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Abstract 

Background:  The central role of proteins in diseases has made them increasingly 
attractive as therapeutic targets and indicators of cellular processes. Protein micro-
arrays are emerging as an important means of characterising protein activity. Their 
accurate downstream analysis to produce biologically significant conclusions is largely 
dependent on proper pre-processing of extracted signal intensities. However, existing 
computational tools are not specifically tailored to the nature of these data and lack 
unanimity.

Results:  Here, we present the single-channel Protein Microarray Analysis Pipeline, a 
tailored computational tool for analysis of single-channel protein microarrays enabling 
biomarker identification, implemented in R, and as an interactive web application. We 
compared four existing background correction and normalization methods as well 
as three array filtering techniques, applied to four real datasets with two microarray 
designs, extracted using two software programs. The normexp, cyclic loess, and array 
weighting methods were most effective for background correction, normalization, and 
filtering respectively.

Conclusions:  Thus, here we provided a versatile and effective pre-processing and 
differential analysis workflow for single-channel protein microarray data in form of an 
R script and web application (https://​metao​mics.​uct.​ac.​za/​shiny​apps/​Pro-​MAP/.) for 
those not well versed in the R programming language.
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Background
Protein microarray technology enables the simultaneous monitoring of expression lev-
els for hundreds to thousands of proteins, to quantify their interactions and associated 
functions [1]. In particular, functional protein microarrays involve the immobilization of 
full-length functional protein targets or domains on a slide, which are incubated with a 
biological sample containing interacting molecules, such as autoantibodies [2]. They are 
increasingly being used in biomarker detection and drug discovery for various diseases, 
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including cancers, where early detection is key to improved prognosis [3–5]. However, 
the translation of these microarray data into biologically significant conclusions requires 
automated data handling and processing, making it a crucial step. Tantamount to this, 
is the pre-processing and normalization of the extracted signal intensities from the 
microarrays. Several strategies have been proposed to overcome the analytic difficulties 
derived from fluorescence overlapping and background noise; however, no real consen-
sus has been reached [6–9].

The design of high-throughput protein microarrays is based on, and therefore bears 
several similarities to, the established gene expression microarrays. As a result, research-
ers have often adapted methodologies and computational tools originally developed for 
gene expression microarrays to protein microarrays. However, as has become increas-
ingly apparent, there are several distinct features that distinguish both arrays and should 
subsequently affect their analysis. For instance, most protein arrays have much fewer 
probes than gene expression arrays [10, 11] thus, more caution may be taken when 
determining if probes in the former should be discarded. Furthermore, inter-individ-
ual differences in protein activity are ubiquitous; thus, the dimensionality problem and 
the distinct biological nature of the data may make computational tools made for gene 
expression arrays unsuitable for protein arrays [12].

To the best of our knowledge, there are currently three major tools available for sin-
gle channel protein microarray analysis: Protein Array Analyzer (PAA) [13], Protein 
Microarray Analyzer (PMA) [14], and a Protein chip analysis tool (ProCAT) [15]. How-
ever, there are conflicting themes between these analyzers in terms of methods used for 
pre-processing the microarrays; this precludes comparisons and data collaborations. In 
terms of pre-processing analyses, the PAA is a flexible pipeline that conducts normexp 
background correction and batch filtering on provided data. It also offers the user with 
option of comparing MA plots to determine which normalization techniques (cyclic 
loess, vsn, or quantile) best suit the data. However, this pipeline requires intermediate 
programming skills at least, thereby limiting the user pool. In contrast, PMA is built in 
JAVA and can be used via a fairly simple graphical user interface. It conducts neighbour-
hood background correction and net intensity correction, enables the user to define 
noise threshold and replicate CV thresholds, and finally runs intensity and quantile nor-
malization amongst sub- and whole arrays. Finally, ProCAT uses neighbourhood back-
ground correction, data filtering, and scale normalization to pre-process microarray 
data. However, with these last two pipelines, there is no justification provided as to why 
these methods have been selected above other available methods. Furthermore, these 
tools have several limitations, including the file formats recognized and array layouts 
accepted by the pipelines, which we address in our current pipeline.

In this study, we explore the various methods available for the analysis of single chan-
nel protein microarray data, largely focusing on background correction, normaliza-
tion, and array filtering. Based on our findings, we have developed a robust and flexible 
statistical pipeline suitable for use in the pre-processing of all single channel protein 
microarrays regardless of array design, data extraction software used, or file format. 
The proposed single-channel Protein Microarray Analysis Pipeline (Pro-MAP) follows 
the logical steps involved in the analysis of microarray data [6, 16] and as such, outlines 
the following processing steps: (a) Data extraction, (b) Spot filtering, (c) Background 
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correction, (d) Normalization, (e) Array filtering, and (f ) Data consolidation. Steps (a) 
to (e) were conducted using the limma package in R [17]. To the best of our knowledge, 
this is the first study that objectively tests several popular methods used in each of the 
critical steps to select the most suitable ones for our protein microarray pre-processing 
pipeline.

Results
To develop our pipeline, we compared four datasets, with two array designs, extracted 
using two image software programs, producing two file types. We compared four back-
ground correction, four normalization, and three array filtering methods to determine 
the most effective combination for the pre-processing of single-channel microarray data.

Comparison of background correction methods

Following extraction of pixelated data from raw image files, the usual first step suc-
ceeding spot filtering in protein microarray data analysis involves the subtraction of 
the background signal from the foreground signals to generate net intensities for each 
spot. However, heterogeneity in the surrounding background signal makes background 
subtraction less robust than it might at first sight appear. Using MA (mean difference) 
plots, which depict differential expression, we therefore compared four different back-
ground correction methods on the PDAC technical replicates (TR) cohort dataset. The 
normalized M-values for one, randomly selected, array from the TR cohort, are shown 
in Fig.  1 and Additional file  1: Figures  S1–S7. The arrays compared here represent 
patients with the same disease (pancreatic ductal adenocarcinoma; PDAC), sampled at 
two time points, so any differential expression should reflect inter-individual differences 
in autoantibody repertoires, as well as possible PDAC disease sub-groups, rather than 
being driven by the disease state per se. Thus, a background correction method resulting 

Fig. 1  MA-plots obtained using different background correction methods on TR cohort arrays: a Rawdata, 
b Subtraction, c Movingminimum, d Normexp. A—average log intensity, M—expression intensity of array 1 
versus the average of all the other samples
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in a high offset and low M-value variability is preferable because the true M-values 
should be close to zero.

The differences between the background correction methods for the same raw data are 
conspicuous. Interestingly, some background correction methods produce more vari-
able M-values than others, particularly at low A values. The M-values for the arrays were 
as large as 6.21, 6.06, 5.94, and 5.625 for rawdata, movingminimum, subtraction, and 
normexp, respectively (Fig. 1a–d). Furthermore, the hidden cost of standard subtraction 
and, to a lesser extent, the movingminimum method, which is not portrayed in Fig. 1, is 
the missing values. Across all 8 arrays of the TR cohort, 15.6% and 1.28% of the M-values 
were missing for the subtraction and movingminimum methods, respectively. The other 
methods gave no missing values.

Based on these data we were able to place the background correction methods on 
a continuum. At one end were methods that barely changed the foreground inten-
sities, resulting in intensities offset from zero and relatively low M variability. On the 
other end of the spectrum, were methods, which changed the foreground intensi-
ties the most, resulting in a very wide range of intensities and a high M variabil-
ity. The background methods could therefore be ordered by decreasing M variability: 
subtraction > movingminimum > rawdata > normexp.

Precision of background correction methods

The ‘JHB’ cohort, including PDAC and non-PDAC pancreatic cancer (PC) patient sam-
ples, was used to determine the precision of each background correction method rela-
tive to the dataset. The residual variance for each probe shows how accurately each 
expression value fits the proposed model. Figure 2 shows the trend in variability for each 
background correction method. For ease of comparability, the A values were standard-
ized to be the same for each method. The vertical scale is log2-variance meaning that 
each unit on the vertical axis corresponds to a 2-fold change in variance. A lower vari-
ance suggested a better fit to the model and thus, increased precision. Hence, the correc-
tion method with the highest precision was identified as superior.

Fig. 2  Residual variances from non-linear fits versus intensity for probes of JHB cohort arrays. a Line graph 
of smoothed log variances and b Boxplot showing range of log variances for each background correction 
method
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Most of the background methods showed low variance denoting a high precision, with 
normexp background correction showing the highest precision. No background correc-
tion resulted in the highest variance and lowest precision (Fig. 2a, b). The background 
correction methods could therefore be ordered from lowest to highest precision as raw-
data < subtraction < movingminimum < normexp. Thus, based on both M variability and 
precision considerations, normexp was the background correction method chosen for 
our pipeline.

Comparison of normalization methods

As a prelude to data analysis, it is common to normalize protein microarray datasets, 
in order to ensure that subsequent differential expression is focused on true biological 
signal and not skewed by systematic technical variation in signal intensities. However, 
the differing underlying structure of protein microarray datasets means that normali-
sation methods which are commonly used in genomic experiments are not necessarily 
well suited to normalisation of protein microarray datasets. We therefore compared the 
performance of four different normalization methods in order to objectively identify the 
most appropriate method for inclusion in our pipeline.

Variability within replicates of normalized data

The datasets compared here were background corrected using the normexp method 
available in limma, based on the findings above. We calculated the coefficient of varia-
tion (CV) of the normalized intensity values for all the AlexaFluor-BSA controls for each 
of the arrays in the JHB cohort and the first three IgG controls in the GSH (PDAC versus 
chronic pancreatitis [CP]) cohort. A low CV between controls of known concentrations 
denotes minimal systematic bias and technical variation, suggesting a better performing 
normalization method. We therefore compared the CVs of the controls after application 
of no normalization, scale, quantile, and cyclic loess normalization methods. Cyclicloess 
normalization resulted in replicate data with the lowest CVs (Fig. 3c, d) suggesting this 
method performed better, in terms of minimizing technical variability, than the other 
normalization methods evident by its more left-leaning peak for both cohorts (Fig. 3a, 
b).

Subsequently, we ran a one-way ANOVA comparing the means of the CVs for each 
normalization method in both cohorts (Additional file 1: Table S3). We found that there 
was a significant difference between methods (p < 0.001), for the JHB cohort alone. To 
further investigate these differences, we ran a Tukey’s multiple pairwise comparisons 
test and found that the significant differences in CVs were between cylicloess normaliza-
tion and the other three normalization methods (p < 0.001). Thus, based on these data, 
cyclic loess normalization was the method selected for our Pro-MAP pipeline.

Comparison of array filtering methods

In an ideal protein microarray experiment, all microarrays should be of equal quality, 
with uniformly low and homogeneous background, enabling true signal to be quantified. 
In reality, assay and washing artefacts can result in variable array quality, which, if not 
recognised, can bias downstream data analysis through artificial outlier effects. Visual 
inspection of individual raw array images can be used to identify low quality arrays that 
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can be flagged or discarded prior to data analysis. However, this approach lacks objectiv-
ity. Here, we therefore used array weights to objectively quantify array quality and then 
compared three methods to address array quality in subsequent data analyses.

The EUR cohorts, which consisted of prostate cancer and benign prostate disease 
patients was used to compare array filtering methods. Array weights were calculated 
using the method of Ritchie et al. [18] where a heteroscedastic model was fitted to the 
expression values for each protein. This dispersion model was then fit to the squared 
residuals from the mean fit and set to have array specific coefficients, which were subse-
quently updated in REML scoring iterations. The final estimates were then converted to 
weights (Fig. 4). We found a few arrays with a very low weight that could be considered 
“bad” arrays to be discarded or down-weighted (Fig. 4a).

Prior to analysis, data was normexp background corrected and cyclic loess normal-
ized. We calculated the moderated t-statistics for the controls of a dataset with filtered 
arrays where the two lowest weighted arrays were removed, equally weighted arrays 
where no array weights were considered, or weighted arrays using the array weights 
previously calculated (Fig. 4a). Higher moderated t-statistics portray an increase in sta-
tistical power to detect true differential expression and thus, a more effective filtering 
method. We found that incorporating array weights into differential expression analysis 
produced higher moderated t-statistics than the other two filtering methods (Fig. 4b, c). 
This suggested this method was best for detecting true differential expression between 
disease conditions.

Fig. 3  Comparison of the variability of the normalized data in the three technical replicates of all 
AlexaFluor-BSA controls from JHB cohort and the first three IgG controls from the GSH cohort. Density plot of 
coefficient of variation for selected control triplicates across all four normalization methods in the a JHB and 
b GSH cohorts. Boxplot of coefficient of variation across normalization methods in c JHB and, d GSH cohorts
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We then calculated the false discovery rates [19] of the dataset based on adjusted p 
values calculated using the Benjamini Hochberg Procedure. As expected, we found a 
lower false discovery rate, from arrays with 50 proteins and above, when array weights 
were incorporated in differential analyses whereas higher false discovery rates were 

Fig. 4  Comparison of different array filtering methods on differential expression of data. a Array weights for 
the EUR cohort datasets. The dashed lines show the weights at 0.5. b moderated t-statistics for each control 
in the EUR cohort dataset where equal weights, array weight, or array filtering had been applied. c Boxplot 
plot comparing moderated t-statistics for dataset where, no weighting, array weight, array filtering has been 
applied

Fig. 5  Local false discovery rate of dataset where equal weights, array weight, or array filtering have been 
applied. Local false discovery rate was calculated from p values adjusted using the Benjamin-Hochberg (BH) 
method
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shown when no array weights were used, or the two lowest weighted arrays were 
removed (Fig. 5).

Final Pro‑MAP pipeline

Our final Pro-MAP pipeline begins with reading of data extracted from raw image files 
into R and spot filtering by discarding spots < 2SD of background. Subsequently, data is 
normexp background corrected and cyclic loess normalized. The array weights are then 
calculated to be used for downstream analysis and the means of replicate protein inten-
sities on each array are calculated to condense the rows; all empty rows, and negative 
and positive controls are removed. The data are therefore consolidated into a dataset 
with columns representing each array or patient sample and rows representing probes 
or proteins (Fig. 6). From here, the researcher is free to analyse the data however they so 
choose.

Implementation of Pro‑MAP interactive web tool

From our pipeline, we built a complementary interactive web application which fol-
lows all the logical steps involved in the analysis of microarray data [6, 16] and as such 
outlines the following processing steps: (a) Data extraction, (b) Spot filtering, (c) Back-
ground correction, (d) Normalization, (e) Array filtering, (f ) Data consolidation, and (g.) 
Differential expression analysis (Fig. 7).

Data preparation

To start using Pro-MAP, fluorescent array signal readings that are output from any 
image analysis software (e.g., GenePix, Mapix, ArrayPro, etc.) as GPR or TXT files 
are uploaded into the Shiny app by either dragging and dropping files into the upload 
area or selecting them from the file system. Upon upload, default median foreground, 

Fig. 6  Schematic of proposed protein microarray analysis pipeline (Pro-MAP). The pipeline included data 
extraction, spot filtering, background correction, normalization, array filtering and data consolidation
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background and annotation columns are automatically identified by the application but 
can be manually changed by the user based on preference. The main panel of the app is 
organized as tabs through which the user navigates to modify imputed data and view 
results. Subsequently, file details are automatically checked, and an error message arises 
if any disparate files are identified. The next tab produces a target file (metadata) with 
pre-set headers that can be downloaded and modified by the user to include disease con-
ditions and any other defining factors deemed vital by the user for pre-processing and 
downstream analysis, then re-uploaded to match file names to column names in the final 
matrix. Metadata is also modifiable in the shiny. Following this, the user has the option 
of selecting probes to be removed at the final data condensation stage, this may include 
controls and empty slots. Alternatively, an annotated protein/probe list can be uploaded 
and probes to be removed selected based on a defined category e.g., “controls” (Fig. 7a, 
b).

Pre‑processing steps

Once the data has been prepared, spot filtering, background correction, normalization 
steps, and array weight calculations are performed automatically as described below, and 
plots are generated (Fig. 7c, d).

Fig.7  Pro-MAP pipeline. a Raw array files (of any type) are uploaded to Pro-MAP, b the shiny automatically 
detects foreground and background intensities and several annotations all of which can be manually edited 
by the user, c Metadata can be uploaded to the shiny for differential expression and data consolidation, 
control and/or empty spots to be removed at the consolidation stage can be picked from a drop down menu 
or an annotated spots file can be uploaded and spots to be removed can be chosen based on annotations, 
d data is background corrected and normalized, array weights are calculated, and data is consolidated and 
downloadable; plots are generated, e a limma differential expression analysis, using array weights, is run 
to identify potential biomarkers and these results are available as an expression set or txt file; a hierarchical 
cluster of differentially expressed proteins is generated and downloadable for the user. The figure was created 
using Affinity designer
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Spot filtering

On most arrays, non-empty spots are represented in triplicate or more to ensure the 
reliability of the data attained. A quality index for each spot is then used as a noise 
threshold below which undesirable spots, categorized as non-specific binding, are 
discarded. The noise threshold for Pro-MAP is determined as intensities < 2SD of the 
median background intensity and spots classified as such are discarded as “noisy”, 
represented as an ‘NA’ in the data table produced [14, 17].

Background correction

To further minimize the consequences of spatial heterogeneity across arrays due to 
processing effects, such as wash solution deposits or optical noise from the scanner, 
the data is normexp background corrected. This method uses a model-based adjust-
ment based on a normal plus exponential convolution model fitted to the background 
subtracted signal. A maximum-likelihood estimation is then used to determine the 
corrected foreground intensities; thus, all corrected intensities are positive.

Normalization

To combat systematic experimental bias and technical variation in factors, such as 
sample labelling efficiency, scanner readout efficiency, and microarray quality with-
out losing biological signals of interest, microarrays are normalized. In Pro-MAP, the 
data is “fast” cyclic loess normalized. Each array is normalized with a reference array, 
which is an average of all arrays, by applying a correction factor which is obtained 
from a loess curve fit through MA plots of the arrays.

Array weight calculation

Each array is weighted using an REML algorithm and weights are thereafter incorpo-
rated into downstream differential expression analysis models.

Pre‑processing output files and plots

Following pre-processing, interactive plots of the expression intensities of the raw 
data, log intensities of the normalized data, array weights, and mean log expres-
sion intensities of the condensed data are generated in a colour scheme that is user-
defined. A txt file of the array weights to be used for downstream differential analysis 
is downloadable by the user. Furthermore, the final pe-processed array dataset, con-
solidated into mean intensities with columns and rows representing arrays and pro-
teins, respectively, and unwanted probes removed is downloadable as a data table or 
expression set. Finally, the plots are downloadable as png files.

Differential expression analysis

The final step in the Pro-MAP pipeline is the optional differential expression for the 
identification of potential protein biomarkers (Fig. 7e). A linear model, using calcu-
lated array weights, is fit to the normalized microarray data to fully model the system-
atic part of the data and determine variability between the groups using the limma 
package in R [17, 20]. To determine variability in the data based on comparisons of 
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interest, contrasts matrices are pulled from the metadata. Subsequently, an empiri-
cal Bayes method is used to moderate the standard errors of the estimated log-fold 
changes. The probability level used to determine differential expression can be manu-
ally selected by the user with p < 0.05 set as the default.

Tool development

We developed the Pro-MAP web tool that covers all the necessary steps in the pre-
processing and analysis of single channel protein microarrays. Its core has been imple-
mented using R (version 4.0) using shiny[21], limma [17] for reading the array files and 
metadata, spot filtering, background correction, normalization array weight calcula-
tions, and differential expression analysis, and dplyr [22] for data consolidation. For plot 
generation ggplot2, ComplexHeatmap, plotly, EnhancedVolcano, and Biobase were used 
[23, 24, 25, 26, 27].

Discussion
This study highlights some of the pitfalls of previously used pre-processing techniques as 
they pertain to single-channel protein microarrays. Here, using real datasets, commonly 
used pre-processing methods are compared to determine which are the most accurate 
for use in pre-processing single-channel protein microarrays. From this, we created a 
robust single-channel protein microarray analysis pipeline, Pro-MAP, in R.

Our study showed that the various background correction methods tested differed in 
terms of how accurately and precisely they portrayed the data. We compared no back-
ground correction, subtraction, moving minimum, and normexp background correction 
methods. We found, using a small technical replicate (TR cohort) dataset that where the 
log intensity should have been minimal, using the normexp background correction most 
accurately depicted this in terms of log intensity ratios (M) as it resulted in the small-
est M values. Subsequently, we measured the precision of each correction method using 
residual log variances and found that the normexp correction method produced the low-
est variances and therefore was the most “precise”. We also found that next to rawdata, 
the commonly used subtraction method was markedly worse than the other background 
correction methods. This is similar to findings by Ritchie et al. [28] who also showed that 
using this method resulted in a higher number of false discoveries.

To determine the optimal normalization methods for our arrays, we corrected the 
background of our dataset using the normexp method in limma. Subsequently, we com-
pared the no normalization, scale, quantile, and cyclic loess normalization methods. 
We found that scale normalization resulted in the highest CVs of all the normalization 
methods suggesting it had the least ability to correct for technical variation and system-
atic bias in our data. In contrast, cyclic loess showed an apparent improvement over all 
other methods in terms of reproducibility, with CVs < 15% in both datasets used.

Finally, we tested the effect of equal array weights, array filtering of low weighted 
arrays, and the incorporation of array weights into differential expression analysis [18] 
on the ability to detect true differential expression in datasets without increasing FDR. 
We found that the moderated statistics were higher for datasets where array weights 
had been incorporated than those where the other two array filtering methods had been 
applied. We also found that FDR of the dataset where array weights had been used in 
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downstream analyses was much lower than those to which the other two array filtering 
methods had been applied. These findings suggest that the inclusion of array weights in 
analyses may increase the ability to detect true differential expression.

Our pipeline provides a robust pre-processing analysis workflow for the preparation 
of single-channel protein microarray data for a variety of array designs, scanned and 
extracted using different scanner types and image analysis software programs. We filter 
the extracted data based on a noise threshold of < 2SD of the background. Subsequently, 
the data is normexp background corrected and cyclic loess normalized, and array 
weights are calculated. Finally, the data is consolidated into a dataset consisting of col-
umns representing samples and rows representing proteins, with all the controls filtered 
out in readiness for downstream analysis. The use of a single pipeline for all single-chan-
nel protein arrays will facilitate future data sharing and research collaborations, which is 
currently limited in the field.

Conclusions
From this pipeline, we have developed Pro-MAP, a state-of-the-art single channel pro-
tein microarray analysis pipeline with a user-friendly web interface. The results at each 
step, pre-processing and differential analysis, are downloadable, including publication-
ready plots in user-defined colour themes. To encourage further development of single-
channel protein microarray analysis and enable users to run their analysis locally at their 
personal devices, considering confidential patient level data is often analysed, the base 
R script (Additional file 2: Data S1) and web application code are made openly available. 
Future studies will include the addition of batch normalization to enable comparisons of 
data collected over several time frames and an archival system for the storage of single-
channel protein microarrays, which remains a largely needed resource for the research 
community.

Methods
In this study, we used four test datasets, and sample collection was approved by the Uni-
versity of Cape Town Human Research Ethics Committee (HREC 559-2018) and the 
Committee of Health and Social Care of Guernsey Ethics (IJG/C5.4). Moreover, written 
informed consent was obtained from all individuals, from which patient samples were 
derived for the study. All arrays were assayed as previously described [10, 29].

Study cohorts

The datasets selected here were the most appropriate ones from the pool available to us. 
The first dataset included 4 PDAC patient samples assayed in 2019 and again in 2021. 
The arrays were printed using the CT100+ design developed by Blackburn et al., [10]. 
On this array, 123 proteins two negative controls, and five positive controls, three of 
which are known concentrations of AlexaFluor 647-Biotin BSA (5, 10, and 15  ng/µL) 
are printed in triplicates, in a 4-plex manner on in-house, streptavidin coated Nexte-
rion H-slides (Material code: 1070936, Schott, Germany). These arrays were scanned 
on an Inopsys scanner (AL 4500, Inopsys) and the data was extracted using Mapix 
v 9.0.0 (Inopsys, France). The resulting dataset was used to compare MA values pro-
duced by the four most popular background correction methods used for single-channel 
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microarray analysis (Additional file 1:Table S1). These data were ideal for MA plot com-
parisons because they included patients with the same disease and replicated thus, back-
ground correction was expected to present minimal differential expression.

The second dataset was derived from a Johannesburg (JHB) pancreatic cancer cohort 
consisting of 10 pancreatic ductal adenocarcinoma (PDAC) samples and 10 controls, 
which included other non-PDAC pancreatic cancer patient samples. The arrays were 
printed, scanned, and data was extracted similarly to the TR cohort dataset. This dataset 
was used to compare variance/precision between the four background correction meth-
ods as well as the control CVs produced by each of the four normalization methods com-
pared (Additional file 1: Table S1). This dataset was comparable to a normal biomarker 
dataset containing a disease and control cohort and was therefore suitable to determine 
precision of our background methods. It also contained several positive control probes 
that could be used to compare the normalization techniques.

The third dataset was derived from a Groote Schuur, Cape Town (GSH) cohort con-
sisting of four arrays each with five PDAC patient pools per array and two arrays each 
with four chronic pancreatitis (CP) patient pools per array. The arrays used were pre-
printed Sengenics Immunome slides and each array consisted of 1622 distinct proteins 
with 7 negative and 29 positive controls, including Ig and Cy3 BSA proteins. These 
arrays were also scanned on an Inopsys scanner, and the data was extracted using the 
Mapix software. We used this data to determine the effects of the different normaliza-
tion methods on the CVs of a different set of controls from those used in the CT100+ 
arrays to confirm our results (Additional file 1: Table S1).

The final and largest dataset consisted of a European (EUR) cohort consisting of 20 
prostate cancer patients and 20 controls (benign prostate disease patients). The CT100+ 
design was used to print the arrays that produced this dataset and scanned using the 
Inopsys scanner. These data were extracted using GenePix Pro v 6.1 software (Molecular 
Devices, LLC). As the largest dataset, this was most suitable for comparison of the mod-
erated t-statistics and false discovery rates produced by the three array filtering tech-
niques compared as a removal of arrays did not significantly affect the data (Additional 
file 1: Table S1).

Background correction methods

Background correction is essential for removing the effects of non-specific binding 
or spatial heterogeneity across arrays due to processing effects, such as wash solution 
deposits or optical noise from the scanner [30]. Here, we compared four background 
correction methods, available in limma, for single channel arrays (Table 1), which use 

Table 1  Summary of background correction methods compared

Method Bg estimate Adjustment

None (R) None None

Subtraction (S) Local Median Subtraction

Movingminimum (M) Neighbour-Median Subtraction

Normexp (N) Local Median Model
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different processing methods to remove background signals. All methods were imple-
mented using the backgroundCorrect function of the limma software.

None

Here, a background = 0 was set. Thus, the median foreground alone was used with this 
option.

Subtraction

This is the standard method of background correction and involves the subtraction of 
local background estimates from foreground intensities to provide, in theory, an unbi-
ased estimator of the true signal due to hybridization [28]. In this study, the median fore-
ground and background estimates were used. Notably, this method produces negative 
intensities when the background intensity is larger than the foreground intensity, result-
ing in missing or highly variable log-ratios and higher false discovery rates [31, 32, 33, 
34]. To combat this issue, several downstream approaches often must be taken: filter-
ing of low intensity spots, development of methods that incorporate variance-intensity 
dependence into differential analysis, or transformation of corrected intensities to stabi-
lize the highly variable intensities.

Movingminimum

In this method, the background estimate for each spot is replaced by the minimum/
lowest value of the spot of interest and the surrounding eight neighbours (3 × 3 grid of 
spots) which is then subtracted from the foreground. This is done to avoid skewed back-
ground intensities due to artefacts or dust particles [15].

Normexp

This method uses a model-based adjustment based on a normal plus exponential con-
volution model [30, 35]. The convolution model is fitted to the background subtracted 
signal and a maximum-likelihood estimation is used [28]. Thus, the expected signal, 
given the observed foreground, becomes the corrected intensity, resulting in a smooth, 
monotonic transformation of the background subtracted intensities, such that all cor-
rected intensities are positive [35]. The normexp + offset, which is a slight variation of 
the normexp method whereby a positive offset (k) is added to move the corrected inten-
sities away from zero was also considered. This is a simple variance stabilizing technique, 
which may reduce the usual variation of log-ratios at low intensities. Using 3 previous 
cancer protein datasets, we determined k by fitting linear models through data pro-
cessed with 0 ≥ k ≤ 50 and the offset with the largest df.prior, representing the best stabi-
lized variance and greater power to detect differentially expressed proteins, was chosen 
as optimal. For two of the three datasets, k = 0 produced the highest df.prior values 
(Additional file 1: Table S3). Thus, for our pipeline we only compared normexp with the 
other background correction methods.

Normalization methods

Normalization accounts for systematic experimental bias and technical variation in 
factors, such as sample labelling efficiency, scanner readout efficiency, and microarray 
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quality while maintaining biological signals of interest [36]. Several methods of nor-
malization have been developed over the years, including global, scale, print-tip, vari-
ous loess, and quantile methods [16, 37, 38]. However, most of these methods have been 
developed for gene arrays and their associated assumptions, which are not analogous 
with those of protein arrays [16]. Thus, making use of such methodologies could mask 
biologically relevant and interesting data without increasing reproducibility. We there-
fore compared three existing normalization methods available in limma for single-chan-
nel arrays. Data was normexp background corrected prior to each normalization step.

None

Here, the data was normexp background corrected and no normalization step was 
applied.

Scale

This method is the standard method of normalization for microarrays and is performed 
on a linear scale as opposed to a log scale. Scaling transforms each array so that the 
median for each array is equal [39, 40]. However, several studies have shown that non-
linear methods, independent of the baseline array chosen, perform better.

Quantile

This is the most popular normalization method used in microarray studies due to its low 
computational load. This method is based on the idea that quantile–quantile plots show 
an equal distribution of two data vectors if the plot produces a straight line. Thus, the 
method “forces” an equal distribution for the probe intensities for each array in a dataset 
[38]. However, there is the possibility that in using this method some biologically signifi-
cant information is suppressed and therefore lost in downstream analyses.

Cyclic loess

Cyclic loess normalizes two arrays at a time by applying a correction factor which is 
obtained from a loess curve fit through MA plots of the arrays. In this study, we utilized 
the “fast cyclic loess” method for our pipeline. This is a less aggressive method than the 
quantile normalization method and is a non-linear loess method where, in the case of 
the “fast method” arrays are normalized to a reference array, which is the average of all 
arrays [41]. In recent years, it has become the favoured method for the normalization of 
single-channel protein arrays.

Array filtering methods

Despite background correction and normalization, variations in data quality may 
remain, affecting downstream analyses [18, 42]. Problems can be detected at the probe 
and array level; however, problems at the array level are more critical as a single low-
quality or “bad” array may have significant effects on the microarray data acquired. 
Most established studies exclude these “bad” arrays from the dataset, but this is risky 
as the arrays may still contain some useful information about protein expression, which 
is embedded in a higher degree of noise than in high-quality or “good” arrays. Thus, 
Ritchie et al. [18] introduced a graduated, quantitative approach in which poorer quality 
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arrays are down-weighted to be included in analyses. We compared three methods of 
array filtering to determine which was most suitable for microarray data.

Equal weights/no filtering

Following background correction and normalization, all arrays are used equally in the 
analyses.

Array weights

Here, following background correction ad normalization, the array weights are esti-
mated using the REML algorithm created by Ritchie et al. [18] and these are incorpo-
rated in subsequent analyses.

Array filtering using array weights

Here, following background correction and normalization, the two arrays with the low-
est calculated array weights/quality scores are removed prior to further analyses. It is 
important to note here that the cut-off for array filtering is investigator and data depend-
ent. For this study, two arrays with the lowest weights were filtered out.

Experimental design and statistical rationale

To compare background correction methods, we spot-filtered extracted data from the 
TR and JHB cohorts and applied all four background correction methods. For the TR 
cohort, we used the corrected intensities to generate mean difference plots and calcu-
late the log intensity ratios (M) = log2(X − Y)/log2 Y and log intensity averages (A) = 1/2 
(log2 X + log2 Y). As these were replicates of patients with the same disease, we expected 
the most effective background correction methods to have the smallest M and A val-
ues, denoting minimal differential expression between replicates. Subsequently, in the 
JHB cohort, we calculated residual standard deviation value or variance, (σ) which is a 
goodness-of-fit measure that shows how well a set of data points fit the actual model. 
The smaller the variance, the more predictive or “precise” and useful the model. The JHB 
cohort was quantile normalized as a normalization method had yet to be chosen and the 
data were analysed by fitting a probe-wise linear model to all arrays to estimate variabil-
ity. The A-values were standardized to be the same for each correction method to enable 
comparability. The correction method with the smallest MA values and highest preci-
sion was chosen for the pipeline.

To compare our four normalization methods, the JHB and GSH cohorts were nor-
mexp background corrected following which all normalization methods were applied to 
the data. To determine which method best minimized technical variation and systematic 
experimental bias in the data, we calculated the coefficients of variation (CVs) of the AF 
Cy5 biotin BSA controls and IgG controls of the JHB and the GSH arrays, respectively. 
A lower CV of controls denoted a greater ability to minimize variation due to system-
atic experimental bias and technical variation without masking biologically relevant and 
interesting data. Thus, the method that consistently produced the lowest control CVs 
was used in the pipeline.

To compare our three filtering methods, we applied the most effective background 
correction and normalization methods, based on our comparative analyses, and each 
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array filtering method to the EUR cohort data. We then compared moderated t-statis-
tics for each class of probes among each method. A higher moderated t-statistic sug-
gested an increase in statistical power to detect true differential expression without 
increasing the false discovery rate (FDR). To validate these findings, we then com-
pared false discovery rates [19] for each of the three datasets produced from the array 
filtering methods being applied based on adjusted p values calculated using the Ben-
jamin Hochberg adjustment [43].

All statistical analyses and plots were conducted and created using R (v 4.0) and 
ggplot2 [23], respectively.
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