A) at SNP j in
the whole population. We call ‘ﬁii' = % p,; the scGRM estimator.

However, as we are going to demonstrate, p,, is actually a biased estimator of p,/. To
illustrate this, we need the following property:

Property 2. For 1<, i <mn1<j<m, the estimated correlation coefficient

between Xj; and Xy has a systematic bias from p,;. More specifically, we have

O

Xy — X)X, — X
E[( j — Xj)( j
]

/) R 1< 1 n-1
ij _ 2 o L= _
2 =Pl T, me n Z Pai’ =, + P (2)
a=1 a=1
a#i a#i
The proof is given in Additional file 1.
Equation (2) also reveals that the expected value of ﬁ Xij _)_(J')(Xi’;' —)_(j) is not
J

related to which SNP we select. Now we consider the expectation of estimator (1), it
comes to the conclusion that

n 1 i (Xl} - )_(])(Xl’l - )_(})
Ehy =F |2 o7
j=1 j

)_(')(X/,' — 5(,)]

1 o | Xy —
m i

O
1< 1< 1 n—1_
=P =D Pia= =D Py =t P
a=1 a=1

j
ai a#i

If 5,7 is an unbiased estimator of p,/, then we should have Ep,; = p,,. However, the
result we derive is obviously contradictory to it. The existence of bias means a systematic
error when we estimate kinship coefficient via the scGRM method mentioned above. To
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make this fact clearer, we sum the expectation of ﬁ(Xi,' — )_(j)(X /j— )_(j) up over all the
j

individual pairs in the population, which leads to the following property:
Property 3. For every SNP marker j, where1 <j < m, we have

"Xy — X)(X, - X)) _
ey s & ]

=1{=iq1 ’

The proof is given in Additional file 1.
Recall that Ep;y = E 6—12 Xij — )_(j)(X i/~ )_(j), thus Property 3 also suggests

Z Z Ep,y = —(p—l)

=1{=ip1

From Property 1 we know p is the theoretical mean value of correlations between pair-
wise individuals, therefore it must take the value between 0 and 1. This fact together
with Property 3 reveals that the mean value of estimator g,/ is negative on average,
which explains the empirical observation that a substantial proportion of estimated kin-
ship coeflicients are negative.

Several GRM estimators have been proposed based on the scGRM method. The robust
GRM (rGRM) estimator replaces the equal weights in scGRM with varied weights propor-
tional to sz, while two-step GRM (tsGRM) improves the scGRM estimator by selecting the
one with minimum variance from a general class of GRM estimators [18]. Both rGRM esti-
mator and tsGRM estimator can also be proved to be biased, with details given in Addi-
tional file 1.

This bias problem makes the scGRM estimator ¢ .+ less desirable as an estimator of kin-
ship between individuals i and i'. We can design an improved kinship estimation method
which can eliminate the bias for each pair of individuals based on the scGRM estima-
tor qAbl.l./, The improved estimation method, UKin, which stands for the unbiased kinship
estimator, solves the bias problem without adding much computational complexity.
To understand how this method guarantees the unbiasedness, we need the following
property:

Property 4. For every SNP marker j,1 <j < m, and every pair of individuals i and i

. 1,
1 <i,i <n,wehave

K= XX = X) 18 (X — XKy — X)) 1 X — X)X — X))
% k=1 % =1 9
ki 1#]
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The proof is given in Additional file 1.
For ease of presentation, we set

J -1 1 n (G — X)Xy — X)) 1~ KXy _Xj)(Xi’/ —-Xp) (X _)_(i)(Xi’j - X))
D D A o2 ¥ o
k=1 ] =1 ] ]
k#i 1#i

Using (3), we also conclude that the expectation of I/{ii, does not depend on which SNP
we select. Based on this fact, a reasonable estimator of p,; is

. 1 j
Pl = Z ”/LL @

As Property 4 shows Euil,, =0, holds for every 1 < j < m, the expectation of 51‘;" is still
p,;7- In other words, o,/ is an unbiased estimator of p,;, thus ¢~>ii/ = %ﬁﬁ/ is an unbiased
kinship estimator. Besides, as we can observe from the expression of Ebfi,i, , 0; is the sum
of a group of scGRM estimators ,6”./ and a few correction terms, which means the UKin
estimator relies on the same information we need for calculating the scGRM estimator
) ./~ Thus the implementation of the UKin method doesn’t require extra data.

It is worth noting that there exists some relationship between the scGRM and UKin esti-
mator. Substituting the expression of L/L »into (4), we get

I £ DU

Pif = Py t 5 Z Pik + 5 Z Py +1. )
k=1 =1
ki 1]

Equation (5) indicates that the UKin estimator ¢~Sii/ is a linear combination of some
scGRM estimators ¢3ﬁ, and constants. Thus ¢~>ﬁ/ and ¢A)ii' are based on the same genetic
information. Besides, this conclusion also shows that the UKin method won’t bring a
significant increase in computational complexity than the scGRM method.

Throughout our above analysis, we make assumptions of no inbreeding, LE and popula-
tion homogeneity. In the Discussion we analyzed these assumptions in detail.

Results

UKin reduces bias in simulation studies

Anillustrative example

We start our discussion with a simple but extreme example. In this experiment, we assumed
that there were 500 full siblings from the same family. Although unlikely to exist in real-
ity, this example serves as a good illustration of our theoretical derivation. As every two
individuals selected from the same family were full siblings, the true value of their kinship
coefficient should be 0.25 (see in Table 1). However, following Property 3 in the “Method”
section, their average kinship coefficient estimated by scGRM, denoted by ¢, should have
the expectation:
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= = —5x107%
2 2 x 500

= -1 -1 0—1 05-1
E¢=n4(ﬁ_l)/(n(n2 )> _"P _

where 7 is the sample size and p is the average of their true genetic correlation coeffi-
cients. Property 1 together with Table 1 in the “Method” section suggest that p = 0.5 for
full siblings.

This result shows the unexpected phenomenon that although all individuals in our
simulated samples are full siblings to each other, the average of the estimated kinship
coefficients has a negative value. To illustrate Property 3 in practice, we simulated 200
unrelated families each consisting of 500 full siblings with the method provided by the
package CorBin [24]. Each individual was genotyped at 10,000 SNPs. Following the
scGRM method and the UKin method proposed in the “Method” section, we estimated
pairwise kinship coefficients and calculated their mean values, respectively. The histo-
grams of these estimated average kinship coefficients are shown in Fig. 1. From this plot,
we could see the distribution of average kinship estimated by the scGRM method cen-
tered around —5 x 10™%, which is consistent with our expectation from the analytical
results. By contrast, the UKin approach performed better in dealing with this extreme
situation, with the average estimates centered at 0.25, the true value of pairwise kinship
coefficient for full-sibling pairs. Besides, from Fig. 1 we could observe that the two distri-
butions have similar shapes, which could be explained by Eq. (5) in the “Method” section
which suggests that unbiased estimator of correlation coefficient p,/ could be expressed
as a linear combination of the scGRM estimators p,,. Considering there were 500 full
siblings from the same family, we calculated the average on both sides of Eq. (5) among
all the simulated individual pairs, which is b= 500,5 + 1, where g and ,5 represent the
average of correlation coefficients between full siblings from the same family, estimated
by the UKin method and the scGRM method respectively, i.e.

A 1000000- b 2000-
750000~ 1500-
2 2
3 =
£ 500000- £ 1000-
] o
250000- 500-
0- : 0- i
-0.000501-0.000500-0.000499 0.2495 0.2500 0.2505
Average Kinship Coefficient Average Kinship Coefficient

Fig. 1 Distribution of average kinship coefficients estimated by the scGRM (a) and UKin (b). Two hundred
unrelated families each consisting of 500 full siblings were simulated, with each sibling genotyped at 10,000
SNPs. The averages of kinship coefficients among all individual pairs from the same family were calculated
and the distribution of these averages is displayed. The true value of kinship coefficient between full siblings
is 0.25. The vertical dashed line in each plot corresponds to the mean value of these averages estimated by
the corresponding method
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E?:l Z?=i+1 151‘/

_ z 2 27 i1 Pid
T am—1)2 T

D

As there was a linear relationship between kinship coefficient and correlation coeffi-
cient (see Property 1 in the “Method” section), the distributions of the average kinship

coeflicients estimated by the two methods should have the same shape.

A more general simulation

To evaluate the performance of UKin in kinship coefficient estimation in a more gen-
eral situation, we performed the following simulations in which population homogeneity
was assumed. To include different relationships in our experiment, we simulated 4000
people including 500 pairs with kinship coefficient 0.125, 500 pairs with coefficient 0.25,
and 500 pairs with coefficient 0.5. For simplicity, different relative pairs were set to be
unrelated. In addition, we also included 1000 people who had no relationship with other
individuals. For each subject, genotype data were generated for 50,000 random and inde-
pendent SNPs. The minor allele frequencies (MAFs) of genotyped variants were drawn
uniformly from [0.05, 0.5].

We compare UKin with scGRM, KING, and two other GRM estimators: rtGRM and
tsGRM. With each estimator, we estimated kinship coefficients between all simulated
individual pairs and divided those coefficients into four groups according to their true
relationships. Figure 2 shows the distribution of the estimated kinship coefficients in
each group respectively. As shown in this plot and summarized in Table 2, for groups
with true kinship coefficients 0.25 and 0.5, UKin achieved the lowest standard deviation

a b .

150-
90-

Method Method

2100- — UKin > — UKin
@ -- scGRM @ 60- -- scGRM
s King s King
e rGRM e rGRM
;. tsGRM tsGRM
50 30-
O— "..,b. = ; TR O, e -
-0.015-0.010-0.005 0.000 0.005 0.010 0.015 011 0.12 013 0.14
Kinship Coefficient Kinship Coefficient
¢ d
100-
100- Method . Method
> — UKin > — UKin
B -- scGRM B -- scGRM
2 ’ 2 ’
o) King o) K \ King
a a , 3
50- rGRM 50- 2 4: rGRM
\ tsGRM g | tsGRM
A\ g \
0- = \ L
0240 0245 0250 0255  0.260 0.49 0.50 0.51
Kinship Coefficient Kinship Coefficient

Fig. 2 Distributions of kinship coefficients estimated by UKin, scGRM, KING, rGRM and tsGRM. This simulation
study includes 4000 individuals with different relationships. The four plots correspond to the four groups
divided by the true value of estimated kinship coefficients: 0 (a), 0.125 (b), 0.25 (c), 0.5 (d). Genotype data of
50,000 random SNPs are generated for each subject
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Table 2 Comparison of UKin, KING, scGRM, rbGRM, and tsGRM in biases and SDs (50,000 SNPs)

True value Bias from True Value (x1073) Standard deviation (x107%)

UKin KING scGRM rbGRM tsGRM UKin KING scGRM rbGRM tsGRM

0.000 —0.152 —-1810 —0898 —0899 —0899 3.101 4317 2262 2.381 2.261
0.125 —-0.227 —-1405 —-0730 —0715 —0781 2595 3346 2654 2530 2.449
0.250 —0.081 —-0703 —0953 —-078 —0793 2.020 2428 2864 2.557 2432
0.500 0.000 0.000 — 1492 —-0961 —0609 0.000 0.000 3.171 2718 2.254

(SD) of estimated kinship among the three relationship inference methods. For true kin-
ship coefficient 0.125 and independent pairs, tsGRM performed the best in reducing the
SD. It is also worth mentioning that KING has the largest bias and SD for independent
pairs, which might has a negative impact on the application of KING.

Although Fig. 2 clearly reflects the SDs for five methods, it is difficult to compare their
biases from the plots. More detailed comparisons are shown in Table 2, where the num-
bers in bold represent the smallest bias or standard deviation achieved among all the
methods. As shown in the left part of this table, UKin always performed better than
other methods when we compared the mean values of estimated kinship coefficients, as
the estimates of the UKin method were much closer to true values for all four groups.
Besides, Table 2 also indicates that UKin and KING show a downward trend of biases
and SDs with increasing true kinship coefficients, which suggests that UKin and KING
tend to get more accurate inference for close relatives. For general relationship, UKin
was always superior to KING in reducing both estimation bias and SD. In contrast,
all three GRM estimators achieved smaller SDs for unrelated individual pairs but per-
formed poorly regarding to close relatives. It is also notable that when we considered
individual pairs with kinship coefficient 0.5, i.e., monozygotic twins (MZ twins), both
bias and SD were extremely close to zero if we utilize UKin or KING to estimate.

We also conducted a small-panel simulation including 4000 subjects and 10,000 SNPs
to evaluate the performance of UKin, scGRM and KING when the number of genotyped
SNPs is relatively small. The population structure was the same as the previous simula-
tion. Summarized in Table Al in Additional file 1, KING had the worst performance
among three methods in all relationships except MZ twins because of its largest bias and
SD. This result shows that compared to UKin and scGRM, KING was poor at handling
small SNP panels. As also pointed out in [19], KING requires a large SNP panel to make
accurate estimation. A panel with thousands of SNPs could cause a decrease in overall
accuracy and only allowed KING to identify closely related pairs. This drawback makes
KING less efficient in dealing with small dataset. In comparison, UKin achieved a much
more stable performance even when the number of genotyped SNPs is small.

UKin reduces bias in real data applications

The young-onset breast cancer study

To demonstrate UKin could get more accurate results in estimating kinship coefficients
in real applications, we applied it to a family-based study of genes and environment in
young-onset BC (dbGaP Study Accession: phs000678.v1.p1). This study recruited families
from the US and Puerto Rico with a daughter who was recently diagnosed with breast
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cancer and another unaffected daughter. For each family, only the diseased daughter
and her unaffected full sister were genotyped for analysis. As for data quality control, we
removed individuals with more than 10% missing genotypes as well as SNPs with a miss-
ing genotype rate greater than 5% or a minor allele frequency less than 5%. After further
removing individuals with missing phenotypes, we got 1983 subjects (1458 cases and
525 controls) with 925,685 variants in total. The processed data included 500 pairs of full
sisters, with one affected by breast cancer. Based on Table 1, the true values of estimated
kinship coefficients should be 0.25 for these full sister pairs.

We first applied the scGRM method to estimate the kinship coefficients, which had
poor performance. As shown in Table 3, where the estimated numbers of the 1st-degree
relative pairs by different methods are in bold, for the 500 pairs of full siblings, only 472
pairs were estimated to have kinship coefficients between 27°/2 and 273/2, which means
5.6% of full sisters were incorrectly inferred to be other kinds of relative pairs. The rtGRM
method had the same result with scGRM. The tsGRM estimator performed better than
scGRM and rGRM with 17 1st-degree relative pairs misspecified as MZ twins. In con-
trast, both UKin and KING identified all the full sisters pairs correctly. Besides, scGRM
misspecified 4721 unrelated pairs as full siblings, suggesting estimates of scGRM showed
a obvious distribution overlap between full siblings and unrelated pairs. However, both
UKin and KING did not make such mistakes, which indicates that UKin and KING per-
formed better in separating relatives from unrelated pairs.

The histograms of kinship coefficients estimated by UKin, KING, and three GRM esti-
mators for the 500 full sister paris in the BC study are given in Fig. 3. It is obvious that
the histograms corresponding to GRM methods contain more pairs with estimated kin-

ship coefficients larger than 273/2

, which means these full siblings are misspecified as
MZ twins. In contrast, UKin and KING are much less likely to make such mistakes. In
Table 4 we display the bias and SD of 500 estimated kinship coefficients for full sisters,
with the smallest bias and SD in bold. Obviously, UKin performed best in reducing esti-
mation bias, but had a slightly larger SD than KING. The GRM methods, by contrast,
performed poorly on both counts. To visualize the difference among these methods, we
also draw the scatter plots of the estimated kinship coefficients for the 500 full sister
pairs between UKin and scGRM (Fig. 4a), UKin and KING (Fig. 4b), UKin and rGRM
(Fig. 4c), UKin and tsGRM (Fig. 4d). The scatter plots demonstrated that while distribu-
tions of UKin and KING estimates were similar and closed to true value, three GRM

methods overestimated the kinship coefficients for many full sister pairs.

Table 3 Distribution of estimated kinship coefficients of 500 full siblings in the BC study

Relationship Unrelated 3rd-degree 2nd-degree 1st-degree MZ twins
relative pairs relative pairs relative pairs

Inference criteria < 79% (QJT';;T) (7%,#) (2-‘J1T'231T) > 73%

UKin 0 0 0 500 0

KING 0 0 0 500 0

scGRM 0 0 0 472 28

rGRM 0 0 0 472 28

tsGRM 0 0 0 483 17

True 0 0 0 500 0
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Fig. 3 Distributions of kinship coefficients estimated by UKin (a), scGRM (b), KING (c), rtGRM (d) and tsGRM
(e) in BC study. This study genotyped 1983 individuals at 925,685 variants. In this figure, we only considered
estimated kinship coefficients of 500 full sister pairs from irrelevant families. Class interval of the histogram for
each method is set to be 0.005

Table 4 Bias and SD of estimated kinship coefficients in BC study

Estimation method UKin KING scGRM rGRM tsGRM
Bias(x 1073) —0.053 0.355 12.815 12271 10.400
SD(x1072) 2.064 1.979 5.685 4913 3.363

The familial intracranial aneurysm linkage study

To further investigate the effectiveness of the UKin method in kinship coefficient esti-
mation, we applied UKin to infer pedigree structure using genotype data from the FIA
linkage study (dbGaP Study Accession: phs000293.v1.p1). This study recruited 400 fami-
lies with multiple individuals who have an intracranial aneurysm (IA) through 23 (25)
referral centers throughout North America, Australia, and New Zealand that represent
35 (40) recruitment sites. After standard quality control and discarding subjects with
missing phenotypes, we obtained 990 individuals from 371 families and each of them
was genotyped at 5505 SNPs. In this FIA dataset, the confirmed relationships include
137 first-degree relative pairs (including 19 full siblings and 118 parent-child pairs).

We compared the performance of UKin, KING, and three GRM methods in identify-
ing these first-degree relative pairs and estimating their kinship coefficients. As shown in
Table 5, where the estimated numbers of the 1st-degree relative pairs by different methods
are in bold, UKin and KING were able to correctly recognize all the 137 first-degree pairs
(with estimated kinship coefficients between 272 and 271-%), while scGRM misspecified
one parent-child pair as MZ twins, with an estimated kinship coefficient of 0.442. This par-
ent-child pair was also incorrectly classified to MZ twins by rGRM and tsGRM.

The histograms of the kinship coefficients of these 137 individual pairs estimated by
five methods (Fig. 5) indicate that unbiased estimations were more concentrated, taking
values between 0.21 and 0.3. However, the distribution of GRM estimations was more
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Fig. 4 Scatter plot of estimated kinship coefficients in BC study. For this plot we only consider 500 full sister
pairs in the BC data set. We display the scatter plots between UKin and scGRM (a), UKin and KING (b), UKin
and rGRM (c), UKin and tsGRM (d). The oblique solid line stands for the equation y = x, while the vertical and
horizontal dashed lines represent the mean values of estimates for the corresponding method, respectively

Table 5 Distribution of estimated kinship coefficients of 137 first-degree relative pairs in FIA study

Relationship Unrelated 3rd-degree 2nd-degree 1st-degree MZ twins
relative pairs relative pairs relative pairs relative pairs

Inference criteria < 25% (QJT'QJT) (2%,#) (25%'2;7) > 2;T
SCGRM 0 0 0 136 1

UKin 0 0 0 137 0

KING 0 0 0 137 0

rGRM 0 0 0 136 1

tsGRM 0 0 0 136 1

True 0 0 0 137 0

dispersed with a distinct outlier. This fact is also shown in the scatter plots including all
the 137 first-degree pairs in the FIA data set (Fig. 6). We further calculated the bias from
the true value (0.25) and SD of the estimated coefficients for each estimator. As sum-
marized in Table 6, the UKin estimator achieved the least absolute bias among the five
methods. The estimation bias of UKin was 1/6 of the bias estimated by scGRM, while the
SD of UKin was half of scGRM. We also noted that scGRM misspecified 15 parent-child
pairs or unrelated pairs as MZ twins, while UKin only made five such mistakes which
were all included in the misspecified pairs of scGRM. Results from the BC and FIA stud-
ies indicated that UKin achieved accurate results in relationship inference for both dense

SNP panel and small dataset.
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Fig. 5 Distributions of estimated kinship coefficients in the FIA study with UKin (a), sScGRM (b), KING (c), rtGRM
(d) and tsGRM (e). Among all the 137 first-degree relative pairs in this dataset, there are 19 full siblings and
118 parent-child pairs. Class interval of the histogram for each method is set to be 0.005

Table 6 Bias and SD of estimated kinship coefficients in the FIA study

Estimation method UKin KING scGRM rGRM tsGRM
Bias (x1073) — 0.667 —1.039 4.045 4461 4224
SD(x1072) 1.178 1.139 2216 2.126 1.859

The bold numbers stand for the smallest bias or standard deviation among all the methods

In simulations, we showed that UKin always outperformed scGRM and KING in
reducing bias of the kinship coefficients estimates. In real data applications, scGRM and
other scGRM-based methods failed in identifying all full siblings. As estimates falling
in 275/2 and 273/2 were all treated as correct identifications of full siblings, we did not
observe differences between UKin and KING in terms of correct identifications. How-
ever, UKin still showed smallest biases among all methods in the two real data appli-
cations. Besides, a biased estimate of kinship coefficients will further lead to biased
estimates in downstream analysis, such as the estimates of heritability. In the following

section, we will demonstrate this point using the BC and FIA datasets.

Experiments on heritability estimation

Heritability is an important parameter that measures the proportion of phenotypic vari-
ance that is attributable to additive genetic factors. Estimation of heritability is optimally
achieved in pedigree-based GWAS, where inference of genomic relatedness plays a key
role [25]. In order to evaluate the performance of UKin in heritability estimation and
compare it with scGRM, rGRM, tsGRM and KING, we conducted simulations based on
the BC and FIA studies and used genomic-relatedness-matrix restricted maximum like-
lihood (GREML) implemented in the GCTA software tool [4] to analyze.
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Fig. 6 Scatter plot of the estimated kinship coefficients in FIA study. Only the 137 first-degree pairs are
shown. We display the scatter plots between UKin and scGRM (a), UKin and KING (b), UKin and rGRM (c), UKin
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Table 7 Biases and SDs of estimated heritability for five methods on the BC dataset

Truevalue 0.3 0.4 0.5 0.6 0.7

UKin 0.0118(0.0729) 0.0137(0.0782) 0.0151(0.0743) 0.0161(0.0715) 0.0190 (0.0665)
KING 0.0193 (0.0722) 0.0213 (0.0784) 0.0234 (0.0742) 0.0244 (0.0716) 0.0271 (0.0668)
scGRM 0.0281 (0.0713) 0.0412 (0.0721) 0.0586 (0.0675) 0.0794 (0.0633) 0.1100 (0.0555)
rGRM 0.0277 (0.0712) 0.0391 (0.0730) 0.0528 (0.0689) 0.0689 (0.0654) 0.0925 (0.0581)
tsGRM 0.0131 (0.0726) 0.0188(0.0762) 0.0253(0.0721) 0.0320 (0.0690) 0.0431 (0.0628)

The young-onset breast cancer study
In the first experiment, we used the genotype data in the young-onset BC study and sim-
ulated phenotypes with pre-set heritability. After standard quality control, 1983 individ-
uals and 925,685 SNPs remained for analysis. We set the true heritability to be one of the
five values: 0.3, 0.4, 0.5, 0.6, 0.7 and the proportion of risk SNPs proportion to be 0.01.
With the kinship matrix generated by three methods (UKin, KING and scGRM), we use
GCTA-reml to estimate the heritability and its standard error via one of the three kin-
ship estimation methods. For each true heritability value, we repeated this experiment
for 1000 times.

We calcualted the average bias and SD of estimated heritability for each true value,
with the results summarized in Table 7. The numbers in bold represent the smallest
biases achieved among all the methods for different true heritabilities. SDs of estimated
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Fig. 7 Bias of estimated heritability (a) and coverage rate of 95% confidence interval (b) in the BC study. For
each true heritability setting (0.3, 04, 0.5, 0.6, 0.7), we repeated the simulation for 1000 times. For each time
we used the estimated heritability and SD to construct 95% normal Cl and calculated the total coverage rate
with five relationship estimation methods

heritability were close for five methods, with all these SDs between 0.055 and 0.079.
In comparision, these methods performed differently regarding to estimation bias. As
shown more clearly in Fig. 7a, we observed the following relative performance of the
three methods with respect to the average bias of heritability:

biaSuj(m < biasKjNG < biaerRM < biasscGRM

The bias of tsGRM method was smaller than KING with a true heritability of 0.5, but
was always larger than the bias of UKin. From this plot we also observed that three
GRM methods failed to control the bias when the true heritability went up. To be more
specific, the estimation bias of scGRM method was always above 0.028, and was larger
than 0.11 when the true heritability was 0.7. The tsGRM method suffered less from this
problem, but it also showed an evident upward trend with the increasing of true herit-
ability. Compared with GRM methods, biases for UKin and KING were much more sta-
ble. When the true heritability changed from 0.3 to 0.7, the bias of UKin increased from
0.012 to 0.019, while the bias of KING increased from 0.019 to 0.027. In other words, the
bias of KING was always about 0.08 larger than the bias of UKin.

For scGRM and rGRM, large bias and small SD of estimated heritability were likely
to result in low coverage of the confidence interval (CI). To demonstrate this, we con-
structed 95% normal Cls with estimated heritability and corresponding standard error
for each simulation and calculated the proportion that Cls intervals covered the true
value. We display the coverage rate for each group and method in Fig. 7b. When consid-
ering 95% normal CI, UKin, KING, and tsGRM showed good performances, but the cov-
erage rate of UKin interval was always better than results of KING and tsGRM, and was
most close to 95%. We also note that scGRM and rGRM performed poorly, especially

when the true heritability was large.
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Table 8 Biases and SDs of estimated heritability for five methods in FIA dataset

Truevalue 0.3 0.4 0.5 0.6 0.7
UKin 0.0099 (0.0747) 0.0061 (0.0791) 0.0132 (0.0809) 0.0171 (0.0756) 0.0130 (0.0725)
KING 0.0210 (0.0735) 0.0188 (0.0779) 0.0276 (0.0799) 0.0325 (0.0746) 0.0301 (0.0723)
SCGRM 0.0090 (0.0742) 0.0067 (0.0776) 0.0146 (0.0787) 0.0232 (0.0726) 0.0286 (0.0670)
rGRM 0.0109 (0.0741) 0.0089 (0.0775) 0.0175 (0.0790) 0.0260 (0.0728) 0.0300 (0.0682)
tsGRM 0.0074 (0.0746) 0.0041(0.0783) 0.0112(0.0796) 0.0176(0.0738) 0.0186 (0.0693)
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Fig. 8 Bias of estimated heritability (a) and coverage rate of 95% confidence interval (b) in the FIA study. For
each true heritability setting (0.3, 04, 0.5, 0.6, 0.7), we repeated the simulation for 1000 times. For each time
we used the estimated heritability and SD to construct 95% normal Cl and calculated the total coverage rate
with five relationship inference methods

The familial intracranial aneurysm linkage study

To further compare the effectiveness of UKin in heritability estimation with the other
four methods when the number of SNPs is limited, we also conducted similar experi-
ments based on the familial IA linkage study. For the FIA dataset, we have 5505 SNPs
and 990 individuals after the QC procedure. We also set the true heritability to be 0.3,
0.4, 0.5, 0.6, or 0.7 and estimated the heritability under UKin, KING, and three GRM
methods, respectively.

Biases of heritability estimates and SDs from 1000 simulations are shown in Table 8. The
numbers in bold represent the smallest biases achieved among all the methods for different
true heritabilities. Compared with the BC simulation, the performance of KING was much
worse as the estimation bias was always the largest among all methods. This result further
suggested that KING required a large number of genetic markers for accurate inference
of relatedness. By contrast, UKin showed a more stable performance with a small num-
ber of SNPs. When the true heritability was relatively modest (0.3, 0.4, 0.5), GRM methods
and UKin had similar results. However, as shown more clearly in Fig. 8a, both rGRM and
scGRM failed to control the estimation bias for high heritabilities. Besides, our results also
suggest that the SDs of five methods were similar, with values between 0.067 and 0.081.

Similar to the above experiment based on BC, we also constructed 95% normal CIs with
estimated heritability and standard error for each simulation and displayed the coverage
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rate for each method in Fig. 8b. This plot illustrates that both UKin and three GRM meth-
ods achieved a stable coverage, and there was little difference between these four methods.
By contrast, KING performed poorly in convering the true heritability because of the large
estimation bias. However, it was worth noting that none of these approaches achieved the
desired 95% coverage, suggesting that limited number of SNPs made all these methods less
efficient and KING was influenced the most.

Discussion
Among many kinship estimation methods, the most commonly applied estimator uses
dense SNP genotypes and allele frequencies in samples to calculate average pairwise corre-
lation coefficients among SNPs. Although this method is intuitive and easy to calculate, we
have shown in this manuscript that it is actually biased because it treats the observed allele
frequencies as true frequencies. Through rigorous derivation, we showed that pairwise
kinship coefficients estimated by scGRM add up to be a negative value, which explains the
phenomenon that a substantial proportion of kinship coefficient estimates are negative.
When conducting large scale estimates of kinship coefficients, the existing bias in
scGRM can lead to incorrect inference of relationships, and this problem can be more
severe if the subjects in the dataset are closely related. Our method, UKin, solved this
issue by incorporating genetic information from the whole population to adjust for the
bias in estimated kinship coefficient between every single pair. This unbiased estimator
can be expressed as a polynomial of scGRM estimators, and leveraging only information
of dense genotypes from the population. As demonstrated by our simulations and appli-
cations to the BC and FIA family data, UKin performed better in reducing both estima-
tion biases and SDs. For the two sister study, the results suggest that while scGRM could
lead to severe spurious inference of relative pairs, UKin rarely made such mistakes. Even
when the number of genotyped SNPs was limited for the FIA study, UKin could reduce
statistical bias and SD while avoiding spurious relationship inference.

Limitations of the current study

In our theoretical derivations and simulation studies, we made assumptions like link-
age equilibrium (LE) and absence of inbreeding, that is, genotypes at different markers
are independent. During our derivation, we used the same weights for all SNPs, and our
simulated datasets were also generated under this assumption. Although there is linkage
disequilibrium (LD) in real data, empirical results from analyses of the BC and FIA fam-
ily data suggest that UKin could reduce bias in the presence of linkage disequilibrium. To
incorporate LD in practice, we can give different weights based on LD among different
SNPs. Following the approach of Wang [21], these LD weights w = (w1, wo, ..., W) ¥
can be calculated by solving the following minimization problem:

min[wTRw — le] :owp >0,V
W

where R = [pZZk] is a matrix consisting of squared LD correlations. Theoretically, this
result can be directly applied to UKin by assigning the correlation coefficient at each
SNP marker its corresponding weight, which might make our approach adapt to LD

situation.
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Another assumption throughout our study is a homogeneous population so that the
allele frequencies can be calculated once and applied to all subjects. Some methods
have been proposed to estimate kinship coefficients in admixed populations, where the
assumption of population homogeneity is untenable [16, 19, 26]. However, as most of
these methods are based on the scGRM method, they are also likely to be biased estima-
tors, too. How to extend our UKin method to deal with admixed populations is a topic
for future studies.

Similar to scGRM and rGRM, UKin also has a quadratic time complexity. When deal-
ing with real data, our python script of UKin took 6 seconds to estimate the kinship
matrix for the FIA study, while it took 46.4 minutes to finish the calculation with a sin-
gle CPU core for the large BC study. To improve the computational speed of UKin, we
applied parallel execution to our original python code. When multiprocessing UKin with
12 CPU cores, the required computational time for kinship estimation of BC study was
reduced to 11.2 minutes. It is also worth mentioning that although the tsGRM estimator
shows the best performance in kinship and heritability estimation among all three GRM
methods, it requires much longer running time because tsGRM needs to make optimi-
zation based on a pre-calculated kinship matrix. When calculating the kinship matrix
for the BC dataset with a single CPU core, tsGRM spent about 46 hours to complete,
which is far from satisfying. Implementing our UKin method using GPU will further
improve the computational efficiency of the method. In this paper, we mainly focus on
the concept of correcting bias of kinship estimation method. We will consider accelerat-
ing the algorithm in our future work.

Future works

Beside to overcome the current limitations of our method mentioned above, further
studies need to be conducted for demonstrating how more accurate kinship estimation
will benefit downstream analyses based on genetic data.

Results show that UKin achieved more stable and accurate estimation of heritabil-
ity compared with other GRM methods and KING. In addition, more accurate kinship
estimation will improve the performance of other genetic analyses such as association
mapping. In recent years, GWAS have seen great success in identifying genetic loci
contributing to complex human traits [27, 28]. By studying a genome-wide data set of
genetic variants in different individuals, GWAS looks for SNPs correlated with traits in
the samples. Accurate specification of familial relationships is expected to bring more
powerful association results in GWAS with unknown family structure.

To demonstrate whether the change of kinship matrix affects the performance of asso-
ciation mapping, we conducted a simulation study to compare the performance of UKin,
scGRM, and KING in GWAS. In our experiments, we simulated 4000 samples including
2000 cases and 2000 controls. We included subjects with various pairwise kinship coef-
ficients in both cases and controls. More specifically, we simulated 250 first-degree rela-
tive pairs, 250 2nd-degree relative pairs, 250 3rd-degree relative pairs, and 500 unrelated
subjects for both cases and controls. The total number of SNPs genotyped for each indi-
vidual was set to be 10,000 and the MAFs of non-risk SNPs were drawn uniformly from
[0.05, 0.5]. The proportion of risk SNPs was set at 0.05. For these risk SNPs, a variable
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following the Gaussian distribution A/(0, 0.05%) was added to the previous uniform dis-
tribution to obtain their MAFs in cases. We set those MAFs below 0.05 or greater than
0.95 to be 0.05 and 0.95, respectively.

We applied GEMMA [20], which was developed to implement the genome-wide
mixed model association algorithm for a standard linear mixed model for association
analysis. In our simulations, we performed likelihood ratio tests in a univariate LMM
for marker association mappings with a single phenotype. PLINK binary file format was
[29] adopted as input files containing phenotypes and genetic information. A standard-
ized relatedness matrix file was included to appropriately account for relatedness among
subjects.

We applied GEMMA to analyze the simulated GWAS dataset and selected all SNPs
with P-value below the threshold 5 x 107°. Statistical power and type I error rate were
calculated to evaluate the performance of marker association tests when the related-
ness matrix used in LMMs was estimated by scGRM, UKin, or KING, respectively. The
results suggest that all the methods have well controlled type I errors. We compared
the power of association mapping and found the power of identifying risk variants was
improved from 0.096 to 0.12 after we replaced scGRM with UKin in estimating pairwise
kinship coefficients. For KING, the power was 0.04, which might be caused by the small
SNP panel. This simulation suggests that the application of UKin can improve statistical
power while controlling the type I error rate in GWAS. However, we failed to observe
improvements in power in real data analyses, which suggests that the influence of differ-
ent GRMs on association study is limited as only a small proportion of individual pairs
from GWAS are related. Further simulations and real data experiments are required
to evaluate the advantages of UKin over the scGRM and KING in association study
comprehensively.

In this article, we have proved that there exist biases in different scGRM-based meth-
ods for estimating kinship relationship among individuals from genetic data. Beside
genetic data, we may identify relationship or similarity among individuals using other
kinds of data in real life. For example, we may want to infer the kinship among indi-
viduals based on human facial images, which is known as facial kinship verification
problem in computer vision [30]. Or we may want to identify who is the speaker of an
audio record based on recorded voices from different people, which is known as speaker
identification problem [31]. In the machine learning community, metric learning and
dictionary learning methods were proposed to tackle these two kinds of problems in
general data setting [32, 33]. Metric learning methods [34] aim to automatically learn
similarity from data. In dictionary learning [35], we intend to express the signal as the
linear combination of different sources constituting a dictionary. Some supervised learn-
ing approaches, such as random forest and deep learning, can be adapted in the met-
ric learning or dictionary learning scenarios [36—39]. In both scenarios, correlation is a
major category of similarity measures [40, 41]. However, based on Property 3 we proved
in the Additional file 1, there are potential biases for correlations since the sample means
are used to center features. Further experiments are needed to evaluate how learning
results may be impacted by such biases. Our debiased method, UKin, has potential to
improve correlation-based metric learning and dictionary learning.
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