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Background
Technological advances have paved the way for single cell RNAseq (scRNAseq) datasets 
containing several million cells [1]. Such large datasets require highly efficient algorithms 
to enable analyses at reasonable times and hardware requirements [2]. A crucial step in 
single cell workflows is unsupervised clustering, which aims to delineate putative cell 
types or cell states based on transcriptional similarity [3]. The most popular methods for 
unsupervised clustering of scRNAseq data are the Louvain and Leiden algorithms. They 
represent cells as a neighborhood graph where densely connected modules are identified 
as clusters [4]. However, these methods can be biased by a poorly specified graph, run-
ning the risk of identifying structures that are not present in the data [5]. More generally, 
as it can be shown that no single clustering algorithm will feature all desired statisti-
cal properties and perform well for all datasets, the field would benefit from additional 
methodologies [6].

One of the most widely used unsupervised clustering in general is k-means clustering, 
and it forms the basis of several methodologies, including scCCESS [7], SCCAF [8] and 
the single cell consensus clustering (SC3) algorithm [9]. To achieve robust and accurate 
results SC3 uses a consensus approach whereby a large number of parameter combina-
tions are evaluated and subsequently combined. However, both the k-means clustering 
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and the consensus algorithm come at significant computational costs: both the run time 
and memory use scale more than quadratically with the number of cells, prohibiting 
application to large datasets, which are becoming increasingly commonplace with ever 
improving sequencing technologies.

Implementation
Here, we present a new version of this algorithm, single cell consensus clustering with 
speed (SC3s), where several steps of the original workflow have been optimized to 
ensure that both run time and memory usage scale linearly with the number of cells 
(Fig. 1; Additional file 1: Fig. S1). This is achieved by using a streaming approach for the 
k-means clustering [10], as implemented in the scikit-learn package [11], which makes it 
possible to only process a small subset of cells in each iteration. Each of the subsets can 
be efficiently processed at constant time and memory. In addition, as part of an interme-
diary step, which was not part of the original method, a large number of microclusters 
are calculated. The microclusters can be reused for different choices of k, and this allows 
substantial savings when analyzing multiple values of k, something that is very common 
in practice during data exploration. We have also improved the consensus step by adopt-
ing a one-hot encoding approach [12], as opposed to the original co-association based 
method, on which the k-means clustering algorithm could be run more efficiently (Addi-
tional file 1: Fig. S2).

Results
To evaluate the accuracy of SC3s we used eight datasets with < 10,000 cells where the 
cell labels are known or have been defined using orthogonal methods, allowing us to 
compare the results of the transcriptome clustering to a ground truth [9] (Additional 
file 1: Table S1). These benchmarks show that SC3s has an accuracy which is com-
parable to the original algorithm (Fig. 2), and that the performance is robust across a 

Fig. 1  The SC3s framework for single cell consensus clustering. SC3s takes as input the gene-by-cell 
expression matrix, after preprocessing and dimensionality reduction via PCA using Scanpy commands. To 
achieve consensus clustering, SC3s attempts to combine the results of multiple clustering runs, where the 
number of principal components is changed (d range). All this information is then encoded into a binary 
matrix, which can be efficiently used to produce the final k cell clusters. The key difference from the original 
SC3 is that for each d, the cells are first grouped into microclusters which can be reused for multiple values of 
k, saving time in computation
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broad range of user-customisable parameters (Additional file 1: Figs. S3-S5). Finally, 
SC3s compares favorably against other clustering methodologies, such as Scanpy, 
Seurat, FastPG and scDHA, in terms of its accuracy, memory usage and runtime 
(Fig. 2; Additional file 1: Figs. S1, S6).

To examine the performance for large datasets, SC3s was benchmarked on the 
mouse organogenesis cell atlas dataset which contains 2,026,641 cells [1]. Process-
ing, filtering and dimensionality reduction were performed as in the original publi-
cation, after which the clustering performance of SC3s was assessed. Compared to 
the other packages, SC3s was able to achieve both a short runtime and a low mem-
ory usage, whilst producing consistent clusters. For example, when compared to 
the Leiden algorithm, the peak memory usage was similar, but SC3s was ~ 18 times 
faster (20 min vs 6 h), even when evaluating five k values (Table 1). The slightly lower 
accuracy was expected because cell labels used for comparison originated from the 
Louvain algorithm, a method very similar to the Leiden algorithm, making them an 
imperfect ground truth. Visual inspection of the assigned labels also revealed that 
SC3s was able to capture the major structures identified by the authors (Additional 
file 1: Fig. S7).

Fig. 2  Clustering accuracy benchmarks on gold-standard datasets with < 10,000 cells. Boxplots show the ARI 
distribution across 25 realizations of each algorithm. Numbers in parentheses denote the cell count in the 
specified dataset. The performance of the original SC3 is shown in blue. Leiden refers to the algorithm of the 
same name as implemented in Scanpy. Seurat refers to its SNN modularity optimization clustering algorithm. 
ARI: Adjusted Rand index (ARI)

Table 1  Runtime, memory and ARI performance benchmarked on the 2 million mouse 
organogenesis cell atlas dataset

Results are the average of five iterations

Method Runtime (hr:min:s) Peak memory (GB) ARI

SC3s (one k) 00:11:12 22.65 0.408

SC3s (one k) 00:21:01 26.45 0.400

Scanpy Leiden 05:27:17 33.83 0.536

SEURAT​ 01:53:54 91.36 0.257

FastPG 00:15:05 72.75 0.463
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Conclusions
Overall, SC3s is a major improvement over its predecessor, and it represents a scalable 
and accurate alternative to the widely used neighborhood graph clustering methodologies. 
Moreover, it is integrated with the popular Scanpy package and utilizes the same underly-
ing data structures [13], making it easy for users to incorporate into existing workflows and 
to make full use of upstream and downstream functionalities in the ecosystem. Thus, SC3s 
will allow researchers to analyze scRNAseq datasets as they scale to millions of cells.

Availability and requirements

Project name: SC3s. Project home page: https://​github.​com/​hembe​rg-​lab/​sc3s/. Oper-
ating system: Platform independent. Programming language: python. License: BSD-3. 
Other requirements: None. Restrictions to use by non-academics: None.

Abbreviations
scRNAseq	� Single cell RNAseq
SC3	� Single cell consensus clustering
SC3s	� Single cell consensus clustering with speed

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​05085-z.

Additional file 1. Contains Fig S1-S7 which provides more details about SC3s performance, and Table S1 which 
details the datasets used for benchmarking.
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