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Abstract 

Preeclampsia (PE) has an increasing incidence worldwide, and there is no gold stand-
ard for prediction. Recent progress has shown that abnormal decidualization and 
impaired vascular remodeling are essential to PE pathogenesis. Therefore, it is of great 
significance to analyze the decidua basalis and blood changes of PE to explore new 
methods. Here, we performed weighted gene co-expression network analysis based 
on 9553 differentially expressed genes of decidua basalis data (GSE60438 includes 
25 cases of PE and 23 non-cases) from Gene Expression Omnibus to screen relevant 
module-eigengenes (MEs). Among them, MEblue and MEgrey are the most correlated 
with PE, which contains 371 core genes. Subsequently, we applied the logistic least 
absolute shrinkage and selection operator regression, screened 43 genes most relevant 
to prediction from the intersections of the 371 genes and training set (GSE48424 
includes 18 cases of PE and 18 non-cases) genes, and built a predictive model. The 
specificity and sensitivity are illustrated by receiver operating characteristic curves, and 
the stability was verified by two validation sets (GSE86200 includes 12 cases of PE and 
48 non-cases, and GSE85307 includes 47 cases of PE and 110 non-cases). The results 
demonstrated that our predictive model shows good predictions, with an area under 
the curve of 0.991 for the training set, 0.874 and 0.986 for the validation sets. Finally, we 
found the 43 key marker genes in the model are closely associated with the clinically 
accepted predictive molecules, including FLT1, PIGF, ENG and VEGF. Therefore, this pre-
dictive model provides a potential approach for PE diagnosis and treatment.

Keywords:  Decidua basalis, Decidualization, Peripheral blood, Predictive model, 
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Introduction
Preeclampsia (PE) is a serious pregnancy disorder, defined as the development of hyper-
tension and/or proteinuria after 20 weeks of gestation [1, 2]. The global incidence of PE 
is 5–8% of pregnancies, affecting over four million women, claiming the lives of 100,000 
women and 500,000 babies each year [3]. Severe PE (sPE) can be complicated by renal, 
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cardiac, pulmonary, hepatic, and neurological dysfunction; hematologic disturbances; 
fetal growth restriction; stillbirth; and maternal death [4]. To make matters worse, it 
increases the risk of long-term chronic diseases for both mothers and children [5]. In a 
Scandinavian population, women who were pregnant with sPE that necessitated preterm 
delivery, the risk of developing cardiovascular disease increased eight fold compared to 
normal puerperae [6]. However, the biological basis of this disorder is complex and mul-
tifactorial, and is not yet fully understood. Currently, the only definitive treatment for 
this condition is the delivery of placenta [7]. Therefore, the molecular pathology basis of 
PE should be explored from multiple perspectives in order to achieve early prediction 
and prevention.

In 2009, Redman proposed the widely accepted “two-stage model of PE” and a more 
refined “six-stages of PE” in 2014, in which the second stage, namely the 8th–18th weeks 
of gestation, is the critical period for placentation, when trophoblast cells begin to 
invade into the spiral arteries of the uterus [8, 9]. Once the placenta forms abnormally, 
PE enters the next stage [10]. This stage is most likely the key link in the development of 
PE, since the activation of the source signaling molecules can create a cascade amplifica-
tion effect and cause sustained damage at the maternal–fetal interface [11]. Therefore, 
8th–18th weeks of gestation is a prime time to search for early predictive markers of PE.

Early prevention of PE has great clinical importance for patients with PE, as it would 
allow clinicians to focus on high-risk groups and initiate prophylactic medical treat-
ment. Health economists pointed out that it would be economically beneficial to screen 
for PE as long as effective intervention methods are available [12]. In recent years, some 
important progress has been made in the research of predicting PE biomarkers by ana-
lyzing changes in peripheral blood components. Low level pregnancy associated plasma 
protein A(PAPP-A), a glycoprotein primarily synthesized in the placenta, have been 
found to be associated with the development of PE in fetuses with normal chromosome 
number [13]. In addition, many new potential PE markers such as vascular endothelial 
growth factor (VEGF), placental growth factor (PIGF) [14], fms-like tyrosine kinase-1 
(FLT-1) [15], endoglin (ENG) etc. are gradually being identified. These studies suggest 
that it is worthwhile to study the key genes of PE. In addition, other methods of pre-
dicting PE through biophysical markers are increasingly accepted. Maternal uterine 
artery pulsatility index (Ut A-PI), mean arterial pressure (MAP) measured at 11–13 and 
19–24 weeks of gestation can predict the development and the severity of PE in some 
high-risk pregnancies [16, 17]. However, despite so many studies, there are still no con-
vincing methods that can effectively predict PE. It indicates the urgency of exploring PE 
predicting methods.

The maternal–fetal interface is composed of decidual stromal cells, trophoblast cells 
and decidual immune cells, of which dNK cells account for about 70% of the decidual 
immune cells in the first-trimester [18]. Successful decidualization is essential for estab-
lishing and supporting a healthy pregnancy. Decidualization is a very complex gradual 
process, starting from the area immediately adjacent to the spiral artery of the uterus, 
and eventually spreading to the entire endometrium [19]. Decidualization is regulated 
by hormones, including progesterone and estradiol, which are ovarian steroid hormones 
[20–22]. After the endometrial stromal cells transform into decidual cells, they become 
larger and rounder in morphology, in addition, hormones, immune cells and cytokines 
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have also undergone a series of changes. In humans, decidualization begins in the mid-
secretory phase of a menstrual cycle, while in mice, this differentiation is triggered by 
the attachment and implantation of blastocysts [23]. More and more studies have shown 
that poor decidualization can lead to placental abnormalities and adverse pregnancy 
outcomes, which is also an important cause of PE.

One tool that can help researchers analyze the relationships between key genes and 
the pathogenic mechanism is weighted gene co-expression network analysis (WGCNA) 
[24]. Recently, the WGCNA method has been widely used due to its well-known accu-
racy in the biological field. Instead of linking thousands of genes to the disease, this tech-
nology focuses on the relationship between gene modules and disease traits [25, 26]. The 
underlying biological models of the disease can be discovered through WGCNA. In the 
present study, we integrated the datasets of decidualized tissues and peripheral blood, 
and conducted a systematic analysis. After identifying differentially expressed genes 
(DEGs), we performed WGCNA to find out the relationship between gene modules and 
disease traits in PE occurrence. We then constructed a multivariable logistic regression 
model based on the key signatures of this information, and constructed a predictive 
model for PE auxiliary diagnosis. Furthermore, we independently verified the predic-
tive model with another two cohorts. Because the decidual defects found during deliv-
ery in women with sPE persist for at least five years after pregnancy [27, 28], indicating 
the essential roles of maternal factors such as decidua in PE pathology. Our results thus 
provide in-depth insights into the cellular and molecular mechanisms and predictive 
approaches that are crucial to the clinical management of PE.

Materials and methods
Dataset collection and identification of DEGs in PE and normal pregnancy (NP) decidua 

basalis

The raw datasets GSE60438 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE60​438), GSE48424 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE48​
424), GSE86200 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE86​200) 
and GSE85307 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE85​037) were 
downloaded from the NCBI Gene Expression Omnibus (GEO) database. These datasets 
were based on the platforms of GPL6884 Affymetrix. The dataset GSE60438 contains 
decidua basalis samples from 25 PE patients and 23 NPs. Another dataset GSE48424 
contains blood samples from 18 PE patients and 18 NPs. All the pregnant women in 
the cohort were between the ages of 25 and 35. The decidua basalis and blood samples 
were collected at delivery, with the NPs at 38–41  weeks of gestation, and the PEs at 
26–38 weeks of gestation. with NPs at 38–41 weeks of gestation and PE at 26–38 weeks. 
The database GSE86200 contains 60 blood samples, of which 12 are from PE patients 
and 48 are from NPs, and GSE85037 contains 157 blood samples, of which 47 are from 
PE patients and 110 are from NPs. The peripheral blood samples of GSE86200 and 
GSE85307 were collected at 10 to 18 weeks of gestation. The details about the datasets 
are in the Additional files 4–7: Data 3–6. The DEGs of GSE60438 were screened by the 
t test method of R language, based on the P value < 0.05, and 9553 DEGs between the 
decidua of PE patients and NPs were obtained.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60438
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60438
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48424
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48424
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86200
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85037
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Weighted gene co‑expression network analysis (WGCNA)

The WGCNA R package was used to identify core DEGs associated with pathologi-
cal factors in the decidua basalis between PE patients and NPs. The 9553 DEGs in 
GSE60438 with the highest expression variance and close connections were used to con-
struct the module-eigengenes (MEs). Then, a correlation matrix was constructed using 
the calculated pairwise Pearson correlations between all genes. To achieve a scale-free 
network, β = 16 was used as the proper soft-thresholding power, the correlation between 
genes was exponentially calculated using the power to obtain a weighted correlation 
coefficient, and the pairwise correlation was then converted into an adjacency matrix 
of connection strength (connection strength = │correlation│β). To identify MEs, a dis-
similarity matrix was transformed and clustered via a dynamic cut tree algorithm based 
on topological overlap matrix. Those preliminarily constructed modules were merged 
if the differences between the MEs were less than the threshold. The minimum mod-
ule size was set to 300. All MEs were assigned with a unique color and also shown as a 
branch in the cluster tree [29]. In addition, the correlations between MEs and concerned 
phenotypic characteristics (in this study, disease and normal) as well as the associated 
significance was evaluated through module Trait Cor function.

Annotation and enrichment analysis of gene modules

To explore the biological functions of the MEs and defined genes, gene ontology (GO) 
term enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were conducted. The R package “cluster Profiler” (R 4.0.3) was utilized for Gene 
ID conversion and GO term enrichment specification on the basis of the newest GO 
database version [30]. The enrichment was tested with corrections for multiple hypoth-
esis test. The significantly enriched ontology terms were shown with bar chart according 
to their P value and classified into three categories including biological process, molecu-
lar function, and cellular component. The R package “Cluster Profiler” was also applied 
to assign gene sets to specific pathway maps by automatically recalling the latest KEGG 
online database. On this basis, the KEGG pathways were calculated and tested. The top 
30 significantly enriched pathways were demonstrated by a dot plot, together with the 
corresponding gene numbers and enrichment scales. The input data were derived from 
the most MEs. The GO terms and KEGG pathways with p values less than 0.05 were 
considered significant.

The logistic least absolute shrinkage and selection operator (LASSO) regression analysis

To obtain the combined results of multiple markers, we integrated and analyzed 36 
blood samples from GSE48424 and the 371 core genes obtained by enrichment analysis 
of the MEblue and MEgrey. We used “glmnet” package (version 3.3.1) to fit the logistic 
LASSO regression. It is a selection method that handles the high-dimensional regres-
sion variables without a prior signature selection step, and all regression coefficients 
shrink toward zero, thereby forcing many regression variables to be exactly zero. We 
used tenfold cross-validation to select the penalty term lambda (λ) [31]. The lambda 
was finalized using the lambda min = 0.03087, which was the minimum mean value for 
cross-validated error. We via bootstrapping within the primary sampling unit and strata 
obtained the standard errors of the LASSO coefficients. By logistic LASSO regression 
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analyses, we predicted and screened 43 genes most relevant to prediction from the inter-
sections of the 371 genes and blood sample genes. We searched the STRING database 
(https://​string-​db.​org/) for relationships between 43 markers. Then we obtain the hub 
gene networks by PPI analysis using Cytoscape_v3.8.2. For PPI, the degree is how much 
of protein is linked to other proteins. Taking the degree as the benchmark, the higher the 
degree of protein, the redder it is, and vice versa, the yellow. Moreover, a formula used 
to calculate the risk score (RS) of each patient, that is, the prediction model, was con-
structed as follows: Risk score = N

i=1 Exp(i) ∗ Coefficient(i) . In our predictive model, 
N (N = 43) is the number of genes, Exp is the expression value of each gene, and the 
coefficient is their corresponding coefficient from the LASSO regression. We would 
therefore be able to generate a RS for each patient, thereby classifying patients into high 
and low RS groups, and determining the optimal cutoff score through X-tile plots [32]. 
In this study, the cutoff score is 8.2973. RS > 8.2973 is the disease group, and RS < 8.2973 
is the normal group.

Receiver operating characteristic (ROC) curve analysis and the validation of the predictive 

model

According to the core gene coefficient of each sample, we calculated and compared the 
score of each sample with the actual diagnosis, and obtained the ROC diagram. The 
ROC curve illustrates the specificity and sensitivity of the model. Based on the expres-
sion profiles of the 43 genes, we calculated the area under the curve (AUC) for the train-
ing set (GSE48424) and different validation sets (GSE86200 and GSE85307), to assess the 
power of the predictive model. The closer the value of AUC is to 1, the better the model 
predicts. Finally, we examined the association of the 43 key marker genes in the model 
with well-established predictive molecules commonly used in clinical practice: fms-
related tyrosine kinase 1 (FLT1), placental growth factor (PIGF), endoglin (ENG), and 
vascular endothelial growth factor (VEGF). Then analyzed compared their ROC curve 
and used a network to measure the similarity between them.

Results
The composition of differential genes in the decidua basalis of PE patients and NPs

To build the predictive model, we performed data analysis and validation, and an over-
view of the workflow is shown in Fig. 1. First, by analyzing the decidua basalis of 35 PE 
patients and 42 normal pregnancies in GSE60438, we found 9553 DEGs between the PE 
group and the NP group (P value < 0.05) for subsequent analysis. The distribution of dif-
ferential genes is shown in a heatmap (Additional file 1: Fig. S1).

WGCNA detects PE modules

WGCNA was performed to identify gene co-expression networks and core genes asso-
ciated with the clinicopathological factors for PE. The PE dataset, namely GSE60438, 
was adopted from the GEO database. Notably, the soft threshold is a key parameter for 
WGCNA to measure genetic relationships. Here, the best soft threshold is 16 as shown 
in Fig. 2A, and the corresponding gene module coefficient is 16 as shown in Fig. 2B. In 
this regard, when the soft threshold was adjusted to a value of 16, the simulated gene net-
work had the optimal correlation with the real biological network. After implementing 

https://string-db.org/
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a soft threshold of 16, the five most important MEs were detected. Each ME was labeled 
with a unique color underneath the cluster tree (Fig. 2C).

For each ME, the correlation between gene expression and PE was calculated, and 
multiple MEs were found to be associated with PE, each was named after its representa-
tive color: turquoise, yellow, blue, brown and grey. The relationships between the MEs 
are shown in Fig. 3A. The results indicated strong correlations between some MEs, such 
as MEturquoise and MEgrey, MEyellow and MEbrown, MEblue and MEbrown, and 

Fig. 1  The analysis flow chart used in this study

Fig. 2  Determination of soft-thresholding power and weighted gene co-expression network analysis 
(WGCNA) correlation network results of preeclampsia. A The analysis of the scale-free fit index for various 
soft-thresholding powers (β). B The analysis of the mean connectivity for various soft-thresholding powers. C 
The cluster dendrogram, with dissimilarity determined by topological overlaps, along with assigned module 
colors. WGCNA can be used to group genes into five distinct module eigengenes (MEs) based on their 
co-expression patterns
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MEblue and MEturquoise. The significance of the module-trait relations is shown in 
Fig. 3B. The module-sample relations are shown in Fig. 3C, from which it can be seen 
that MEblue and MEgrey are the most correlated, the MEblue is positively correlated 
with the disease group, while the MEgrey is negatively correlated with it. Moreover, the 
MEblue and MEgrey contain a total of 7172 genes, of which 371 core genes are most 
associated with PE (Additional files 2, 8: Data 1, 7).

The enrichment analysis of GO and KEGG pathways

We further analyzed the functions and the signaling pathways of the MEblue and 
MEgrey through GO and KEGG analysis. We performed GO analysis in terms of bio-
logical process, cellular component and molecular function to determine the gene ontol-
ogy of the encoding transcripts. Subsequently, we selected the top ten GO terms and 
ordered them by P value for further analysis. In the MEblue (Fig. 4A), with regard to bio-
logical processes, the most enriched GO terms include protein targeting, transcription-
coupled nucleotide-excision repair and protein-containing complex disassembly. With 
regard to cellular component, the most enriched GO term is cytoplasmic ribonucleo-
protein granule. While the most enriched GO term for molecular function is helicase 
activity. Other GO terms are listed in Additional file 3: Data 2. In the MEgrey (Fig. 4B), 
the most enriched GO terms in the list of biological process, cellular composition and 
molecular function are the detection of chemical stimulus involved in sensory percep-
tion, condensed nuclear chromosome and olfactory receptor activity, respectively.

Fig. 3  Module eigengene (ME) adjacency heatmap. MEs are defined as the first principal component of 
the co-expression module matrix. A The map shows the relatedness of the five MEs identified by WGCNA 
(red, positive correlation; green, negative correlation). The color scale indicates the range of the correlation 
coefficients. The correlation coefficient is between − 1 and + 1, where ± 1 indicates the strongest possible 
correlation and 0 indicates the weakest possible correlation. B, C Correlation matrix between each ME and 
PE severity levels. Each ME was assigned a color and was tested for correlation with the severity levels of 
PE (disease and normal control). The colors encode correlation coefficients (red, positive correlation; green, 
negative correlation). The color scale indicates the range of the correlation coefficients
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We also performed KEGG pathway analysis on the MEblue and MEgrey. In the 
MEblue (Fig.  4C), the five most enriched KEGG pathways associated with the PE are 
RNA transport, protein processing in endoplasmic reticulum, nucleotide excision repair, 
Parkinson disease and mRNA surveillance pathway. In addition, other pathways, such 
as mitophagy-animal, fatty acid degradation, fatty acid metabolism, amyotrophic lat-
eral sclerosis, and pathogenic Escherichia coli infection, are also significantly enriched. 
In the MEgrey (Fig. 4D), olfactory transduction, carbohydrate digestion and absorption, 

Fig. 4  Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment of the MEblue and MEgrey. Left panel: GO functional classification of the MEblue (A) and MEgrey 
(B). Green, blue, and red represent the three categories of the GO terms (cellular component, molecular 
function, biological process). The top 10 enriched GO terms are shown in each category. Right panel: Scatter 
plot for the KEGG enrichment of MEblue (C) and MEgrey (D). Rich Factor is the ratio of consensus differentially 
expressed genes (DEGs) annotated in a pathway to all genes in this pathway. The top 30 pathways with a P 
value < 0.05 are shown in the graph
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biosynthesis of amino acids, starch and sucrose metabolism, and salivary secretion are 
the top five pathways, followed by Wnt signaling pathway, colorectal cancer, and bile 
secretion [33–35]. Furthermore, the phosphatidylinositol signaling system, ABC trans-
porters, and human immunodeficiency virus 1 infection were also significantly enriched. 
Overall, these results indicate that the MEblue and MEgrey might play a vital role in the 
decidua.

Construction of predictive model and establishment of 43 gene expression signatures

We then used logistic LASSO regression analysis to intersect the 371 core genes from the 
MEblue and MEgrey with blood sample genes to screen for co-expressed genes and con-
structed predictive model. The trend of the LASSO coefficients is shown in Fig. 5A. We 
selected the best 43 markers with the lowest error rate, as shown in Fig. 5B. The coeffi-
cients for these 43 markers are shown in Table 1. We constructed the evaluation formula, 
which is the predictive model: Risk score =

∑
N

i=1 Exp(i) ∗ Coefficient(i) . Subsequently, 

Fig. 5  Selection of the genes by the logistic least absolute shrinkage and selection operator (LASSO) 
regression. A, B. LASSO coefficient profiles of the 371 differentially expressed associated genes. Each curve 
corresponds to one gene; the vertical line is drawn at the value lambda = 0.03087 chosen by tenfold 
cross-validation. C The network interaction of the 43 gene set inferred using the IMEx Interactome Database. 
Red nodes indicate the proteins present in the 43 gene set. The size of the node is proportional to the 
number of connections. The large nodes represent a few highly concentrated hub nodes, while most small 
nodes have only a few connections
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Table 1  The 43 genes used to determine the predictive model

Gene Coefficient

ABCA7 0.541868753

ABCG1  − 0.06517424

ATF4 0.838095044

CALR 0.031047572

CASP6 0.146229425

CAV2  − 0.180641438

CBS  − 0.059166669

CCNB1  − 0.042959353

CDIPT  − 0.808012575

CHEK1  − 0.002422351

CTNNA2 0.055547405

CYFIP1  − 0.107809352

DEGS1  − 0.111781866

DGKH 0.136330674

GGA1 0.024137534

GNG13 0.15972311

HTRA2  − 0.174892988

IKBKB 0.158093266

MAP4K3  − 0.425954731

OR11H12 0.461050481

OR1G1  − 0.134170642

OR1L4 0.001125134

OR1N2 0.786152706

OR2A7 0.20659641

OR4C15 0.446657402

OR51B5 0.282437104

OR5AP2  − 0.164222624

OR8J1  − 0.548971209

PDE11A  − 0.300761564

PFAS  − 0.271570254

PIK3R3  − 0.014831635

PPT2 0.024398568

PRKCG 0.190530227

PRMT5  − 0.070152948

RHOA  − 0.492044815

RIPK1 1.186303398

RRM2  − 0.000843929

SLC22A1  − 0.202447713

SLC22A7  − 0.554879551

SLC4A5 0.082317787

SPTLC1  − 0.454811615

STMN1  − 0.032054443

TUBB6 0.600532672
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we explored the underlying biological network of these 43 candidate genes, we used the 
43 genes as seeds to generate a minimal interaction network, as shown in Fig. 5C. The 
network includes 40 of the 43 genes and is centered on basic nodes such as GNG13, 
RHOA, CBS, ATF4, CCNB1, CALR, IKBKB and CHEK1.

Validation of the predictive model

We verified the specificity and sensitivity of the predictive model by ROC curve analy-
sis. We obtained an AUC of 0.991 and a C-index of 0.991 [94.4%, 100%] for the train-
ing set by ROC analysis (Fig.  6A). The AUC of the subjects is close to 1, indicating 
that the prediction results are reliable, and the predictive model has a good predictive 
effect. The validation set contained a total of 60 blood samples in the GSE86200. The 
AUC of GSE86200 is 0.874 [80.9%, 78.7%] by ROC analysis (Fig. 6B). Another validation 
set includes a total of 157 blood samples in GSE85307. The AUC of GSE85307 is 0.986 
[97.9%, 91.7%] by ROC analysis (Fig. 6C). Therefore, our predictive model based on the 
analysis of decidual tissue and peripheral blood has good stability, indicating that the 
predictive model is reliable and credible.

In order to understand the correlation between the screened core genes and some 
commonly used clinically predictive molecules including VEGF, PIGF, FLT1 and ENG, 
we made their correlation network diagrams after analysis (Fig. 7A). We found that 36 
core genes were associated with these canonical molecules. In addition, we tested these 
molecules with ROC analysis and the results showed that the AUC of FLT1 is 46.3% 
(Fig. 7B), PIGF is 43.5% (Fig. 7C), ENG is 52.5% (Fig. 7D), and VEGF is 62.3% (Fig. 7E), 
respectively.

Discussion
In this study, we used conventional expression profiles to compare the DEGs expressed 
in the decidua basalis of the PE group and NPs. We searched for co-expressed MEs and 
core genes through WGCNA, and explored the association of MEs with PE. We found 
that among the five most significant MEs obtained, the correlation between MEblue and 
MEgrey had significant differences in the correlation between the disease group and the 
normal group. MEblue was positively correlated with the disease group, while MEgrey 
was negatively correlated with the disease group. We further selected the 43 most rel-
evant markers and built a predictive models using logistic LASSO regression analysis 

Fig. 6  Receiver operating characteristic (ROC) curve analysis of both the training set and validation sets. 
ROC curve of the model from training set of GSE48424 (A). ROC curves of the model from validation sets of 
GSE85307 (B) and GSE86200 (C)
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combining the core genes from MEblue, MEgrey and blood samples. The validation sets 
revealed good performance of the predictive model. Finally, we found the 43 key marker 
genes in the model were shown to be closely associated with the generally accepted pre-
dictive molecules, including FLT1, PIGF, ENG and VEGF. Therefore, bioinformatics 
analysis is a feasible strategy to investigate PE predictive models for PE prevention.

Most previous studies on the pathogenesis of PE have focused on placenta, includ-
ing placental ischemia and placental dysfunction, while ignored the effects of decidua. 
Therefore, most of the marker molecules predicting PE are from the placenta. How-
ever, endometrium is the basis of placentogenesis and growth. More and more studies 
have shown that abnormal decidualization is an important factor leading to the occur-
rence of PE [27, 36, 37]. A large number of decidualization-related genes are abnormally 
expressed in the decidua of PE patients [38–43]. The transcriptional signatures that 
promote endometrial decidualization deficiency can be detected before or after preg-
nancy [28, 44, 45]. In this study, we analyzed the expression profiles of decidual tissues, 
identified a number of genes associated with PE. Further analyzing the DEGs with GO 
and KEGG, we found that biological processes are significantly enriched in multiple bio-
logical processes such as proteasomal protein catabolic process, RNA splicing, protein 
deubiquitination, histone modification. The significantly enriched pathways are PPAR 
signaling pathway, RNA transport, carbohydrate digestion and absorption, biosynthesis 
of amino acids, and starch and sucrose metabolism. These results suggest that a variety 
of biological processes and signaling pathway play import ant roles in decidualization.

We identified 43 highly expressed markers by analyzing the mRNA levels of the blood 
samples. We found that CCNB1, RHOA, ATF4, and CBS represent the most highly 

Fig. 7  The validation of the predictive model. A Modeling the correlations between the screened makers 
and clinically commonly used markers fms-related tyrosine kinase 1 (FLT1), placental growth factor (PIGF), 
endoglin (ENG) and vascular endothelial growth factor (VEGF), P value < 0.05. The ROC curve analysis showed 
an AUC of 46.3% for FLT1 (B), 43.5% for PIGF (C), 52.5% for ENG (D), and 62.3% for VEGF (E)
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interacted hub genes, suggesting their vital roles in PE pathogenesis. Previous studies 
have demonstrated that CCNB1, a member of the cyclin family, is particularly criti-
cal for the maintenance of the mitotic state [46]. The overexpression of CCNB1 leads 
to unscheduled cell cycle entry, uncontrolled cell proliferation and tumorigenesis [47]. 
RHOA has been investigated as an essential molecule involved in signal transduction 
and the regulation of gene transcription, thus affecting physiological functions such as 
cell division, survival, proliferation and migration [48]. ATF4 is a stress-induced tran-
scription factor that is frequently upregulated in cancer cells. ATF4 controls the expres-
sion of a wide range of adaptive genes, enabling cells to withstand stress, such as hypoxia 
or amino acid limitation [49]. CBS-deficient patients are prone to vascular thrombosis. 
Studies have shown that lack of CBS results in blood coagulation defects, underlying its 
high susceptibility to vascular thromboembolism (50% chance at the age of 30), which 
is the major cause of morbidity and mortality [50]. However, the effects of these genes 
on PE remain unknown. Here, our study found the expression of CCNB1, RHOA, ATF4 
and CBS were significantly changed in PE compared with normal tissues, indicating that 
their abnormal expression may contribute to disorders in cell cycle, cell migration and 
coagulation function in PE patients, suggesting they are essential for PE progression and 
are likely to be novel PE markers.

In this study, we assembled a large number of GEO database, pioneered the com-
bined analysis decidual tissue and peripheral blood, and explored a model for predicting 
PE using cutting-edge bioinformatics techniques. In order to verify the stability of the 
model, another two groups of samples were randomly selected for verification. Encour-
agingly, the results matched expectations, with the AUCs exceeding 80% for both valida-
tion sets. Previous studies have shown that some candidate molecules, including FLT-1, 
PIGF, ENG and VEGF, can be used to predict PE by analyzing the changes in maternal 
peripheral blood composition [14, 51]. It has been shown that the circulating levels of 
ENG increase the predictive value of the ratio of sFlt-1 to PlGF in maternal serum in 
the diagnosis of both term and preterm PE [52]. Studies have also shown that PLGF and 
VEGF play critical roles in fetal angiogenesis during pregnancy. Placental hypoxia stimu-
lates the production of these angiogenic factors and their endogenous inhibitors, and the 
imbalance of the production of these factors may lead to PE [53–55]. However, when we 
correlated the above four molecules (FLT-1, PLGF, ENG and VEGF) with these 43 mark-
ers and analyzed their ROC curves, we found that although there were strong correla-
tions between them, the AUCs are less than 80%.

In order to answer this question, after analysis, we found that although the expres-
sion levels of these molecules commonly used to predict PE clinically are significantly 
different between PE group and the control group, they have some limitations. A large 
number of studies have shown that single molecules cannot accurately predict PE. As 
a single biomarker of PE, PPAP-A only predicts 22% of the PE cases in the first trimes-
ter of pregnancy with a false positive rate (FPR) of 5%. When combined with Doppler 
ultrasound uterine artery measurements, the prediction rates (PR) increases to 32% at 
5% FPR [56]. PIGF has been shown to be less expressed in early PE pregnancies, as a 
single biomarker, PIGF has a PR of 47% at 5% FPR [57]. Therefore, there has been grow-
ing interest in studying combinatorial approaches for the prediction and prevention of 
abnormal outcomes based upon multivariable models to improve the sensitivity and 
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specificity [58–60]. Researchers have examined a significantly elevated SFLT-1/PlGF 
ratio in patients with PE caused by placental insufficiency [61, 62]. Zhang et al. combined 
circRNA with ENG to enhance the predictive power for early PE [63]. Another reason is 
that the above-mentioned molecules commonly used in clinical prediction are proteins, 
while our model is constructed based on the RNA level of the screened markers. In addi-
tion, the monitoring of protein level and vital signs has a certain lag, while the detection 
of RNA molecules is a more rapid, convenient and accurate way [64], which can greatly 
improve the time point of PE diagnosis and effectively extend the window period for PE 
prediction and treatment. Therefore, the low values of individual protein candidates in 
the predictive model reflect the limitation of a single protein molecule in predicting PE.

Here, we analyzed the decidual tissue of postpartum patients in conjunction with 
peripheral blood to find more direct and effective predictive molecules. We identified 
43 hub genes as candidate biomarkers for PE and built a predictive model. These hub 
genes may provide a theoretical basis for targeted therapy against PE. Predicting from 
mRNA levels is expected to be a more effective prediction method for PE prediction 
as well as diagnosis and treatment. Recently, Rasmussen and colleagues also found that 
maternal plasma cell-free RNA (cfRNA) can predict PE and preterm birth during the 
asymptomatic stage. Using a large number of blood samples, they found that the cfRNA 
pattern-based analysis achieved a positive predictive value of 32% with a sensitivity of 
75% regardless of clinical factors such as maternal age, body mass index, and ethnic-
ity [65], which is quite convenient and easy to carry out. In our study, we used clinical 
data from decidua tissue and blood samples combined with machine learning to provide 
more clues for discovering hub genes and developing predictive models. The results on 
the two validation sets found that the AUCs of our predictive model are 0.874 and 0.986, 
and the sensitivities are 78.7% and 91.7%, respectively.

Our study has some limitations. First, the pathogenesis of PE is complex with many 
influencing factors. Here, we analyzed the changes in decidua and peripheral blood, 
which may not reflect all the influencing factors. Second, the onset period of PE is not 
easy to determine, since maternal decidual tissue can only be collected at the time of 
delivery, which cannot represent the entire course of PE, it is also an insurmountable 
problem encountered in the entire PE research field. Third, the limited patient groups. 
As these data come from different research institutes with different research purposes 
and contents, it is difficult to unify them. Despite the above limitations, to our knowl-
edge, this is the first study using WGCNA to identify the key modules in PE and provide 
novel biomarkers for prediction. In future work, molecular biological experiments and/
or cytometry analyses are required to verify these findings, and another external verifi-
cation based on larger samples should be conducted.
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