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Abstract 

Background:  Elucidating the Transcription Factors (TFs) that drive the gene expres-
sion changes in a given experiment is a common question asked by researchers. The 
existing methods rely on the predicted Transcription Factor Binding Site (TFBS) to 
model the changes in the motif activity. Such methods only work for TFs that have a 
motif and assume the TF binding profile is the same in all cell types.

Results:  Given the wealth of the ChIP-seq data available for a wide range of the TFs 
in various cell types, we propose that gene expression modeling can be done using 
ChIP-seq “signatures” directly, effectively skipping the motif finding and TFBS prediction 
steps. We present xcore, an R package that allows TF activity modeling based on ChIP-
seq signatures and the user’s gene expression data. We also provide xcoredata a com-
panion data package that provides a collection of preprocessed ChIP-seq signatures. 
We demonstrate that xcore leads to biologically relevant predictions using transforming 
growth factor beta induced epithelial-mesenchymal transition time-courses, rinderpest 
infection time-courses, and embryonic stem cells differentiated to cardiomyocytes 
time-course profiled with Cap Analysis Gene Expression.

Conclusions:  xcore provides a simple analytical framework for gene expression mod-
eling using linear models that can be easily incorporated into differential expression 
analysis pipelines. Taking advantage of public ChIP-seq databases, xcore can identify 
meaningful molecular signatures and relevant ChIP-seq experiments.

Keywords:  Gene expression, Gene regulation, Regression, Transcription factors, ChIP-
seq

Background
Gene expression profiling is often performed to elucidate the transcriptional regula-
tors in a given system/perturbation. A common approach is to use transcription factor 
motifs to computationally predict the TFBS within promoter regions of known genes. 
The “motif activity” is then inferred based on gene expression profiles [1–3]. Although 
such methods are quite simplistic, they proved useful for the identification of key molec-
ular regulators [1, 2, 4, 5]. The limitations are that many TFs do not have a defined motif 
and some binding events may be specific to a particular biological context.
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ReMap [6] and ChIP-Atlas [7] provide a wealth of uniformly processed ChIP-seq 
data (genome-wide peaks) for TFs but also other transcriptional regulators includ-
ing transcriptional coactivators and chromatin-remodeling factors. Currently, only a 
limited number of tools exist that tap into these databases. Two examples are Lisa [8] 
identifying the most likely transcriptional regulators in an experiment based on user-
supplied gene expression information, and Virtual ChIP-seq program [9] that can 
predict the binding of individual TF in a cell type of interest based on gene expression 
information. However, to our knowledge, there are no published methods that take 
advantage of this data to directly model the activity of transcriptional regulators.

Here, we propose to use the publicly available ChIP-seq data to directly repre-
sent the genome-wide occupancy of regulators. We intersected the peaks with pro-
moter regions and used linear ridge regression to infer the regulators associated with 
observed gene expression changes (Fig.  1A). The advantage of this approach is the 
direct integration of gene expression profiles with experimental TF binding data. 
We provide (a) processed and pre-computed, ChIP-seq based molecular signatures 
(xcoredata), and (b) methodology for activity modeling (xcore). The framework is 
implemented as an R package (available in Bioconductor) and integrates smoothly 
with commonly used differential expression workflows like edgeR [10] or DESeq2 
[11].

Implementation
Expression data processing

Xcore takes promoter or gene expression counts matrix as input, the data is then filtered 
for lowly expressed features, normalized for the library size and transformed into counts 
per million (CPM) using edgeR [10]. Users need to designate the base-level samples by 
providing an experiment design matrix. These samples are used as a baseline expression 
when modeling changes in gene expression. xcore implements promoter- and gene-level 
analyses, using either promoter or gene expression data. In our experience we found 
promoter-level analysis to provide better results (Additional file 1: Fig. S1). Cap Analysis 
Gene Expression (CAGE) data is an input of choice for promoter level analysis. How-
ever, xcore can be used with other types of expression data such as microarray or RNA-
seq data to perform gene-level analysis. Promoter-level analysis based on RNA-seq data 
is possible in principle but currently not implemented.

Molecular signatures

A second input consists of molecular signatures describing known transcription fac-
tors’ binding preferences within the promoter’s vicinity. We provide sets of precom-
puted molecular signatures with xcoredata, the accompanying data package. The 
signatures were obtained by downloading all ChIP-seq data from ReMap2020 [6] and 
ChIP-Atlas [7] and intersecting it against ± 500 nt window of know promoter regions, 
defined based on FANTOM5’s hg38 annotation [12]. The signatures can also be easily 
constructed using xcore by providing predicted TFBS or custom ChIP-seq peaks (see 
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Fig. 1  Inferring transcription factors activities from gene expression during TGFβ induced EMT in A-549 
and MDA-231-D cell lines. A Flowchart depicting xcore and xcoredata functionalities. B Boxplots showing 
R2 values for gene expression prediction models constructed using different molecular signature sets: 
Motif-based (Jaspar, SwissRegulon) and ChIP-seq based (ReMap2020, ChIP-Atlas). Each boxplot shows R2 
values pooled across all the replicates. Models were trained and evaluated in tenfold cross-validation on 
individual replicates, using data on gene expression changes between 0 and 24 h after treatment in our 
newly generated TGFβ induced EMT experiment performed in A-549 and MDA-231-D cell lines. C Heatmap 
showing the dynamics of TF activities during TGFβ induced EMT. Heatmaps on the left present TF activities 
estimated using CAGE data from our newly generated TGFβ induced EMT experiment performed on A-549 
and MDA-231-D cell lines. Heatmap on the right depicts TF activities estimated using previously published 
microarray data from the TGFβ induced EMT experiment performed on A-549 cell lines. The TF activities were 
calculated in the reference to 0 h time point. Only the top-scoring ReMap2020 signatures are shown. Grey 
color designates NA values
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xcore user guide). Detailed information on the molecular signatures construction can 
be found in  Extended Materials and Methods (Additional file 3).

Expression modeling

In xcore we describe the relationship between the expression (Y) and molecular sig-
natures (X) using linear model formulation:

where Y is a sample expression level, µ is the basal expression level, β0 is the intercept, βj 
is a j-th molecular signature activity and Xj is a j-th molecular signature.

Here, we are interested in finding the unknown molecular signatures’ activities (β) 
that describe the effect of molecular signature (X) on expression (Y). By including 
µ in the above equation we effectively model the change in expression between the 
basal expression level and the corresponding sample. Models are trained using penal-
ized linear regression. In particular, we use ridge regression [13] as it allows us to take 
advantage of an existing significance testing methodology [14]. We observed ridge 
regression to work equally well to lasso and elastic net regression (Additional file 2: 
Fig.  S2C). In practice, to fit our linear models we use the popular R package glm-
net [15]. For each sample, that is for each time point and replicate, a separate model 
is trained using sample change in expression and molecular signatures shared at the 
experiment scale. In layman’s terms, for each sample, we are seeking to find a combi-
nation of ChIP-seq based signatures that best explains the observed changes in gene 
expression. For each model, the ridge regression λ tuning parameter is found sepa-
rately using the cross-validation technique (CV). By default tenfold CV is used, and λ 
value giving the smallest mean squared error is selected.

Next, the estimated molecular signatures’ activities can be tested for significance. In 
short, using matrix formulation the ridge regression estimator is defined as

where X is our molecular signatures matrix, � is a ridge regression tuning parameter, 
and Y  is a vector of our sample’s changes in expression. Then, the estimate of βλ standard 
error is calculated from the following:

where ν is the residual effective degrees of freedom. The significance of the individual 
molecular signatures’ activities can be then tested using a test of significance for ridge 
regression coefficients. For further details, we refer interested readers to [14].

To summarize the results from individual replicates, following the procedure 
described in [16], the obtained estimates and their standard errors are pooled across 
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the replicates by calculating their weighted mean with variance-defined weights and 
weighted mean error:

Using this result, we calculate a Z-score for each molecular signature and time-point.
Finally, molecular signatures are ranked based on their overall Z-score across the time-

points calculated using Stouffer’s Z method [17].

Linear regression models comparison

To compare different models, coefficients of determination (R2) were calculated for 
models trained on individual replicates at selected time points using tenfold cross-val-
idation and pooled across replicates. Additional information on this procedure is pro-
vided in Extended Materials and Methods (Additional file 3).

Results
We used xcore to perform gene expression modeling analysis in the context of three 
CAGE datasets: (a) newly generated transforming growth factor beta (TGFβ) induced 
epithelial-mesenchymal transition (EMT) experiment performed in A-549 and MDA-
231-D cell lines, (b) previously published FANTOM5’s rinderpest infection time-course 
dataset performed in 293SLAM and COBL-a cell lines using native and recombinant 
rinderpest virus lacking accessory V and C proteins [12], (c) previously published FAN-
TOM5’s Human H3 embryonic stem cells differentiated to cardiomyocytes time-course 
dataset [12] and a microarray dataset: previously published TGFβ induced EMT in 
A-549 cell line (GSE17708) [18]. Detailed information on the procedures used to process 
the raw CAGE data can be found in  Extended Materials and Methods (Additional file 3).

ChIP‑seq molecular signatures provides better model performance

We compared the models built using ChIP-seq signatures (ReMap2020 and ChIP-Atlas) 
vs motif-based signatures (Jaspar and SwissRegulon). The models based on ChIP-seq 
signatures showed on average higher R2 values, which reflects the proportion of variance 
explained by the model and overall “goodness of fit”. In particular, modeling expression 
between 0 and 24 h after TGFβ treatment in our novel MDA-231-D dataset yielded an 
average R2 of 0.179 for ChIP-seq signatures and 0.077 for motif signatures. For compar-
ison the randomized version of ReMap2020 molecular signature yielded R2 close to 0 
(Fig. 1B, Additional file 2: Fig. S2B).

xcore recovers biologically relevant expression regulators

To investigate the biological relevance of the obtained results, we looked at the top-scor-
ing signatures from ReMap2020 (Fig.  1C) and ChIP-Atlas (Additional file  2: Fig.  S2A) 
in TGFβ induced EMT datasets. Among those, we identified known key TFs involved 
in the TGFβ pathway such as SMAD2/3/4 [19], SSRP1, HNF1B [20], DDX5 [21] or 
RELA [22]. Other well-known EMT-linked TFs also returned as significant including 
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ZEB1, SNAI2, TBX3, SOX4 (Additional file 4: Table S1, Additional file 5: Table S2, Addi-
tional file 6: Table S3). In case of FANTOM5’s rinderpest infection dataset, top-scoring 
ReMap2020 and ChIP-Atlas signatures (Fig. 2, Additional file 7: Table S4) showed sev-
eral TFs involved in the closely related measles infection pathway, including RELA, IRF9, 
TP53 (KEGG PATHWAY:map05162) [23]. For human H3 embryonic stem cells differ-
entiated to cardiomyocytes time-course dataset, a number of known heart development 
regulators were found among top-scoring ReMap2020 and ChIP-Atlas signatures (Addi-
tional file 8: Table S5), such as JARID2, SMAD3, NKX2-5 (GO:0007507) [24].

Fig. 2  Estimating transcription factors activities from gene expression during rinderpest infection in 
293SLAM and COBL-a cell lines. A, B Heatmaps presenting TF activities of the most significant molecular 
signatures inferred using FANTOM5’s rinderpest infection time-series dataset. The underlying experiments 
were performed in 293SLAM and COBL-a cell lines using native and recombinant rinderpest virus lacking 
accessory V and C proteins (rinderpest(-C)). Results obtained using ReMap2020 and ChIP-Atlas based 
molecular signatures are displayed on the top and bottom panels respectively
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Comparison with the state‑of‑the‑art tools

We compared our results with state-of-the-art motif-based gene expression prediction 
framework ISMARA [1] and Lisa program which predicts the most likely transcriptional 
regulators from gene expression data based on ChIP-seq and chromatin accessibility 
data available in Cistrome Data Browser [25]. While ISMARA is conceptually similar 
and was inspirational to xcore, Lisa takes a different approach. Using a user supplied 
list of differentially expressed genes, Lisa first selects a subset of relevant experiments 
describing chromatin state (H3K27ac ChIP-seq or DNase-seq) using lasso regres-
sion. Next it identifies the most relevant TF using in-silico deletion technique [8]. To 
compare with our results, we used both tools on our novel TGFβ induced EMT, rin-
derpest infection and embryonic stem cells differentiated to cardiomyocytes datasets. 
We have run ISMARA in RNA-seq mode with a genome version hg38 and no miRNA 
using raw FASTQ files for our novel TGFβ induced EMT dataset and BAM files avail-
able in FANTOM5 study [12] mapped against genome version hg38 for the other data-
sets. To use Lisa we performed differential expression analysis using edgeR [10] between 
the most extreme time points in our time-course datasets. Then lists of 100 most sig-
nificant up- (logFC > 0) and 100 most significant down-regulated (logFC < 0) genes were 
submitted to Lisa. Next, we compared the results from all tools with a list of related 
transcriptional regulators. We constructed lists of related transcriptional regulators for 
each dataset using Gene Ontology term regulation of epithelial to mesenchymal transi-
tion (GO:0010717), KEGG pathway Measles (map05162) and Gene Ontology term heart 
development (GO:0007507) by including only regulators available in the references of all 
tools. The number of EMT related transcriptional regulators recovered among the top-
scoring signatures was higher for xcore and Lisa than ISMARA (Table 1). In case of rin-
derpest infection (Table 2) Lisa recovered the highest number of related TF in 293SLAM 
cell line. In the case of COBL-a and COBL-a rinderpest(-C) analyzes xcore found one 
more TF than ISMARA and Lisa. Finally, for embryonic stem cells differentiated to 

Table 1  Recovering epithelial to mesenchymal transition transcriptional regulators

Table summarizing EMT-related transcriptional regulators recovered by ISMARA, Lisa and xcore among their top-scoring 
signatures based on TGFβ induced EMT CAGE datasets. The list of EMT-related transcriptional regulators used to assess the 
recovery was constructed using Gene Ontology term regulation of epithelial to mesenchymal transition (GO:0010717) by 
including only regulators available in the references of all tools

Top 
signatures

A-549 MDA-231-D

ISMARA​ Lisa xcore ISMARA​ Lisa xcore

ReMap2020 ChIP-
Atlas

ReMap2020 ChIP-Atlas

1–10 SMAD4 SMAD3, 
SMAD4, 
GATA3

SMAD3, 
SMAD2

SMAD3, 
SMAD2, 
SMAD4

SMAD4, 
SMAD3

SMAD3, 
SMAD4

SMAD3, 
SMAD4, 
SMAD2, 
GATA3

11–50 FOXA2, 
FOXA1

EZH2, GATA3, 
SMAD4

EZH2, 
FOXA2

SMAD4 GATA3 SMAD2 EZH2, 
FOXA2, 
FOXA1

51–100 GATA3, 
FOXA1

NKX2-1, 
TCF7L2

FOXA1, 
FOXA2, 
NKX2-1

FOXA1, 
GATA3

FOXA1, 
NKX2-1

EZH2, FOXA1
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cardiomyocytes (Table 3) Lisa was able to find the highest number of related TF, while 
xcore and ISMARA found the same number of related TF.

Conclusions
Xcore provides a flexible framework for integrative analysis of gene expression and pub-
licly available TF binding data to unravel putative transcriptional regulators and their 
activities. Our analyses showed superior results when using ChIP-seq based signa-
tures as compared to motifs-based ones. We attribute this difference to the presence of 
biotype-specific binding information which might be lost in motifs that describe more 
general transcription factor binding preferences. Despite high numbers of ChIP-seq 
signatures and redundancy, our machine learning framework is able to select biologi-
cally relevant signatures. In our comparison with motif-based ISMARA and ChIP-seq 
based Lisa, xcore performed competitively with those tools. Especially, both xcore and 
Lisa worked exceptionally well at recovering EMT-related transcriptional regulators. 
However, a comprehensive comparison of xcore with other tools would require further 
benchmarking efforts. Such efforts are currently hindered by the lack of standard bench-
marking datasets for transcriptional regulators’ inference problems. In conclusion, xcore 
is useful for generating testable hypotheses about the data and provides a novel way to 
connect gene expression data with relevant ChIP-seq experiments.

Methods
TGF‑β1 stimulation to A‑549/MDA‑231‑D

A-549 Lung cancer cells (CCL-185, ATCC) and MDA-231-D highly metastatic human 
breast cancer cells [26] (gift from Dr. Kohei Miyazono, Tokyo Univ.) were cultured in 
Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific Inc., Waltham, MA, 
USA) supplemented with 10% fetal bovine serum, 1  mM sodium pyruvate (Thermo 
Fisher Scientific Inc., Waltham, MA, USA) and penicillin/streptomycin (100  U/mL, 
100  µg/mL; Thermo Fisher Scientific Inc., Waltham, MA, USA). TGF-β1 (7754-BH, 
Recombinant Human TGF-beta 1, R&D Systems) was added at the final concentration of 
1 ng/mL. At 0, 1, 2, 4, 6, and 24 h post stimulation, cells were harvested followed by RNA 
extraction using RNeasy mini kit (Qiagen, Valencia, CA, USA). Transcriptome data was 
produced by nAnT-iCAGE [27]. CAGE libraries were sequenced on Illumina HiSeq 2500 
(50-nt single read).

Table 3  Recovering heart development transcriptional regulators

Table summarizing heart development-related transcriptional regulators recovered by ISMARA, Lisa and xcore among their 
top-scoring signatures based on Human H3 embryonic stem cells differentiated to cardiomyocytes time-series dataset. 
The list of heart development-related transcriptional regulators used to assess the recovery was constructed using Gene 
Ontology term heart development (GO:0007507) by including only regulators available in the references of all tools

Top signatures ISMARA​ Lisa xcore

ReMap2020 ChIP-Atlas

1–10 GATA6, SMAD3, GATA4

11–50 SNAI2, MEF2A, 
SRF, GATA4

SMAD1, EOMES, GATA3, SMAD2 SMAD3, NKX2-5, 
ATF2, TBX5, RBPJ

RARA​

51–100 MEF2C, WT1 TBX5, REST, MBD2, TP53, SMAD4 SNAI2 JUN, TP53
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Abbreviations
CAGE	� Cap analysis gene expression
CPM	� Counts per million
CV	� Cross-validation
EMT	� Epithelial-mesenchymal transition
TF	� Transcription factor
TFBS	� Transcription factor binding site
TGFβ	� Transforming growth factor beta
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Additional file 1: Figure S1. (A) Boxplots showing R2 values for gene expression prediction models constructed 
either on gene- or promoter-level expression data. Each boxplot shows R2 values pooled across all the replicates. 
Models were trained and evaluated in tenfold cross-validation on individual replicates, using data on gene expres-
sion changes between 0 and 24 h after treatment in our newly generated TGFβ induced EMT experiment performed 
in A-549 and MDA-231-D cell lines. The models were constructed using ReMap2020 or ChIP-Atlas molecular 
signatures.

Additional file 2: Figure S2. (A) Heatmap showing the dynamics of TF activities during TGFβ induced EMT. Heat-
maps on the left present TF activities estimated using CAGE data from our newly generated TGFβ induced EMT 
experiment performed on A-549 and MDA-231-D cell lines. Heatmap on the right depicts TF activities estimated 
using previously published microarray data from the TGFβ induced EMT experiment performed on A-549 cell lines. 
The TF activities were calculated in the reference to 0 h time point. Only the top-scoring ChIP-Atlas signatures are 
shown. Grey color designates NA values. (B) Boxplots showing R2 values for gene expression prediction models 
constructed using different molecular signature sets: Motif based (Jaspar, SwissRegulon) and ChIP-seq based 
(ReMap2020, ChIP-Atlas). Each boxplot shows R2 values pooled across all the replicates. Models were trained and 
evaluated in tenfold cross-validation on individual replicates, using data on gene expression changes between 0 
and 24 h after the rinderpest infection treatment experiment performed in 293SLAM cell line. (C) Boxplots showing 
R2 values for gene expression prediction models trained using lasso, elastic net or ridge regression method. Each 
boxplot shows R2 values pooled across all the replicates. Models were trained and evaluated in tenfold cross-
validation on individual replicates, using data on gene expression changes between 0 and 24 h after treatment in 
our newly generated TGFβ induced EMT experiment performed in A-549 and MDA-231-D cell lines. The models were 
constructed using ReMap2020 molecular signatures and promoter-level expression data.

Additional file 3: Extended Materials and Methods. Extended description of procedures used to process the raw 
CAGE data, construct molecular signatures, and assess the accuracy of used models.

Additional file 4: Table S1. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using TGFβ induced EMT in A-549 cell line dataset.

Additional file 5: Table S2. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using TGFβ induced EMT in MDA-231-D cell line dataset.

Additional file 6: Table S3. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using TGFβ induced EMT in A-549 cell line dataset (GSE17708).

Additional file 7: Table S4. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using rinderpest infection in 293SLAM and COBL-a cell lines datasets.

Additional file 8: Table S5. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using Human H3 embryonic stem cells differentiated to cardiomyocytes time-course.
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