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Background

Gene expression profiling is often performed to elucidate the transcriptional regula-
tors in a given system/perturbation. A common approach is to use transcription factor
motifs to computationally predict the TFBS within promoter regions of known genes.
The “motif activity” is then inferred based on gene expression profiles [1-3]. Although
such methods are quite simplistic, they proved useful for the identification of key molec-
ular regulators [1, 2, 4, 5]. The limitations are that many TFs do not have a defined motif
and some binding events may be specific to a particular biological context.
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ReMap [6] and ChIP-Atlas [7] provide a wealth of uniformly processed ChIP-seq
data (genome-wide peaks) for TFs but also other transcriptional regulators includ-
ing transcriptional coactivators and chromatin-remodeling factors. Currently, only a
limited number of tools exist that tap into these databases. Two examples are Lisa [8]
identifying the most likely transcriptional regulators in an experiment based on user-
supplied gene expression information, and Virtual ChIP-seq program [9] that can
predict the binding of individual TF in a cell type of interest based on gene expression
information. However, to our knowledge, there are no published methods that take
advantage of this data to directly model the activity of transcriptional regulators.

Here, we propose to use the publicly available ChIP-seq data to directly repre-
sent the genome-wide occupancy of regulators. We intersected the peaks with pro-
moter regions and used linear ridge regression to infer the regulators associated with
observed gene expression changes (Fig. 1A). The advantage of this approach is the
direct integration of gene expression profiles with experimental TF binding data.
We provide (a) processed and pre-computed, ChIP-seq based molecular signatures
(xcoredata), and (b) methodology for activity modeling (xcore). The framework is
implemented as an R package (available in Bioconductor) and integrates smoothly
with commonly used differential expression workflows like edgeR [10] or DESeq2
[11].

Implementation

Expression data processing

Xcore takes promoter or gene expression counts matrix as input, the data is then filtered
for lowly expressed features, normalized for the library size and transformed into counts
per million (CPM) using edgeR [10]. Users need to designate the base-level samples by
providing an experiment design matrix. These samples are used as a baseline expression
when modeling changes in gene expression. xcore implements promoter- and gene-level
analyses, using either promoter or gene expression data. In our experience we found
promoter-level analysis to provide better results (Additional file 1: Fig. S1). Cap Analysis
Gene Expression (CAGE) data is an input of choice for promoter level analysis. How-
ever, xcore can be used with other types of expression data such as microarray or RNA-
seq data to perform gene-level analysis. Promoter-level analysis based on RNA-seq data
is possible in principle but currently not implemented.

Molecular signatures

A second input consists of molecular signatures describing known transcription fac-
tors’ binding preferences within the promoter’s vicinity. We provide sets of precom-
puted molecular signatures with xcoredata, the accompanying data package. The
signatures were obtained by downloading all ChIP-seq data from ReMap2020 [6] and
ChIP-Atlas [7] and intersecting it against &+ 500 nt window of know promoter regions,
defined based on FANTOMS5’s hg38 annotation [12]. The signatures can also be easily
constructed using xcore by providing predicted TFBS or custom ChIP-seq peaks (see
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Fig. 1 Inferring transcription factors activities from gene expression during TGF@ induced EMT in A-549
and MDA-231-D cell lines. A Flowchart depicting xcore and xcoredata functionalities. B Boxplots showing

R? values for gene expression prediction models constructed using different molecular signature sets:
Motif-based (Jaspar, SwissRegulon) and ChIP-seq based (ReMap2020, ChIP-Atlas). Each boxplot shows R?
values pooled across all the replicates. Models were trained and evaluated in tenfold cross-validation on
individual replicates, using data on gene expression changes between 0 and 24 h after treatment in our
newly generated TGF(3 induced EMT experiment performed in A-549 and MDA-231-D cell lines. C Heatmap
showing the dynamics of TF activities during TGF( induced EMT. Heatmaps on the left present TF activities
estimated using CAGE data from our newly generated TGF(3 induced EMT experiment performed on A-549
and MDA-231-D cell lines. Heatmap on the right depicts TF activities estimated using previously published
microarray data from the TGF@ induced EMT experiment performed on A-549 cell lines. The TF activities were
calculated in the reference to 0 h time point. Only the top-scoring ReMap2020 signatures are shown. Grey
color designates NA values
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xcore user guide). Detailed information on the molecular signatures construction can
be found in Extended Materials and Methods (Additional file 3).

Expression modeling
In xcore we describe the relationship between the expression (Y) and molecular sig-
natures (X) using linear model formulation:

Y =p+po+hiXi+ -+ BpXyp

where Y is a sample expression level, p is the basal expression level, f is the intercept, f;
is a j-th molecular signature activity and X; is a j-th molecular signature.

Here, we are interested in finding the unknown molecular signatures’ activities (f3)
that describe the effect of molecular signature (X) on expression (Y). By including
p in the above equation we effectively model the change in expression between the
basal expression level and the corresponding sample. Models are trained using penal-
ized linear regression. In particular, we use ridge regression [13] as it allows us to take
advantage of an existing significance testing methodology [14]. We observed ridge
regression to work equally well to lasso and elastic net regression (Additional file 2:
Fig. S2C). In practice, to fit our linear models we use the popular R package glm-
net [15]. For each sample, that is for each time point and replicate, a separate model
is trained using sample change in expression and molecular signatures shared at the
experiment scale. In layman’s terms, for each sample, we are seeking to find a combi-
nation of ChIP-seq based signatures that best explains the observed changes in gene
expression. For each model, the ridge regression A tuning parameter is found sepa-
rately using the cross-validation technique (CV). By default tenfold CV is used, and A
value giving the smallest mean squared error is selected.

Next, the estimated molecular signatures’ activities can be tested for significance. In
short, using matrix formulation the ridge regression estimator is defined as

A2 -1
B = (X'X+i)" XY

where X is our molecular signatures matrix, 4 is a ridge regression tuning parameter,
and Y is a vector of our sample’s changes in expression. Then, the estimate of p* standard

error is calculated from the following:

Var(ﬂ)') =62 XX + DX XXX + D7,

where v is the residual effective degrees of freedom. The significance of the individual
molecular signatures’ activities can be then tested using a test of significance for ridge
regression coefficients. For further details, we refer interested readers to [14].

To summarize the results from individual replicates, following the procedure
described in [16], the obtained estimates and their standard errors are pooled across
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the replicates by calculating their weighted mean with variance-defined weights and

weighted mean error:
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Using this result, we calculate a Z-score for each molecular signature and time-point.
Finally, molecular signatures are ranked based on their overall Z-score across the time-
points calculated using Stouffer’s Z method [17].

Linear regression models comparison

To compare different models, coefficients of determination (R?) were calculated for
models trained on individual replicates at selected time points using tenfold cross-val-
idation and pooled across replicates. Additional information on this procedure is pro-
vided in Extended Materials and Methods (Additional file 3).

Results

We used xcore to perform gene expression modeling analysis in the context of three
CAGE datasets: (a) newly generated transforming growth factor beta (TGEFp) induced
epithelial-mesenchymal transition (EMT) experiment performed in A-549 and MDA-
231-D cell lines, (b) previously published FANTOMS5’s rinderpest infection time-course
dataset performed in 293SLAM and COBL-a cell lines using native and recombinant
rinderpest virus lacking accessory V and C proteins [12], (c) previously published FAN-
TOMS5’s Human H3 embryonic stem cells differentiated to cardiomyocytes time-course
dataset [12] and a microarray dataset: previously published TGFP induced EMT in
A-549 cell line (GSE17708) [18]. Detailed information on the procedures used to process
the raw CAGE data can be found in Extended Materials and Methods (Additional file 3).

ChIP-seq molecular signatures provides better model performance

We compared the models built using ChIP-seq signatures (ReMap2020 and ChIP-Atlas)
vs motif-based signatures (Jaspar and SwissRegulon). The models based on ChIP-seq
signatures showed on average higher R? values, which reflects the proportion of variance
explained by the model and overall “goodness of fit”. In particular, modeling expression
between 0 and 24 h after TGFp treatment in our novel MDA-231-D dataset yielded an
average R* of 0.179 for ChIP-seq signatures and 0.077 for motif signatures. For compar-
ison the randomized version of ReMap2020 molecular signature yielded R* close to 0
(Fig. 1B, Additional file 2: Fig. S2B).

xcore recovers biologically relevant expression regulators

To investigate the biological relevance of the obtained results, we looked at the top-scor-
ing signatures from ReMap2020 (Fig. 1C) and ChIP-Atlas (Additional file 2: Fig. S2A)
in TGEP induced EMT datasets. Among those, we identified known key TFs involved
in the TGFP pathway such as SMAD2/3/4 [19], SSRP1, HNFIB [20], DDX5 [21] or
RELA [22]. Other well-known EMT-linked TFs also returned as significant including
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Fig. 2 Estimating transcription factors activities from gene expression during rinderpest infection in
293SLAM and COBL-a cell lines. A, B Heatmaps presenting TF activities of the most significant molecular
signatures inferred using FANTOM5's rinderpest infection time-series dataset. The underlying experiments
were performed in 293SLAM and COBL-a cell lines using native and recombinant rinderpest virus lacking
accessory Vand C proteins (rinderpest(-C)). Results obtained using ReMap2020 and ChiP-Atlas based
molecular signatures are displayed on the top and bottom panels respectively

ZEBI, SNAI2, TBX3, SOX4 (Additional file 4: Table S1, Additional file 5: Table S2, Addi-
tional file 6: Table S3). In case of FANTOMS5’s rinderpest infection dataset, top-scoring
ReMap2020 and ChIP-Atlas signatures (Fig. 2, Additional file 7: Table S4) showed sev-
eral TFs involved in the closely related measles infection pathway, including RELA, IRFS,
TP53 (KEGG PATHWAY:map05162) [23]. For human H3 embryonic stem cells differ-
entiated to cardiomyocytes time-course dataset, a number of known heart development

regulators were found among top-scoring ReMap2020 and ChIP-Atlas signatures (Addi-
tional file 8: Table S5), such as JARID2, SMAD3, NKX2-5 (GO:0007507) [24].
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Comparison with the state-of-the-art tools

We compared our results with state-of-the-art motif-based gene expression prediction
framework ISMARA [1] and Lisa program which predicts the most likely transcriptional
regulators from gene expression data based on ChIP-seq and chromatin accessibility
data available in Cistrome Data Browser [25]. While ISMARA is conceptually similar
and was inspirational to xcore, Lisa takes a different approach. Using a user supplied
list of differentially expressed genes, Lisa first selects a subset of relevant experiments
describing chromatin state (H3K27ac ChIP-seq or DNase-seq) using lasso regres-
sion. Next it identifies the most relevant TF using in-silico deletion technique [8]. To
compare with our results, we used both tools on our novel TGFp induced EMT, rin-
derpest infection and embryonic stem cells differentiated to cardiomyocytes datasets.
We have run ISMARA in RNA-seq mode with a genome version hg38 and no miRNA
using raw FASTQ files for our novel TGF induced EMT dataset and BAM files avail-
able in FANTOMS5 study [12] mapped against genome version hg38 for the other data-
sets. To use Lisa we performed differential expression analysis using edgeR [10] between
the most extreme time points in our time-course datasets. Then lists of 100 most sig-
nificant up- (logFC>0) and 100 most significant down-regulated (logFC < 0) genes were
submitted to Lisa. Next, we compared the results from all tools with a list of related
transcriptional regulators. We constructed lists of related transcriptional regulators for
each dataset using Gene Ontology term regulation of epithelial to mesenchymal transi-
tion (GO:0010717), KEGG pathway Measles (map05162) and Gene Ontology term heart
development (GO:0007507) by including only regulators available in the references of all
tools. The number of EMT related transcriptional regulators recovered among the top-
scoring signatures was higher for xcore and Lisa than ISMARA (Table 1). In case of rin-
derpest infection (Table 2) Lisa recovered the highest number of related TF in 293SLAM
cell line. In the case of COBL-a and COBL-a rinderpest(-C) analyzes xcore found one
more TF than ISMARA and Lisa. Finally, for embryonic stem cells differentiated to

Table 1 Recovering epithelial to mesenchymal transition transcriptional regulators

Top A-549 MDA-231-D
signatures
ISMARA Lisa xcore ISMARA Lisa xcore
ReMap2020 ChlP- ReMap2020 ChiP-Atlas
Atlas
1-10 SMAD4  SMAD3, SMAD3, SMADS3, SMAD4,  SMADS3, SMADS,
SMAD4,  SMAD2 SMAD2, SMAD3  SMAD4 SMADA4,
GATA3 SMAD4 SMAD?2,
GATA3
11-50 FOXA2,  EZH2,GATA3, EZH2, SMAD4  GATA3 SMAD2 EZH2,
FOXA1 SMAD4 FOXA2 FOXA2,
FOXA1
51-100 GATA3, NKX2-1,  FOXAT1, FOXAT1, FOXA1,  EZH2, FOXA1
FOXA1 TCF7L2  FOXA2, GATA3 NKX2-1
NKX2-1

Table summarizing EMT-related transcriptional regulators recovered by ISMARA, Lisa and xcore among their top-scoring
signatures based on TGF induced EMT CAGE datasets. The list of EMT-related transcriptional regulators used to assess the
recovery was constructed using Gene Ontology term regulation of epithelial to mesenchymal transition (GO:0010717) by
including only regulators available in the references of all tools
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Table 3 Recovering heart development transcriptional regulators

Top signatures ISMARA Lisa Xxcore
ReMap2020 ChliP-Atlas
1-10 GATA6, SMAD3, GATA4
11-50 SNAI2, MEF2A, SMAD1, EOMES, GATA3, SMAD2 SMAD3, NKX2-5, RARA
SRF, GATA4 ATF2, TBX5, RBPJ
51-100 MEF2C, WT1 TBX5, REST, MBD2, TP53, SMAD4 SNAI2 JUN, TP53

Table summarizing heart development-related transcriptional regulators recovered by ISMARA, Lisa and xcore among their
top-scoring signatures based on Human H3 embryonic stem cells differentiated to cardiomyocytes time-series dataset.
The list of heart development-related transcriptional regulators used to assess the recovery was constructed using Gene
Ontology term heart development (GO:0007507) by including only regulators available in the references of all tools

cardiomyocytes (Table 3) Lisa was able to find the highest number of related TF, while
xcore and ISMARA found the same number of related TF.

Conclusions

Xcore provides a flexible framework for integrative analysis of gene expression and pub-
licly available TF binding data to unravel putative transcriptional regulators and their
activities. Our analyses showed superior results when using ChIP-seq based signa-
tures as compared to motifs-based ones. We attribute this difference to the presence of
biotype-specific binding information which might be lost in motifs that describe more
general transcription factor binding preferences. Despite high numbers of ChIP-seq
signatures and redundancy, our machine learning framework is able to select biologi-
cally relevant signatures. In our comparison with motif-based ISMARA and ChIP-seq
based Lisa, xcore performed competitively with those tools. Especially, both xcore and
Lisa worked exceptionally well at recovering EMT-related transcriptional regulators.
However, a comprehensive comparison of xcore with other tools would require further
benchmarking efforts. Such efforts are currently hindered by the lack of standard bench-
marking datasets for transcriptional regulators’ inference problems. In conclusion, xcore
is useful for generating testable hypotheses about the data and provides a novel way to
connect gene expression data with relevant ChIP-seq experiments.

Methods

TGF-B1 stimulation to A-549/MDA-231-D

A-549 Lung cancer cells (CCL-185, ATCC) and MDA-231-D highly metastatic human
breast cancer cells [26] (gift from Dr. Kohei Miyazono, Tokyo Univ.) were cultured in
Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific Inc., Waltham, MA,
USA) supplemented with 10% fetal bovine serum, 1 mM sodium pyruvate (Thermo
Fisher Scientific Inc., Waltham, MA, USA) and penicillin/streptomycin (100 U/mL,
100 pg/mL; Thermo Fisher Scientific Inc., Waltham, MA, USA). TGF-f1 (7754-BH,
Recombinant Human TGF-beta 1, R&D Systems) was added at the final concentration of
1ng/mL. AtO0, 1, 2, 4, 6, and 24 h post stimulation, cells were harvested followed by RNA
extraction using RNeasy mini kit (Qiagen, Valencia, CA, USA). Transcriptome data was
produced by nAnT-iCAGE [27]. CAGE libraries were sequenced on Illumina HiSeq 2500
(50-nt single read).
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Abbreviations

CAGE Cap analysis gene expression
CPM Counts per million

cv Cross-validation

EMT Epithelial-mesenchymal transition
TF Transcription factor

TFBS Transcription factor binding site
TGFB Transforming growth factor beta

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-022-05084-0.

Additional file 1: Figure S1. (A) Boxplots showing R? values for gene expression prediction models constructed
either on gene- or promoter-level expression data. Each boxplot shows R? values pooled across all the replicates.
Models were trained and evaluated in tenfold cross-validation on individual replicates, using data on gene expres-
sion changes between 0 and 24 h after treatment in our newly generated TGF(3 induced EMT experiment performed
in A-549 and MDA-231-D cell lines. The models were constructed using ReMap2020 or ChIP-Atlas molecular
signatures.

Additional file 2: Figure S2. (A) Heatmap showing the dynamics of TF activities during TGFf3 induced EMT. Heat-
maps on the left present TF activities estimated using CAGE data from our newly generated TGFf induced EMT
experiment performed on A-549 and MDA-231-D cell lines. Heatmap on the right depicts TF activities estimated
using previously published microarray data from the TGF@ induced EMT experiment performed on A-549 cell lines.
The TF activities were calculated in the reference to 0 h time point. Only the top-scoring ChIP-Atlas signatures are
shown. Grey color designates NA values. (B) Boxplots showing R? values for gene expression prediction models
constructed using different molecular signature sets: Motif based (Jaspar, SwissRegulon) and ChiIP-seq based
(ReMap2020, ChiP-Atlas). Each boxplot shows R? values pooled across all the replicates. Models were trained and
evaluated in tenfold cross-validation on individual replicates, using data on gene expression changes between 0
and 24 h after the rinderpest infection treatment experiment performed in 293SLAM cell line. (C) Boxplots showing
R? values for gene expression prediction models trained using lasso, elastic net or ridge regression method. Each
boxplot shows R? values pooled across all the replicates. Models were trained and evaluated in tenfold cross-
validation on individual replicates, using data on gene expression changes between 0 and 24 h after treatment in
our newly generated TGF(3 induced EMT experiment performed in A-549 and MDA-231-D cell lines. The models were
constructed using ReMap2020 molecular signatures and promoter-level expression data.

Additional file 3: Extended Materials and Methods. Extended description of procedures used to process the raw
CAGE data, construct molecular signatures, and assess the accuracy of used models.

Additional file 4: Table S1. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using TGFB induced EMT in A-549 cell line dataset.

Additional file 5: Table S2. Table provides the activities of ReMap2020 and ChiP-Atlas molecular signatures esti-
mated using TGF@ induced EMT in MDA-231-D cell line dataset.

Additional file 6: Table S3. Table provides the activities of ReMap2020 and ChiP-Atlas molecular signatures esti-
mated using TGFR induced EMT in A-549 cell line dataset (GSE17708).

Additional file 7: Table S4. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using rinderpest infection in 293SLAM and COBL-a cell lines datasets.

Additional file 8: Table S5. Table provides the activities of ReMap2020 and ChiP-Atlas molecular signatures esti-
mated using Human H3 embryonic stem cells differentiated to cardiomyocytes time-course.
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Availability of data and materials
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xcore and https://github.com/mcjmigdal/xcoredata. xcore user guide is available https://bkaczkowski.github.io/xcore/
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