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Introduction
Drug–drug interactions (DDIs) are a leading cause of death, as well as high healthcare 
costs [1]. The number of patients injured by drug interactions is estimated to be between 
3 and 5% of all hospital medication errors. Drug interactions also account for a large 
number of patient visits to doctors and emergency rooms [2, 3]. Thirty-six percent of 
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ries and often result in doctor and emergency room visits. Previous research demon‑
strates the effectiveness of using matrix completion approaches based on known drug 
interactions to predict unknown Drug–drug interactions. However, in the case of a new 
drug, where there is limited or no knowledge regarding the drug’s existing interactions, 
such an approach is unsuitable, and other drug’s preferences can be used to accurately 
predict new Drug–drug interactions.

Methods:  We propose adjacency biomedical text embedding (ABTE) to address this 
limitation by using a hybrid approach which combines known drugs’ interactions 
and the drug’s biomedical text embeddings to predict the DDIs of both new and well 
known drugs.

Results:  Our evaluation demonstrates the superiority of this approach compared to 
recently published DDI prediction models and matrix factorization-based approaches. 
Furthermore, we compared the use of different text embedding methods in ABTE, and 
found that the concept embedding approach, which involves biomedical information 
in the embedding process, provides the highest performance for this task. Additionally, 
we demonstrate the effectiveness of leveraging biomedical text embedding for addi‑
tional drugs’ biomedical prediction task by presenting text embedding’s contribution 
to a multi-modal pregnancy drug safety classification.

Conclusion:  Text and concept embeddings created by analyzing a domain-specific 
large-scale biomedical corpora can be used for predicting drug-related properties such 
as Drug–drug interactions and drug safety prediction. Prediction models based on the 
embeddings resulted in comparable results to hand-crafted features, however text 
embeddings do not require manual categorization or data collection and rely solely on 
the published literature.
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older Americans use five or more drugs or supplements on a daily basis, and 15% are at 
risk of a significant Drug–drug interaction (DDI) [4]. Potential DDIs are usually discov-
ered after the third phase of a clinical trial or even after a medication has been approved. 
The issue of DDIs is not explicitly addressed in the clinical trials for new medicines. The 
most feasible approach for investigating the vast number of drug combinations to screen 
interacting medicines is in-silico Drug–drug interaction detection.

DDIs and adverse drug reactions (ADRs) can be investigated using a population-based 
approach in in-populo pharmacoepidemiology research. For example, in a series of case-
control and case-crossover population-based studies utilizing US Medicaid data, the 
interactions between warfarin and various antibiotics were assessed for increased risk of 
gastrointestinal bleeding and hospitalization [5].

Computational methods have gained popularity for DDI prediction, saving time and 
money [6]. These methods fall into three categories: literature-based extraction meth-
ods, machine learning-based prediction methods, and pharmacovigilance-based data 
mining methods. Literature-based extraction methods detect DDIs from published lit-
erature using natural language processing (NLP) techniques; machine learning-based 
prediction methods build prediction models based on the known DDIs in databases and 
predict novel ones [7–9]; pharmacovigilance-based data mining methods usually apply 
statistical techniques on various electronic data to detect Drug–drug interaction sig-
nals. However, machine learning methods that combine the structured data of known 
databases with unstructured textual information publicly available have not yet been 
proposed.

Distributed vector representations or embeddings, which map variable length text 
to dense fixed length vectors and capture prior knowledge which can be transferred to 
downstream tasks, have become the de facto standard for text representation in deep 
learning-based NLP tasks in both clinical and more general domains.

In this paper, we evaluate the contribution of combining different biomedical text 
embedding methods with a machine learning model based on matrix factorization, 
which, although reported high performances, is limited in cases where few or no inter-
actions are available for the examined drug. Our contributions are as follows: 

1	 We demonstrate the effectiveness of combining structural data and biomedical text 
embeddings for DDI prediction and pregnancy drug safety classification.

2	 We compare different biomedical text embedding methods and show that the con-
cept embedding approach, which involves biomedical information in the embedding 
process, is superior for both DDI prediction and pregnancy drug safety classification.

3	 We introduce adjacency biomedical text embedding (ABTE), a hybrid approach 
which combines known drugs’ interactions and drugs’ biomedical text embeddings 
to predict DDIs for both new and well-known drugs. We demonstrate the superi-
ority of this approach compared to adjacency matrix factorization with propagation 
(AMFP) [8], that represents a state of the art algorithm which is based on matrix fac-
torization.

Where applicable, the methods are evaluated using retrospective analysis, and compared 
to existing state-of-the-art methods.
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Materials and methods
Problem formulation

Given n drugs, we use D = d1, d2, .., dn to denote the set of drugs, and R ∈ Rn×n is the 
interaction association matrix. rij = 1 denotes an interaction between drug di and 
drug dj , otherwise rij = 0 . However, rij = 0 does not necessarily mean that there are 
no interactions between drugs i and j; it could be a case in which a interaction has not 
yet been discovered. We use two versions of the interaction association matrix R. For 
two points in time t < t ′ , R denotes the association matrix constructed using known 
interactions at time t, and R′ denotes the association matrix using the known interac-
tions at time t ′.

In addition, each drug di is represented by a Bio-Text embedding vector Li ∈ Re . The 
Bio-Text embedding vector is generated using state-of-the-art language model on a 
biomedical domain corpora [10, 11]. Here, e is the embedding dimension.

In the Drug–drug interaction prediction problem, we provide the association 
matrix R and the drugs’ name embedding matrix L as the training data set to the 
algorithm. Our goal is to predict the list of interactions that are not present in R but 
appear in the association matrix R′ . The training release date is referred to as t, and 
the test release date is referred to as t ′.

Adjacency biomedical text embedding (ABTE) approach

The ABTE approach combines the advantages of matrix factorization-based methods, 
where drugs in the interaction space are projected into a low-dimensional space for 
potential DDI prediction, and a deep learning based classifier, which leverages drugs’ 
text embeddings derived using state-of-the-art algorithms applied on a biomedical 
corpora. The ABTE approach is composed of three components: the biomedical text 
(bio-text) component, the adjacency matrix factorization with propagation (AMFP) 
component, and a hybrid component which uses a neural network classifier as a 
stacking model to combine the predictions of the bio-text and AMFP components. 
Since a matrix factorization-based approach is ineffective in cases where there are 
limited or no known drug interactions (mainly in the case of a new drug), the ABTE 
hybrid approach uses a switching criterion to select either the bio-text component 
or the stacking component, when predicting if there will be an interaction between 
two drugs i and j. In case the number of interactions in the training dataset for one 
of the drugs is lower than M, the AMFP latent representation, which is based on the 
drug’s known interactions is not informative and the bio-text component is used for 
the interaction prediction. When the number of interactions of both drugs is equal or 
higher than M, the AMFP latent representation is informative and the stacking com-
ponent is used for the interaction prediction.

Here, r̂ij refers to the predicted Drug–drug interaction between drugs i and j. r̂Textij  is 
the biomedical text component’s prediction, and r̂Stackingi,j  is the stacking component’s 

(1)r̂ij =
r̂
Stacking
ij , if Ii, Ij ≥ M

r̂Textij , otherwise
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prediction. Ii , Ij refer to the number of interactions drugs i and j have in the training 
set respectively. We used a validation data set to set the value of M. For our use case, M 
equals 3 provides the highest model classification accuracy. Figure  1 presents a sche-
matic description of the ABTE approach, and each component is described below.

Bio‑text component

In the bio-text component, the pre-trained text embedding vectors of the input drugs 
are fed directly to the first hidden layer of a neural network. We denote the output of 
the text embedding layer a(0) for a pair of drugs i, j as the concatenated vector of the two 
bio-text embedding vectors Li , Lj:

Then a(0) is fed to the deep neural network, and the forward process is:

where l is the layer’s depth, and ρ is the ReLU activation function. a(l), W(l), and b(l) 
are respectively the output, model weight, and bias of layer l. The last layer is fed to a 

(2)a(0) = [Li, Lj]

(3)a(l+1) = ρ(W (l)a(l) + b(l))

Fig. 1  Adjacency Biomedical Text Embedding (ABTE) approach. A hybrid model for Drug–drug interaction 
prediction, with a switching criterion between prediction based on the Bio-Text only component and a 
stacking model which combines the predictions of the bio-text component with those of the adjacency 
matrix factorization (AMFP) [8] component. The switching criterion is based on the number of drugs’ 
interactions in the training dataset. For drugs with small number of interactions the Bio-Text only component 
is used, and the stacking model is used otherwise. The input to the Bio-Text component includes the drugs’ 
pre-trained bio-text embedding, whereas the input to the AMFP component includes the drugs’ id encoded 
as one hot vector, serving as input to an embedding layer. The embedding layer is shared among the two 
input drugs, and it is learnt as part of the overall learning architecture. The output of the Bio-Text and the 
AMFP components is the Drug–drug interaction score between the two input drugs. It is used as input to the 
stacking model, which provides the final Drug–drug interaction prediction for the hybrid model
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sigmoid function for DDI prediction based on the drugs’ text embeddings R̂Text . H is the 
number of hidden layers.

Since DDI interaction prediction is a classification problem, we used the binary cross-
entropy loss function L to train the model.

Here, Y is the set of instances (drug pairs), Rij are the true labels which represent the 
existence or absence of a drug interaction, and R̂Text

ij  is the predicted value. Y is created 
using negative sampling, where all positive samples (existing drug interactions at time 
t) are used, and a sample of the negative instances is selected randomly in each train-
ing epoch. The sample ratio is a model hyperparameter that should be tuned using a 
validation set (see Implementation section). We used one negative instance for each 
positive instance during training. A different sample was selected in each iteration. The 
network weights W (l) and biases b(l) are learned during the training process. A nega-
tive, non-existing interaction might represent an undiscovered but existing interaction 
[12, 13]. Undiscovered interactions share common characteristics with negative samples 
in recommender systems, which result from implicit feedback from the user. Negative 
sampling is a common practice in training models from implicit feedback [14] and inter-
action data [15, 16].

Adjacency matrix factorization with propagation (AMFP) component

The adjacency matrix factorizaiton (AMF) component [8] applies matrix factorization 
on the adjacency matrix of Drug–drug interactions and shares the latent factors of each 
drug between rows and columns. Then the AMF model exploits adaptive moment esti-
mation (Adam) optimization to optimize the weights of the element-wise multiplication 
and the biases. Adjacency matrix factorization with propagation (AMFP) is an exten-
sion of AMF that adds a step in which the latent factors of each drug are propagated to 
the interacting drugs. The latent factor propagation is controlled by a propagation factor 
that controls the information passed from the neighborhood of interacting drugs. The 
latent factor of each node is shared with the node’s neighborhood. When the value of the 
propagation factor reaches zero, AMF is equivalent to AMFP.

Stacking component

To combine the AMFP model’s prediction with the bio-text model’s prediciton, a stack-
ing model is used. We train each model separately and then feed each model’s prediction 
output for each instance to a multilayer neural network, with a sigmoid activation func-
tion in the last layer and the binary cross-entropy loss function.

Bio‑text embedding models

We evaluate the following bio-text embedding models:

(4)R̂Text = σ(WH+1aH + bH+1)

(5)L = �i,jǫY Rijlog(R̂
Text
ij )− (1− Rij)log(1− R̂Text

ij )
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•	 BioConceptVec concept embedding BioConcpetVec, proposed by [11], is a state-of-
the-art biomedical concept text embedding model. It is trained by implying PubTator’s 
state-of-the-art name entity recognition (NER) tool to identify and normalize medical 
concepts [17], and then four machine learning models (Word2Vec CBOW, Word2Vec 
Skip-gram, GloVe, and FastText) are trained to calculate text and concept embeddings 
based on  30 million PubMed abstracts. To match the drug names to the BioConcept-
Vec concepts, we leverage PubTator’s central chemical mapping. We evaluate different 
machine learning models, which were used to train the BioConceptVec embeddings. 
We present the results of the Word2Vec CBOW embedding flavor as part of the evalua-
tion, as it provided superior or comparable results to the other embedding flavors.

•	 BioConceptVec text embedding Although BioConceptVec includes more than 400,000 
medical concepts, we were only able to directly match about 70% of the drugs in our 
dataset to BioConceptVec concepts. Therefore, we evaluate the effectiveness of using 
either concept embedding or text embedding, where the drug name is explicitly used to 
match the vocabulary of the BioConceptVec embeddings. We present the results of the 
Word2Vec CBOW embedding flavor as part of the evaluation, as it provided superior 
or comparable results to the other embedding flavors.

•	 BioBERT text embedding BioBERT, proposed by [18], is a state-of-the-art domain-spe-
cific language representation model pretrained on large-scale biomedical corpora (Pub-
Med abstracts and PubMed Central full-text articles). The BioBERT model is based on 
BERT, a contextualized word representation language model that obtains state-of-the-
art performance on most NLP tasks. BioBERT has been shown to outperform previ-
ous state-of-the-art language models on different representative biomedical text mining 
tasks ([18, 19]), such as biomedical NER, biomedical relation extraction from text, and 
biomedical question answering.

Implementation

We implemented the different flavors of the ABTE approach using Keras. We used a public 
Python implementation and evaluation methods for the AMFP baseline.

To determine the hyperparameters of the ABTE approach, we use 20% of the training set 
as a validation set. All weights were randomly initialized using the Glorot normal initializer. 
The following batch sizes were used: 128, 256, 512, and 1,024, and learning rates 0.1, 0.01, 
0.001 and 0.0001 were tested. We evaluated the following number of factors (embedding 
sizes): 32, 64,128, 256, 512, and 1,024 for the drug-ID embedding, as well as dropout levels 
in the range of 0-0.9 in steps of 0.1, the number of epochs in the range of 1–50 with steps of 
5, and propagation factors in the range of 0.0–1.0 in steps of 0.1. The ABTE switching cri-
terion value 3 was optimized using each value in the range of 0–10. The ratio of negative to 
positive samples was tuned using each value in the range of 1-10. We used the text embed-
ding size of the pre-trained models, which is 100.

Results
Drug–drug interaction prediction

In this section, we present our experiments, which are aimed at evaluating the contribu-
tion of adding text embedding information to DDI prediction in general, and specifically 
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for predicting interactions for new drugs where there is limited or no knowledge regard-
ing existing interactions. As a baseline, we use the AMFP model, which is considered 
the state-of-the-art benchmark ([8]). Our evaluation includes a comparison of different 
variants of the ABTE approach, as well as different pretrained bio-text embedding of the 
drug names. Our evaluation is based on a retrospective analysis, using approved drugs 
from two versions of DrugBank1.

Datasets

The data used in this research is third-party data, created by DrugBank and which can 
be accessed via the website: www.​drugb​ank.​ca/​relea​ses. Our DDI prediction evaluation 
is based on a retrospective evaluation [8, 20], using approved drugs from two versions of 
the DrugBank database: 5.0.0 (from June 2016) and 5.1.1 (from July 2018). Major changes 
were made between the versions; specifically, a large number of interactions were added 
to the more recent version. For the validation process, we randomly split the training set 
based on version 5.0.0. 20% of randomly selected existing and non-existing interactions 
from the training set were used as the validation set. Versions 5.0.0 and 5.1.1 contain 
1, 440 and 2, 149 approved drugs respectively. Here, we use only the intersecting set of 
drugs between the versions. The training set consists of 1, 036, 080 drug pairs, 45, 296 
positive interactions and 990, 784 negative (potential) interactions. The test set consists 
of 1, 036, 080 drug pairs, 248, 146 positive interactions and 787, 934 negative (potential) 
interactions.

Baselines

We compared our approach and the contribution of the Bio-Text embedding to DDI 
prediction to the following state-of-the-art approaches:

•	 Adjacency matrix factorization (AMF) [8] Matrix factorization on the adjacency 
matrix of Drug–drug interactions is applied. The latent factors for each drug are 
shared between rows and columns. Then AMF exploits adaptive moment estimation 
(Adam) optimization to optimize the weights of the element-wise multiplication and 
biases.

•	 Adjacency matrix factorization with propagation (AMFP) [8] An extension of the 
AMF approach which adds a step to propagate the latent factors of each drug to the 
interacting drugs.

•	 Integrated similarity-constrained matrix factorization (ISCMF) [9] An extension of 
the Matrix Factorization (MF) approach which constrains the latent factors by using 
an integrated similarity matrix. To allow a fair comparison with early stage availa-
ble data, we adapted ISCMF to calculate the similarity of drugs based on the drugs’ 
concept embeddings. Additional methods were proposed based on the idea of con-
straining the latent factors by using an integrated similarity matrix [7]. Here, we used 
ISCMF as a baseline.

1  Third-party data owned by The Governors of the University of Alberta and managed by OMx Personal Health Analyt-
ics Inc. The dataset can be accessed via the website: www.​drugb​ank.​ca/​relea​ses

http://www.drugbank.ca/releases
http://www.drugbank.ca/releases
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•	 DeepFM [21] This approach is considered the state-of-the-art model for combin-
ing an entity’s interactions with an entity’s characteristics. It consists of two compo-
nents, an FM component and deep component that share the same input. The FM 
component is the factorization machines (FM) model, which models all interactions 
between variables using factorized parameters [22], enabling it to estimate interac-
tions even in problems with high sparsity. It models pairwise feature interactions as 
an inner product of latent vectors between features. The deep neural network com-
ponent is able to effectively learn higher-order feature interactions. We evaluated 
three flavors of the DeepFM approach. The model architecture is presented in Fig. 2.

	 The drug ID and drug concept ID are considered two feature families. The drug ID 
embeddings are trained as part of the model, and for the concept ID embeddings, 
pretrained values are used. Since the sizes of the optimal drug ID and concept ID 
embeddings are different, we added an adaptation layer to the drug concept embed-
ding which is used before calculating the interaction components of the factorization 
machine.

	 DeepFM (FM) Only the FM component of the DeepFM model is used for prediction.
	 DeepFM (Deep): Only the deep component of the DeepFM model is used for predic-

tion.
•	 Directed message passing neural network (Chemprop) The authors of Chemprop 

[23], a message passing neural network for molecular property prediction, suggest 
processing the chemical structure graph with a message passing neural network 
(MPNN). Following Chemprop’s success in discovering a new antibiotic [24], we use 
chemprop for generating DDI predictions based on the molecules’ chemical struc-
ture by utilizing a graph convolutional model and refer to it as Chemprop in this 
paper. The MPNN framework consists of two phases: (1) the message passing phase, 
in which the molecule is represented by a latent representation; this phase runs in 
several iterations to update the bonds’ and atoms’ latent representation; (2) the read-
out phase, in which a readout function is used to compute the prediction using the 
representation of the whole graph. Using the MPNN framework can result in a noisy 
graph and a less accurate representation due to totters [25]. Therefore, the Chem-
prop framework employs a directed MPNN (D-MPNN) in which the messages are 
associated with directed edges (bonds) instead of the atoms. The Chemprop baseline 
we use in this research takes two molecules as input, each molecule is processed by a 
single Chemprop model, the weights of the two models are shared. Finally, a predic-
tion is obtained by concatenating the molecules’ representation created in the read-
out phase, applying a feed-froward neural network and a binary cross-entropy loss.

•	 CASTER The CASTER [26] framework uses functional representations to represent 
the different drugs, i.e., the authors used the most frequent substructures shared by 
a pair of drugs. Then, the authors used an unsupervised encoder-decoder network to 
create a latent representation for each drug’s functional representation.

	 The authors also represented the most frequent SMILES substructures with a des-
ignated latent representation. Latent vectors of the functional representation are 
mapped to the same latent space of the SMILES substructures. Linear coefficients 
are used as features to predict the DDIs. In the training phase, the authors minimized 
two loss functions: (1) reconstruction loss, to represent the drugs’ latent functional 
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representation, and (2) prediction loss, which is a binary cross-entropy loss function, 
to provide the prediction of DDIs.

•	 SSI-DDI [27] is a recently released DDI prediction system that extracts features 
straight from raw molecular graph representations of pharmaceuticals. The model 
is based mainly on several graph attention (GAT) layers followed by a co-attention 
layer. SSI-DDI is trained to distinguish between different drug interaction types; the 
algorithm samples negative instances from the training set. Here, to adapt SSI-DDI 
to the current problem, we train SSI-DDI on just a single target attribute, because the 
current work defines the task as binary.

Metrics

The primary evaluation metric used is the area under the ROC curve (AUROC). We 
also assess the area under the precision-recall curve (AUPR), because it is more reliable 
in the case of an unbalanced dataset, as in our case. Lastly, we plot precision@n and 
recall@n which evaluate the top n most confident predictions of the model. This metric 
is important, since our machine learning model will determine which drug interactions 
will be tested in a lab. We acknowledge the importance of precision over recall in the 
DDI problem, and therefore we plot the two precision graphs in addition to the other 
metrics.

ABTE evaluation

We evaluated the following flavors of the ABTE approach:

•	 Text concate The bio-text embedding vector of the two drugs are concatenated and 
fed to a multilayer feed forward neural network classifier.

•	 Text multiply The bio-text embedding vectors of the two drugs are multiplied (using 
element-wise multiplication), concatenated with a bias component, and fed to a mul-
tilayer neural network classifier.

•	 Text concate, feature combination In this model, the drug ID embedding and the 
drug bio-text embedding are integrated as part of a single neural network which 
predicts the DDI interaction. The text embedding vectors of the two drugs and the 
element-wise multiplication of the drug ID embedding vectors are concatenated. The 
concatenated layer is then fed to a multilayer neural network classifier.

•	 Text multiply, feature combination The drug ID embedding and drug bio-text 
embedding are integrated as part of a single neural network which predicts the DDI 
integration. The text embedding vectors of the two drugs and the drug ID embed-
ding are multiplied separately. The element-wise multiplication of each component is 
then concatenated and fed to a multilayer neural network classifier.

•	 Text concate, stacking The prediction of the bio-text concate model and the AMFP 
model are fed to a stacking model (multilayer neural network) to provide the final 
DDI interaction prediction.

•	 Text multiply, stacking The prediction of the bio-text multiply model and the AMFP 
model are fed to a stacking model (multilayer neural network) to provide the final 
DDI interaction prediction.
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Table  1 presents a comparison between the different ABTE flaovrs, while incorporat-
ing text embeddings based on different models for the DDI prediction task. As can be 
seen, the “Text Concate with Stacking” flavor, an ensemble that combines the predic-
tions based on the drugs’ text embedding with the AMFP predictions is superior for 
the DDI prediction task. A medical NER stage for aggregating different wording for the 
same drug is superior to the other drug text embedding models. In this use case, the 
DDI classification using the BioBERT text embedding approach provides lower accuracy 
since the text embedding includes only the drug name or concept, and there is no sen-
tence context.

Table 2 presents the same evaluation results presented in Table 1, but in this case, we 
evaluate only the interactions of the rare drugs. Tuning ABTE’s parameter M, resulted in 
an optimal value of three. Hence, here, we considered new drugs as drugs with less than 
three interactions in the training dataset. In this scenario, the best-performing model is 
the “Text Concate” which is based only on the text embedding.

Table 3 presents a comparison of the ABTE best-performing approaches with state of 
the art Matrix Factorization extensions. The comparison includes state of the art models 
for DDI prediction, as well as hybrid approaches to combine text embedding and known 
interactions.

Table 1  DDI prediction-ABTE approach

Best scores are highlighted in bold

Comparison of different Bio-Text embedding models and ABTE flavors to combine Bio-Text embedding and known 
interactions

Approach Concept Word BERT

AUC​ AUPR AUC​ AUPR AUC​ AUPR

Text Concate 0.78 0.36 0.74 0.32 0.74 0.30

Text Multiply 0.75 0.34 0.73 0.31 0.73 0.28

Text Concate, Feature Combination 0.75 0.32 0.73 0.30 0.72 0.27

Text Multiply, Feature Combination 0.74 0.31 0.72 0.28 0.71 0.26

Text Concate, Stacking 0.81 0.48 0.78 0.47 0.73 0.43

Text Multiply, Stacking 0.80 0.47 0.79 0.46 0.80 0.46

Table 2  DDI prediction for rare drugs (less than three known interactions in the training data set)-
ABTE approach

Best scores are highlighted in bold

Comparison of different Bio-Text embedding models and ABTE flavors to combine text embedding and known interactions

Approach Concept Word BERT

AUC​ AUPR AUC​ AUPR AUC​ AUPR

Text Concate 0.76 0.27 0.69 0.22 0.70 0.23

Text Multiply 0.69 0.22 0.69 0.23 0.70 0.21

Text Concate, Feature Combination 0.70 0.22 0.68 0.20 0.68 0.19

Text Multiply, Feature Combination 0.68 0.20 0.67 0.20 0.66 0.17

Text Concate, Stacking 0.65 0.22 0.57 0.19 0.43 0.13

Text Multiply, Stacking 0.66 0.22 0.55 0.19 0.70 0.19
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As can be seen, when evaluating the complete test set, the AMFP approach is superior 
to the standalone approach based only on the drugs’ text embedding. However, a hybrid 
approach using an external combiner provides a slight improvement in the prediction 
classification metrics. The DeepFM approach’s prediction accuracy is similar to the 
AMF approach. This is because the drug ID interactions’ contribution to the prediction 
score is significantly higher than the contribution of the text embedding interactions and 
the standalone features.

In the case of rare drugs that have a low number of known interactions during the 
model training period, the performance of the “Text Concate” model which is based on 
text-embedding only is superior to that of the AMFP model and to the “Text Concate 
with Stacking” hybrid model.

In an analogy to recommender systems [28] where the interaction between drugs rep-
resents interactions between users and items, and the text embedding represents the 
item’s characteristics. A model based only on drug name text embedding is analogous 
to a content-based approach that leverages the item characteristics and is suitable for 
handling new items (i.e. the cold-start scenario). The AMFP, which is based on a matrix 
factorization approach, represents the neighbourhood approach where the similarity 
in interactions between users or items is leveraged to predict unknown interactions. In 
the case of rare drugs, the ISCMF approach which constrains the MF latent factors by 
using an integrated similarity matrix based on the drugs’ text embedding is superior to 
the AMFP approach which is based on known interactions only but has lower accuracy 
than the “Text Concate” approach. This comparison demonstrates the contribution of 
Bio-Text embedding to the DDI prediction task and the superiority of the ABTE hybrid 
approach with switching criteria compared to other MF extensions.

As part of our comprehensive evaluation, we compare the proposed approaches 
with existing works for DDI prediction, which are based on the drugs’ chemical struc-
ture. Table  4 presents the results of this comparison. On the complete dataset, the 
“Text Concate with Stacking” hybrid approach, achieves the best performance in 
terms of AUC and AUPR, followed by the AMFP model. The “Text Concate” model 
achieves the best performance on the rare drugs test subset. The “Text Concate” 

Table 3  DDI prediction-Matrix Factorization based models

Best scores are highlighted in bold

Comparison between the ABTE best flavors and Matrix Factorization based models. The comparison covers state of the art 
models for DDI, as well as hybrid approaches to combine text embedding and known interactions. These models support 
both small molecule and biological drugs. The table compares the entire test data set as well as rare drugs only (drugs with 
less than three known interactions in the training data set)

Approach Full Rare

AUC​ AUPR AUC​ AUPR

AMF 0.76 0.35 0.62 0.17

AMFP 0.79 0.46 0.63 0.21

SSI DDI 0.63 0.24 0.60 0.16

ISCMF 0.74 0.36 0.68 0.23

DeepFM 0.75 0.34 0.59 0.17

Text Concate 0.78 0.36 0.76 0.27
Text Concate, Stacking 0.81 0.48 0.65 0.22
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model is identical to the ABTE by the definition of ABTE’s switching criteria on rare 
drugs. Note that unlike the previous tables presented above, this comparison includes 
only small molecule drugs to allow a fair comparison with Chemprop, CASTER, and 
SSI DDI, which are based on the chemical structure of the drug and support only 

Table 4  DDI prediction for small molecule drugs

Best scores are highlighted in bold

Comparison between the ABTE best flavors to state of the art DDI prediction models, as well as to hybrid approaches which 
combine text embedding and known interactions. These comparison includes models which are based on the chemical 
structure of the drug, and are limited to small molecule drugs only. The table compares the entire test set as well as rare 
drugs only (drugs with less than three known interactions in the training data set)

Approach Full Rare

AUC​ AUPR AUC​ AUPR

AMFP 0.79 0.47 0.61 0.21

Chemprop 0.70 0.31 0.63 0.21

CASTER 0.73 0.32 0.69 0.24

SSI DDI 0.61 0.24 0.58 0.16

ISCMF 0.75 0.38 0.69 0.24

Text Concate 0.77 0.38 0.75 0.28
Text Concate, Stacking 0.80 0.48 0.66 0.25

Fig. 2  DeepFM architecture [21] for Drug–drug interaction prediction. The factorization machine (FM) 
and deep components share the same input raw feature vector, which enables DeepFM to learn low and 
high-order feature interactions simultaneously from the raw input features. The FM component learns 
first and second-order interactions using addition units and a number of inner product units. The deep 
component is a feed-forward neural network which learns higher-order interactions. The input layer includes 
the drugs’ pre-trained bio-text embedding and the drugs’ ids encoded as one-hot vectors. An embedding 
representation of the drugs is learnt as part of the overall learning architecture. The embedding layers are 
shared between the first and the second input drugs. The network output is the Drug–drug interaction score 
between the two input drugs
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small molecule drugs. Unlike the “Text Concate”, “Text Concate with Stacking”, 
ISCMF and AMFP, which also support biological drugs. This comparison further 
demonstrates the usefulness of Bio-Text embedding to DDI prediction, especially in 
the case of rare drugs.

Figure 3 presents the distribution of drugs based on the number of interactions they 
have in the training set. It can be seen that about 25% of the drugs have less than 10 
interactions in the training set. These drugs are responsible for 10% of the interac-
tions in the test set. This set of drugs is of special interest, because it contains mainly 
drugs in the early stages of the drug lifecycle. To examine the ABTE approach superi-
ority comparing to the AMFP approach, and to set its switching criteria, we evaluated 
the ROC AUC and AUPR AUC gain of the ABTE bio-text and stacking components 
comparing to the AMFP approach as a function of the number of interactions the 
drug has in the training set. The ABTE bio-text component uses the text concate 
approach, and the stacking component uses the text concate with external combiner 
approach. The results are presented in Fig.  4. As can be seen, when the number of 
interactions in the training set is lower or equal to 10 (about 20% of the drugs in the 
test set), the ABTE bio-text component (Text Concate) is superior to both the AMFP 
and the ABTE Stacking component. When the number of interactions in the training 
set is higher than 10, the ABTE Stacking provides a higher AUPR AUC, and its gain 
compared to the AMFP decreases as we add drugs with a higher number of interac-
tions in the training set.
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Fig. 3  Drug distribution based on the number of interactions in the training set. The drugs % is the percent 
of drugs for the specified bin, the drug cumulative % represents the percent of drugs with a lower or equal 
number of the specified training interaction, and the cumulative test interactions % represents the percent of 
interactions in the test set for drugs with a lower or equal number of the specified training interaction bin
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In Fig.  5a, we present the average precision@K for all of the rare drugs that have 
less than three interactions in the training set, and in Fig. 5b, we present the average 
recall@K for the interactions of the same drugs. As can be seen, the ABTE approach 
is superior to the AMFP approach for both precision@K and the recall@K metrics. 
As the machine learning model predictions will determine which drug interactions 
will be tested in the lab, higher precision@K means that fewer experiments will be 
required to detect possible interactions for new drugs.

Pregnancy drug safety classification

To further evaluate the contribution of text embedding to medical prediction tasks 
related to new drugs, we compared the accuracy of different machine learning models to 
predict pregnancy drug safety based on different related modalities. The modalities we 
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Fig. 4  Gain of the ABTE text and stacking components compared to AMFP as a function of the number of 
drug interactions in the training set. Zero percent is AMFP’s performances

Fig. 5  a Average precision of rare drug interaction prediction. The minimum number of drug interactions in 
the training set = 3. b Average precision of rare drug interaction prediction. The minimum number of drug 
interactions in the training set = 3
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evaluated are the different biomedical text embeddings, the drug’s molecular structure 
[29], and the DrugBank drug category. DrugBank’s drug category combines the drug’s 
ATC codes of different levels, and other manually curated drug information [30]. The 
DrugBank category is considered the most informative modality for drug safety classifi-
cation, but it is not available during the early stages of a drug’s development.

In this experiment, a dataset of 124 drugs, labeled manually by a domain expert, was 
used to evaluate the accuracy of two prediction models: ExtraTrees and XGBoost. The 
AUC and AUPR metrics, using 10-fold cross-validation were used for the comparison. 
The code published by [30] for feature engineering and model generation was used.

Table 5 presents the evaluation results. It can be seen that similarly to the DDI predic-
tion task, using the concept embedding modality was superior to the other two Bio-Text 
embedding modalities, as well as the use of the drug’s molecular structure modality. A 
multimodal model which combines the drug’s molecular structure and Bio-Text embed-
ding information, which is available during the early stages of the drug’s approval pro-
cess, is comparable to a model based on the DrugBank category in terms of the AUC.

DrugBank’s categories contain more than 2,000 binary features, crafting these features 
requires manual, labour-intensive categorization and a solid scientific literature focused 
on each drug. The results on Table 5 suggest that unstructured features can be used for 
classification of drugs, eliminating the need to manually categorize drugs. The results 
suggest that accurate drug-related predictions are feasible on numerous drugs, using 
Bio-Text embeddings created automatically from the literature and not only on thou-
sands of approved compounds using manually categorized drugs.

Conclusion
In this research we assert, that Bio-Text drug embedding can improve the performance 
of machine learning models for predicting drugs’ characteristics. Our findings indicate 
that Text Bio-Concept embedding, which incorporates biomedical knowledge into the 
embedding process, outperforms biomedical corpora word embedding and embeddings 
originating from BioBERT. We support our claim by demonstrating the superiority of 
a hybrid model which uses Concept Bio-Text embedding and historical interactions 

Table 5  Pregnancy drug safety classification

Model Modalities Text embedding AUC​ AUPR

XGBoost DrugBank category – 0.87 0.86

XGBoost Molecular structure – 0.76 0.72

XGBoost Text Concept embedding 0.88 0.85

XGBoost Text Word embedding 0.77 0.74

XGBoost Text BioBERT embedding 0.74 0.70

XGBoost Text and molecular structure Concept embedding 0.88 0.84

ExtraTrees DrugBank category – 0.88 0.86

ExtraTrees Molecular structure – 0.78 0.72

ExtraTrees Text Concept embedding 0.87 0.84

ExtraTrees Text Word embedding 0.79 0.76

ExtraTrees Text BioBERT embedding 0.77 0.74

ExtraTrees Text and molecular Concept embedding 0.88 0.85
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to predict DDIs, as well as by evaluating the contribution of Bio-Text embedding to 
machine learning classifiers used to predict the safety of drugs during pregnancy. These 
results demonstrate that Bio-medical concept embeddings provide valuable information 
that can be used to predict drug’s characteristics. It is more valuable for relatively new 
drugs where the amount of other source of information is limited. However, relying on 
Bio-medical concept embeddings limits the explainablity of the machine learning model, 
because Bio-medical concept embeddings are not generally understandable to humans.

We introduce ABTE, a hybrid approach which combines drug’s Bio-Text embeddings 
with drug’s known interactions and demonstrate its superiority over state-of-the-art 
approaches for DDI prediction. We show that the improvement is more significant for 
new drugs with a small amount of known interactions, while a subtle improvement is 
demonstrated for known drugs with a fair amount of known interactions.

In future research, we would like to evaluate the contribution of using bio-text embed-
ding to improve the accuracy of additional drug-related prediction tasks such as drug 
re-purposing, drug-target interaction, and drug-disease effectiveness. In addition, we 
would like to further enhance the ABTE hybrid approach for medical interaction predic-
tions tasks by combining the matrix factorization approach with graph neural networks 
to better capture the nonlinear associations between different biomedical entities.
Acknowledgements
Not Applicable.

Author Contributions
A.G.M implemented the code and wrote the manuscript, G.S supplied and preprocessed the data and wrote the man‑
script, E.M supplied the benchmarks of the previous methods and added them to the paper. L.R and B.S supervised this 
work. All authors reviewed the manuscript. All authors read and approved the final manuscript.

Funding
Not Applicable.

Data Availability
The datasets generated and/or analysed during the current study are available in the DrugBank repository. The model 
scripts are available at https://​github.​com/​asnatm/​ddi.​git. Text embeddings are available at PubTator’s central chemical 
mapping.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 8 May 2022   Accepted: 25 November 2022

References
	1.	 Becker ML, Kallewaard M, Caspers PWJ, Visser LE, Leufkens HGM, Stricker BH. Hospitalisations and emer‑

gency department visits due to drug-drug interactions: a literature review. Pharmacoepidemiol Drug Saf. 
2007;16(6):641–51.

	2.	 Raschetti R, Morgutti M, Menniti-Ippolito F, Belisari A, Rossignoli A, Longhini P, La Guidara C. Suspected adverse drug 
events requiring emergency department visits or hospital admissions. Eur J Clin Pharmacol. 1999;54(12):959–63.

	3.	 Budnitz DS, Pollock DA, Weidenbach KN, Mendelsohn AB, Schroeder TJ, Annest JL. National surveillance of emer‑
gency department visits for outpatient adverse drug events. JAMA. 2006;296(15):1858–66.

https://github.com/asnatm/ddi.git


Page 17 of 17Shtar et al. BMC Bioinformatics          (2022) 23:526 	

	4.	 Qato DM, Wilder J, Schumm LP, Gillet V, Alexander GC. Changes in prescription and over-the-counter medica‑
tion and dietary supplement use among older adults in the United States, 2005 vs 2011. JAMA Intern Med. 
2016;176(4):473–82.

	5.	 Schelleman H, Bilker WB, Brensinger CM, Han X, Kimmel SE, Hennessy S. Warfarin with fluoroquinolones, sulfona‑
mides, or azole antifungals: interactions and the risk of hospitalization for gastrointestinal bleeding. Clin Pharmacol 
Ther. 2008;84(5):581–8.

	6.	 Qiu Y, Zhang Y, Deng Y, Liu S, Zhang W (2021) A comprehensive review of computational methods for drug–drug 
interaction detection. In: IEEE/ACM transactions on computational biology and bioinformatics.

	7.	 Zhang W, Chen Y, Li D, Yue X. Manifold regularized matrix factorization for drug-drug interaction prediction. J 
Biomed Inform. 2018;88:90–7. https://​doi.​org/​10.​1016/j.​jbi.​2018.​11.​005.

	8.	 Shtar G, Rokach L, Shapira B. Detecting drug-drug interactions using artificial neural networks and classic graph 
similarity measures. PLoS One. 2019;14(8): e0219796.

	9.	 Rohani N, Eslahchi C, Katanforoush A. Iscmf: integrated similarity-constrained matrix factorization for drug–drug 
interaction prediction. Netw Model Anal Health Inform Bioinform. 2020;9(1):1–8.

	10.	 Kalyan KS, Sangeetha S. Secnlp: a survey of embeddings in clinical natural language processing. J Biomed Inform. 
2020;101: 103323.

	11.	 Chen Q, Lee K, Yan S, Kim S, Wei C-H, Lu Z. Bioconceptvec: creating and evaluating literature-based biomedical 
concept embeddings on a large scale. PLoS Comput Biol. 2020;16(4): e1007617.

	12.	 Mignone P, Pio G, Džeroski S, Ceci M. Multi-task learning for the simultaneous reconstruction of the human and 
mouse gene regulatory networks. Sci Rep. 2020;10(1):22295.

	13.	 Amiri Souri E, Laddach R, Karagiannis SN, Papageorgiou LG, Tsoka S. Novel drug-target interactions via link predic‑
tion and network embedding. BMC Bioinform. 2022;23(1):121. https://​doi.​org/​10.​1186/​s12859-​022-​04650-w.

	14.	 Yang J, Yi X, Zhiyuan Cheng D, Hong L, Li Y, Xiaoming Wang S, Xu T, Chi EH (2020) Mixed negative sampling for 
learning two-tower neural networks in recommendations. In: Companion proceedings of the web conference 2020, 
WWW ’20, pp. 441–447, New York, NY, USA. Association for Computing Machinery. ISBN 9781450370240. https://​doi.​
org/​10.​1145/​33664​24.​33861​95.

	15.	 Zheng Y, Peng H, Zhang X, Zhao Z, Gao X, Li J. Ddi-pulearn: a positive-unlabeled learning method for large-scale 
prediction of drug–drug interactions. BMC Bioinform. 2019;20(19):661. https://​doi.​org/​10.​1186/​s12859-​019-​3214-6.

	16.	 Pio G, Mignone P, Magazzù G, Zampieri G, Ceci M, Angione C. Integrating genome-scale metabolic modelling and 
transfer learning for human gene regulatory network reconstruction. Bioinformatics. 2021;38(2):487–93. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btab6​47.

	17.	 Wei C-H, Allot A, Leaman R, Lu Z. Pubtator central: automated concept annotation for biomedical full text articles. 
Nucleic Acids Res. 2019;47(W1):W587–93.

	18.	 Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. Biobert: a pre-trained biomedical language representation model 
for biomedical text mining. Bioinformatics. 2020;36(4):1234–40.

	19.	 Zhu Y, Li L, Hongbin L, Zhou A, Qin X. Extracting drug-drug interactions from texts with biobert and multiple entity-
aware attentions. J Biomed Inform. 2020;106: 103451.

	20.	 Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant Jason R, Sajed Tanvir, Johnson Daniel, Li Carin, Sayeeda Zinat, 
et al. Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.

	21.	 Guo H, Tang R, Ye Y, Li Z, He X (2017) Deepfm: a factorization-machine based neural network for ctr prediction. 
Preprint arXiv:​1703.​04247.

	22.	 Rendle S (2010) Factorization machines. In: 2010 IEEE international conference on data mining, IEEE. pp. 995–1000.
	23.	 Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M, et al. Analyzing 

learned molecular representations for property prediction. J Chem Inf Model. 2019;59(8):3370–88.
	24.	 Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Acker‑

mann Z, Tran VM, Chiappino-Pepe A, Badran AH, Andrews IW, Chory EJ, Church GM, Brown ED, Jaakkola TS, Barzilay 
R, Collins JJ. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688–702. https://​doi.​org/​10.​1016/j.​
cell.​2020.​01.​021.

	25.	 Mahé P, Ueda N, Akutsu T, Perret J-L, Vert J-P (2004) Extensions of marginalized graph kernels. In: Proceedings of the 
twenty-first international conference on machine learning, pp. 70.

	26.	 Huang K, Xiao C, Hoang T, Glass L, Sun J (2020) Caster: predicting drug interactions with chemical substructure 
representation. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34 no. 01, pp. 702–709. https://​
doi.​org/​10.​1609/​aaai.​v34i01.​5412.

	27.	 Nyamabo AK, Yu H, Shi J-Y. SSI–DDI: substructure–substructure interactions for drug–drug interaction prediction. 
Brief Bioinform. 2021;22(6):bbab133. https://​doi.​org/​10.​1093/​bib/​bbab1​33.

	28.	 Ricci F, Rokach L, Shapira B (2011) Introduction to recommender systems handbook. In: Recommender systems 
handbook, Springer, pp. 1–35.

	29.	 Challa AP, Beam AL, Shen M, Peryea T, Lavieri RR, Lippmann ES, Aronoff DM. Machine learning on drug-specific data 
to predict small molecule teratogenicity. Reprod Toxicol. 2020;95:148–58.

	30.	 Shtar G, Rokach L, Shapira B, Kohn E, Berkovitch M, Berlin M. Explainable multimodal machine learning model for 
classifying pregnancy drug safety. Bioinformatics. 2021;11:btab769. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btab7​69.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jbi.2018.11.005
https://doi.org/10.1186/s12859-022-04650-w
https://doi.org/10.1145/3366424.3386195
https://doi.org/10.1145/3366424.3386195
https://doi.org/10.1186/s12859-019-3214-6
https://doi.org/10.1093/bioinformatics/btab647
https://doi.org/10.1093/bioinformatics/btab647
http://arxiv.org/abs/1703.04247
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1609/aaai.v34i01.5412
https://doi.org/10.1609/aaai.v34i01.5412
https://doi.org/10.1093/bib/bbab133
https://doi.org/10.1093/bioinformatics/btab769

	Predicting drug characteristics using biomedical text embedding
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Materials and methods
	Problem formulation
	Adjacency biomedical text embedding (ABTE) approach
	Bio-text component
	Adjacency matrix factorization with propagation (AMFP) component
	Stacking component

	Bio-text embedding models
	Implementation

	Results
	Drug–drug interaction prediction
	Datasets
	Baselines
	Metrics
	ABTE evaluation

	Pregnancy drug safety classification

	Conclusion
	Acknowledgements
	References


