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Abstract 

Background:  With the rapid accumulation of scRNA-seq data, more and more auto-
matic cell type identification methods have been developed, especially those based 
on deep learning. Although these methods have reached relatively high prediction 
accuracy, many issues still exist. One is the interpretability. The second is how to deal 
with the non-standard test samples that are not encountered in the training process.

Results:  Here we introduce scCapsNet-mask, an updated version of scCapsNet. The 
scCapsNet-mask provides a reasonable solution to the issues of interpretability and 
non-standard test samples. Firstly, the scCapsNet-mask utilizes a mask to ease the task 
of model interpretation in the original scCapsNet. The results show that scCapsNet-
mask could constrain the coupling coefficients, and make a one-to-one correspond-
ence between the primary capsules and type capsules. Secondly, the scCapsNet-mask 
can process non-standard samples more reasonably. In one example, the scCapsNet-
mask was trained on the committed cells, and then tested on less differentiated 
cells as the non-standard samples. It could not only estimate the lineage bias of less 
differentiated cells, but also distinguish the development stages more accurately than 
traditional machine learning models. Therefore, the pseudo-temporal order of cells for 
each lineage could be established. Following these pseudo-temporal order, lineage 
specific genes exhibit a gradual increase expression pattern and stem cell associated 
genes exhibit a gradual decrease expression pattern. In another example, the scCap-
sNet-mask was trained on scRNA-seq data, and then used to assign cell type in spatial 
transcriptomics that may contain non-standard sample of doublets. The results show 
that the scCapsNet-mask not only restored the spatial map but also identified several 
non-standard samples of doublet.

Conclusions:  The scCapsNet-mask offers a suitable solution to the challenge of 
interpretability and non-standard test samples. By adding a mask, it has the advantages 
of automatic processing and easy interpretation compared with the original scCap-
sNet. In addition, the scCapsNet-mask could more accurately reflect the composition 
of non-standard test samples than traditional machine learning methods. Therefore, 
it can extend its applicability in functional analysis, such as fate bias prediction in less 
differentiated cells and cell type assignment in spatial transcriptomics.
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Background
Single cell RNA sequencing (scRNA-seq) measures gene expression levels in individual 
cells and requires diverse computational tools to deal with different computational tasks 
in the processing pipeline [1–3]. The deep learning model can handle complex data well 
[4, 5], and has been adopted in a series of necessary steps in the processing pipeline 
of scRNA-seq data, such as normalization, dimension reduction, and cell type identi-
fication [6]. However, the deep learning method lacks interpretability, which is usually 
operated as a ‘block box’ [7]. Although there have been several attempts to combine bio-
logical backgrounds to increase the interpretability of deep learning methods [8–11], 
this challenge is still not completely solved. Capsule network (CapsNet) is a completely 
new model for digital recognition, which is different from previous models in mecha-
nism [12], and is expected to be applied to many biological scenarios [13]. Previously, we 
proposed the single cell capsule network (scCapsNet), a highly interpretable classifier for 
dealing with scRNA-seq data adopted from CapsNet [14]. Through the internal param-
eters of the model, scCapsNet could not only classify cell subpopulations with high 
accuracy, but also reveal the cell type related genes that determine the process of classi-
fication. The coupling coefficient is one of these internal parameters, which specifies the 
relationship between primary capsules and type capsules, and is vital for model inter-
pretation. Due to the random association between primary capsules and type capsules 
during dynamic routing in scCapsNet, the connections between primary capsules and 
type capsules are usually dense and redundant, with one-to-many and many-to-one cor-
respondences. These dense and redundant relationships add complexity and difficulty to 
model interpretation and thus need to be eliminated.

Meanwhile, a challenge for the canonical automatic cell type identification method is 
to tackle non-standard samples that are not encountered in the training process, such 
as datasets related to the process of cell development [15]. Cells differentiate from stem 
cells to terminal committed cells with various cell types. Lineage tracing can track cells 
across time, linking the cells from a less differentiated state to a more differentiated 
state [16, 17]. For the machine learning model trained on committed cells (more dif-
ferentiated), less differentiated cells could be regarded as non-standard samples, which 
only contain some characteristics of the committed cells. Traditional machine learning 
methods, such as random forest, will encounter the problem of uniform distribution and 
hardly distinguish cells according to their differentiated states. As a remedy, an iterative 
classification strategy is adapted in method FateID for lineage tracing, in order to only 
deal with the relatively more standard samples in each round. But the iterative nature of 
FateID makes it vulnerable to trajectory continuity. The lack of intermediate progenitor 
stages would affect the performance of FateID [18].

The cells with less differentiated states represent one kind of non-standard test sample, 
the other kind of non-standard test sample occurs in spatial transcriptomics. Human 
organs are composed of cells with different sources and functions. The spatial position 
of these cells could provide important information for a better understanding of these 
organs. Recently, several methods have been developed to infer or measure spatial posi-
tion [19]. One category is ‘spatial barcoding followed by NGS’, which could capture two-
dimensional position information extracted from thin tissue slices [20–22]. However, 
the resolution of these methods couldn’t be completely achieved at the single cell level. 
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Even for the recently developed near-cellular resolution method Slide-seqV2, multiple 
cell types in one measurement account for a notable proportion of the whole data [23]. 
Traditional machine learning models trained on the reference dataset of scRNA-seq 
have difficulty dealing with these non-standard samples that contain multiple cell types 
in one measurement. Special methods, such as Robust cell type decomposition (RCTD), 
have been developed to decompose cell type mixtures in spatial transcriptomes. But it 
runs relatively slow and requires a lot of computing resources [24].

Here, we introduce single cell capsule network with mask (scCapsNet-mask), an 
updated version of scCapsNet. Inspired by Sparse Transformers [25], we set the num-
ber of primary capsules as the number of type capsules, and constrain the coupling 
coefficient by adding a mask in the dynamic routing process (Fig.  1A). We first apply 
scCapsNet-mask to several scRNA-seq datasets [4, 26–28]. The results show that the 
constrained coupling coefficient is a diagonal square matrix, realizing the one-to-one 
correspondence between primary capsules and type capsules. Therefore, the scCapsNet-
mask reduces the difficulty of model interpretation in the original scCapsNet, and runs 
automatically without manual inspection. Next, we show that the scCapsNet-mask can 
handle non-standard samples well. Due to the architecture of CapsNet and the margin 
loss for classification, the output number for each category is the probability that the 
input sample belongs to that category (Fig. 1A). After training, if the test sample only 
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Fig. 1  scCapsNet-mask is an updated version of scCapsNet with the capabilities of easier model 
interpretation and non-standard sample handling. A Two-part architecture of scCapsNet-mask. The first 
part consists of l parallel neural networks corresponding to l cell types. The primary capsule of vector ui is 
the output of the neural network i. The subsequent part is a Keras implementation of capsule networks 
for classification with a mask applied to the parameters of coupling coefficients. The result of the mask is 
a one-to-one correspondence between primary capsules and type capsules. The length Pj of each type 
capsule vj represents the probability of a single cell x belonging to the corresponding cell type. B The output 
of scCapsNet-mask would faithfully reflect the composition of the sample. The scCapsNet-mask was trained 
on samples with 4 cell types. Each circle represents a cell, and the color of the cell represents the cell type 
to which it belongs. After model training, if the test sample contains almost all features possessed by one of 
the training cell types (green circle), the output probability for the corresponding cell type is very high, and 
the probabilities for the remaining cell types are very low. If the test sample contains few features possessed 
by one of the training cell types (light green circle), the output probability for the corresponding cell type 
is relatively low, and the probabilities for the remaining cell types are very low. If the test sample contains 
features possessed by more than one training cell type (overlapping blue circle and red circle), the output 
probability for the corresponding cell types is relatively high, and probabilities for the remaining cell types are 
very low
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contains some features of a specific training category, the output probability falling into 
that category will be relatively low. Besides, the output probability falling into other cat-
egories will be even lower. Thus, the sum of these probabilities for all training categories 
may be very low (e.g. far less than 1) (Fig. 1B). This could be exemplified in the dataset 
related cell development. Training on committed cells (more differentiated), the scCap-
sNet-mask can infer the fate bias of cells with less differentiated states, and then distin-
guish cells according to their differentiated states. After that, the pseudo-temporal order 
could be established for each lineage and the results are robust whether the underlined 
developmental stages are continuous or discontinuous. Otherwise, if the test sample has 
attributes in two or more training categories, the output probability of these categories 
is relatively high, and the sum of all probabilities for all training categories is very high 
(e.g. far more than 1) (Fig.  1B), which was shown when CapsNet tested on the over-
lapping digits [12]. In biology, this could be exemplified in the dataset related to spatial 
transcriptomics. Training on scRNA-seq data from the mouse hippocampus [29], the 
scCapsNet-mask can be used to assign cell types to the spatial transcriptomics of the 
mouse hippocampus that may contain doublets. It could restore the spatial map, quickly 
and accurately allocate cell types even for several doublets.

Overall, scCapsNet-mask could provide appropriate solutions to the challenges of 
interpretability and non-standard test samples. The addition of the mask in scCapsNet-
mask eases the task of model interpretation in the original scCapsNet. And the unique 
type determination mechanism of scCapsNet-mask makes it more suitable for process-
ing non-standard samples, as demonstrated in examples involving cell development and 
spatial transcriptomics. Therefore, scCapsNet-mask could extend its applicability in 
downstream functional analysis, which is very important to reveal the biological signifi-
cance hidden in the data and traditional machine learning models can rarely do this [6].

Results
scCapsNet‑mask: an updated version of the interpretable classifier scCapsNet

In the experiments, the datasets of mRBC profiled by the Drop-Seq, the datasets of 
human kidney and the dataset of hPBMC profiled by the 10X Genomics were used to 
test the prediction accuracy of scCapsNet-mask. The training set and test set are gen-
erated by randomly shuffle-splitting the datasets at a ratio of 9:1. The scCapsNet-mask 
is run several times with different shuffle-splits to assess its prediction accuracy. The 
scCapsNet-mask performs well on classification tasks. The average prediction accuracy 
is around 99%, 97%, 90% for mRBC, hPBMC and the kidney dataset, respectively, com-
parable to scCapsNet and other machine learning methods (Additional file  1: Fig S1) 
[14].

Both scCapsNet and scCapsNet-mask are composed of an input layer (gene), a primary 
capsule layer, and a type capsule layer (cell type). As described by scCapsNet, the genes 
in the first layer can be associated with the cell type in the last layer, that is, the inter-
pretability of the scCapsNet and scCapsNet-mask. In these models, the average coupling 
coefficients relates the primary capsule to the type capsule (cell types), and the weight 
matrix further relate genes to cell types [14] (Fig. 1A). However, due to the random asso-
ciation between primary capsules and type capsules during dynamic routing, the aver-
age coupling coefficient generated by the original scCapsNet is complex. The addition of 
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the mask in the scCapsNet-mask is supposed to constrain the coupling coefficients. The 
results generated by the scCapsNet-mask show that there is only one most active ele-
ment in each average coupling coefficient (Additional file 1: Figs. S2, S3). Furthermore, 
the overall average coupling coefficients for all cell types demonstrate that only the on-
diagonal elements are active, and each primary capsule is only associated with one type 
capsule and vice versa (Fig. 2A, B). Otherwise, in the results generated by the original 
scCapsNet, there will be many-to-one and one-to-many correspondences between the 
primary capsules and type capsules (Fig.  2C, D, Additional file  1: Figs. S4, S5). These 
results undoubtedly justify our proposal for the effect of the mask, that is, the mask 
would constrain the weight distribution of the coupling coefficients and concentrate the 
weights on the on-diagonal elements. After applying the mask, there is a one-to-one cor-
respondence between primary capsules and type capsules, unlike the many-to-one or 
one-to-many correspondence between primary capsules and type capsules existing in 
the original scCapsNet. Subsequently, the model could automatically find the relation-
ship between the primary capsules and type capsules, without needing manual inspec-
tion to indicate which primary capsule responds to the recognition of which cell types.

Fig. 2  The overall average coupling coefficients show that mask leads to the one-to-one correspondence 
between primary capsules and type capsules. A, B The overall average coupling coefficients (overall 
heatmap) generated by scCapsNet-mask, which contains the effective type capsule row in each of the 
average coupling coefficients in the mRBC A or human kidney B dataset. The overall average coupling 
coefficients show that applying the mask leads to a one-to-one correspondence between primary capsules 
and type capsules. C, D The overall average coupling coefficient generated by scCapsNet without mask, 
which contains the effective type capsule row in each of the average coupling coefficients in the mRBC C 
or human kidney D dataset. The overall average coupling coefficients show that the lack of mask will lead to 
one-to-many and many-to-one correspondences between primary capsules and type capsules
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Furthermore, this one-to-one correspondence between primary capsules and type 
capsules generated by mask also makes the association between genes and primary cap-
sules (cell type) easier. As described in the previous version of scCapsNet, the internal 
weight matrix in the network connecting the inputs with each primary capsule would 
further associate genes from inputs with each cell type. The Principal Component Anal-
ysis (PCA) performed on the column vectors of the internal weight matrix for particular 
cell type would roughly order the genes according to their importance in the classifica-
tion of that cell type [14]. But due to the many-to-one or one-to-many correspondence 
between primary capsules and type capsules, the ordering of the genes may follow the 
other Principal Component (e.g. Principal Component 2 for Megakaryocytes in [14]) 
rather than Principal Component 1. For scCapsNet-mask, the ordering of the genes usu-
ally following the Principal Component 1 (PC1) according to empirical observation and 
the fact of the one-to-one correspondence, makes it easy to select the specific group of 
genes responsible for the recognition of a particular cell type (Additional file 1: Fig S6). 
For example, in the mRBC dataset, the selection of cell-type associated genes is all along 
the Principal Component 1 (PC1). And those cell-type related genes selected by scCap-
sNet-mask model contain many bio-markers such as Prkca, Apoe, Sox6, Igfn1, Lect1, Sli-
trk5, Pcdh17, Nnat, Wls, Syt2, Lrrtm1, Erbb4, Chrm2, Col11a1, and Serpini1 for RBC, 
Müller glia (MG) and several types of cone bipolar cells, respectively [14] (Additional 
file 1: Fig S6B, colored stars). Overall, the above results demonstrate that the scCapsNet-
mask retains the merits of the original scCapsNet and eases the complexity and difficulty 
of model interpretation.

scCapsNet‑mask could specify the fate bias and development stage of non‑standard 

samples with less differentiated states, after training on committed cells

In the experiment, the dataset of human hematopoietic stem cells differentiation in 
bone marrow was used, which consisted of monocytes, dendritic cells (DCs), erythro-
cytes, human hematopoietic stem cells (HSCs) and precursors (Fig. 3A, Left) [30]. The 
scCapsNet-mask and several machine learning methods (random forest, support vector 
machine, neural networks) are trained on the committed cell populations (monocytes, 
DCs, and erythrocytes) at first (Fig. 3A, Middle), and then tested on HSCs and precur-
sors that are regarded as non-standard samples from the perspective of committed cells. 
The outputs of the models indicate the probability of a given precursor or HSC belong-
ing to each corresponding lineage (committed cell populations) (Fig. 3B). For outputs of 
the scCapsNet-mask, several less differentiated cells (non-standard) have low predicted 
probabilities for every lineage ([0.146, 0.108, 0.126], [0.143, 0.062, 0.279], [0.032, 0.309, 
0.12]). The sum of the output is even lower than 0.5 (0.38, 0.484, 0.461), which is far less 
than 1 (Fig. 3B, Left). In contrast, the sum of the output for the random forest is equal to 
1.

The lineage with the maximum value in the output would be selected as the fate bias 
of the precursor or HSC (Fig. 3B). Therefore, the precursors and HSCs would be allo-
cated into one of the lineages (Fig. 3A, Right). At the same time, this maximum value in 
the output of scCapsNet-mask could be used as a measure for the development stage of 
the non-standard sample (HSCs and precursors), which is difficult to achieve by other 
methods such as random forest (Fig. 3B, C). For example, the comparison experiment 



Page 7 of 18Wang et al. BMC Bioinformatics          (2022) 23:539 	

demonstrates 3 precursors and HSCs which are predicted to differentiate to erythrocytes 
(Fig. 3B, red star), with the maximum values of 0.146, 0.318, 0.499 inferred by scCap-
sNet-mask (Fig. 3B, Left) and the maximum values of 0.46, 0.48, 0.48 inferred by ran-
dom forest (Fig. 3B, Right). These maximum values inferred by scCapsNet-mask could 
distinguish the development stage, while the maximum value inferred by random forest 
couldn’t. The same phenomenon was observed in the other two lineages (Fig.  3B). In 
order to understand the situation more comprehensively, the distributions of the maxi-
mum values in the output for all non-standard test samples (less differentiated cells) are 
also plotted (Fig. 3C). The results show that the maximum values in the outputs of the 
support vector machine and neural networks are skewed to high values (near 1) and the 
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Fig. 3  The scCapsNet-mask could estimate the fate bias and development stage of the cells with less 
differentiated states after training on committed cells. A Left: the tSNE plot of early human hematopoietic 
stem cells (HSC) differentiation in the bone marrow [30]. Middle: the scCapsNet-mask trained on committed 
cells (erythrocytes, monocytes, and dendritic cells). Right: the fate bias of non-standard samples (precursor 
and HSC) are estimated by the trained scCapsNet-mask model. B Comparison of probabilities output by 
scCapsNet-mask and random forest. The star represents the HSC or progenitor cells. The colors of the star 
represent the lineage to which the HSC or progenitor cells belong to, as predicted by scCapsNet-mask 
or random forest. Left: the probabilities output by scCapsNet-mask, the sum of these probabilities is not 
strict to one. The maximum values of output range from low values to high values, which could be used 
to distinguish the development stage. Right: the probabilities output by random forest, the sum of these 
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of cells for each cell lineage according to the maximum values in the output of scCapsNet-mask. The depth of 
the color represents the degree of development, while the dark color corresponds to the more differentiated 
state and the light color corresponds to the less differentiated state. Left: erythrocytes. Middle: monocytes. 
Right: dendritic cells
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maximum values in the outputs of the random forest are skewed to middle values (near 
0.5). None of the maximum values generated by traditional machine learning methods 
reach low values (close to 0). In contrast, the maximum values in the outputs of the 
scCapsNet-mask are distributed more evenly, ranging from low values to high values. 
So, the cells could be more evenly ordered by their maximum values in output of scCap-
sNet-mask, as a higher value corresponds to a more differential state and a lower value 
corresponds to a less differential state. Therefore, the pseudo-temporal order of cells in 
each lineage could be inferred, as they move forward along differentiation trajectories 
from stem cells to committed cell populations (Fig. 3D).

Following pseudo-temporal orders generated by scCapsNet-mask, the genes 
belonged to lineage-specific genes with a gradual increase in expression, and genes 
related to HSCs with a gradual decrease in expression (Fig. 4). For example, the genes 
related to monocytes (MPO, ELANE, RNASE2, and AZU1) [18, 31–33] are subjected 
to gradual increase of the expression in pseudo-temporal order of monocyte devel-
opment. In contrast, the expression levels of these genes were almost not changed in 
the pseudo-temporal orders of other lineages (Fig.  4A). Pseudo-temporal ordering 
of dendritic cells revealed a gradual increase in the expression of genes related to 
dendritic cells, such as the marker gene IRF8 [34], the regulators of adaptive immu-
nity IRF7 [35], the highly expressed gene CCDC50 in the Plasmacytoid dendritic cell 
(pDC) [36], and the induced immature DC chemotaxis gene SCT during DC devel-
opment [37] (Fig. 4B). Pseudo-temporal ordering of erythrocytes also showed similar 
trends. The erythrocytes related genes (GATA1, KLF1, REXO2, and FAM89A) [18, 

Fig. 4  The pseudo-temporal order of each cell lineage reveals a gradual increase in expression of lineage 
specific genes for each cell lineage and a gradual decrease in the expression of HSC associated genes in all 
cell lineages. A Expression profiles of 4 monocytes-specific genes (MPO, ELANE, RNASE2, AZU1) in the process 
of cell differentiation of 3 lineages. B Expression profiles of 4 DCs-specific genes (SCT, CCDC50, IRF7, IRF8) in 
the process of cell differentiation of 3 lineages. C Expression profiles of 4 erythrocytes-specific genes (GATA1, 
REXO2, FAM89A, KLF1) in the process of cell differentiation of 3 lineages. D Expression profiles of 4 HSC-specific 
genes (CD34, CD52, HOPX, CRHBP) in the process of cell differentiation of 3 lineages.
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38, 39] gradually increased in their expression in pseudo-temporal order of erythro-
cytes development but did not change in the pseudo-temporal ordering of dendritic 
cells and monocytes (Fig. 4C). In addition, the genes related to HSC (CD34, CD52, 
CRHBP, and HOPX) [40–43] are gradually decreased along the pseudo-temporal 
ordering of all three lineages (Fig. 4D). Taken together, these results suggest that the 
pseudo-temporal orders reproduced well the changes in expression along the devel-
opmental trajectory of several lineage-specific and HSC-related genes. This can only 
be achieved by the fact that scCaspNet-mask accurately captures the developmental 
stage of non-standard samples.

Furthermore, the fate bias predicted by one-step methods such as scCapsNet-mask 
is more robust, it’s the same whether the intermediate progenitors are missing. In 
contrast, for the iterative method FateID, its performance would be dramatically 
affected when the intermediate precursor stage is missing. The absence of these 
intermediate precursors would alter the fate bias prediction of the HSC, where the 
fate bias toward the DC lineage almost disappears (Additional file 1: Fig S7).

scCapsNet‑mask could identify non‑standard samples of doublets in spatial 

transcriptomics, after training on the scRNA‑seq data

The dataset of scRNA-seq or single nucleus RNA sequencing (snRNA-seq) could be 
used as reference for supervised learning methods to assign cell types in spatial tran-
scriptomics, which may contain non-standard samples of cells mixtures [23, 24]. In 
the experiment, the scCapsNet-mask model was first trained on scRNA-seq data of 
17 cell types in the mouse hippocampus [24], and then tested on the Slide-seqV2 
data of the mouse hippocampus. The results showed that the spatial map of pre-
dicted cell types generated by scCapsNet-mask model is consistent with that gener-
ated by RCTD and the anatomical structure of the mouse hippocampus [24], with 
less time and computing resources (Fig. 5A). For most cell types (such as CA1, CA3, 
Choroid, Dentate, Ependymal, Interneuron, Neuron.Slc17a6, Oligodendrocyte, and 
so on), scCapsNet-mask assigns them to the appropriate spatial position (Additional 
file 1: Fig S8–S10). There are some differences between scCapsNet-mask and RCTD 
in cell type assignment in Astrocyte, Cajal_Retzius, Entorhinal, and Polydendrocyte 
(Additional file 1: Fig S11). Furthermore, scCapsNet-mask identifies several doublets 
in spatial transcriptomics, which has a relatively high probability for two cell types 
(Fig. 5B). These relatively high probabilities of the two cell types (0.6257 for Entorhi-
nal, 0.8227 for Oligodendrocyte) indicate that there may be a mixture of two cell 
types at this position, which could not be achieved by traditional machine learning 
methods with the restriction that the sum of outputs is equal to one.

Discussion
Here, we have developed an updated version of the interpretable model scCapsNet, 
aiming to alleviate the difficulty and complexity of model interpretation caused by 
the one-to-many and many-to-one correspondence between primary capsules and 
type capsules in the original version. In the process of dynamic routing, the masking 
mechanism is introduced to limit the weight distribution of the coupling coefficients, 
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so as to achieve the bijective mapping (one-to-one correspondence) between the pri-
mary capsules and type capsules. We named this updated version interpretable model 
scCapsNet-mask. After testing on several scRNA-seq datasets, the results shows that 
the bijective mapping (one-to-one correspondence) between primary capsules and 
type capsules is realized in scCapsNet-mask. And multiple cell type related genes 
could be revealed as original scCapsNet.

In addition to interpretable cell type identification, we also demonstrated the capa-
bility of scCapsNet-mask to properly handle the non-standard sample. Due to its 
unique category determining process (architecture of CapsNet and the margin loss 
for classification), the output number for each category predicted by scCapsNet-mask 
represents the absolute probability of that category, not the normalized probability. 
Therefore, the test sample that has never been encountered in the training process 
would have a low probability for all training categories; and the test sample from a 
mixture with multiple training categories would have a high probability for corre-
sponding training categories. These characteristics of scCapsNet-mask are utilized to 
handle non-standard samples, which could reveal the composition of the non-stand-
ard samples more accurately.

A

B

Oligodendrocyte 0.7256
Polydendrocyte 0.785

Polydendrocyte 0.6409
Oligodendrocyte  0.7561

Entorihinal 0.6257 
Oligodendrocyte 0.8227

Oligodendrocyte 0.6694
Endothelial_Tip 0.7648

Oligodendrocyte 0.7095 
Microglia_Macrophages 0.7989

CA1 0.703
Oligodendrocyte 0.7176

Interneuron 0.7261 
Cajal_Retzius 0.7485

Fig. 5  The scCapsNet-mask assigns cell types in the spatial transcriptomics of the hippocampus and 
identifies several doublets. A The spatial map of predicted cell types in the hippocampus generated by RCTD 
[24] (Left) and scCapsNet-mask (Right). Of 17 cell types, the 8 most commonly appear in the legend. B The 
locations with two relatively high prediction probabilities by scCapsNet-mask are marked as red triangles in 
the spatial map of the hippocampus.
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In one example, the scCapsNet-mask and other machine learning methods were trained 
on committed cells and tested on cells with less differentiated states. Compared with the 
traditional machine learning methods, the outputs of the scCapsNet-mask could better 
infer the fate bias and distinguish the differentiated stages of the less differentiated cells, 
due to their more even distribution and wider range. According to the results of scCapsNet-
mask, the pseudo-temporal order could be established for each lineage. And these pseudo-
temporal orders could correctly reproduce the gradual increase of lineage specific genes for 
each lineage and the gradual decrease of stemness marker genes for all lineages, which fur-
ther proves the validity of our method.

In another example, the scCapsNet-mask was trained on scRNA-seq datasets of the hip-
pocampus and tested on corresponding spatial transcriptomics generated by Slide-seqV2, 
which may contain the mixture of cell types as the non-standard samples. The scCapsNet-
mask could identify the mixture of cell types by assigning two high probabilities, while tra-
ditional machine learning methods couldn’t.

As shown in the above two examples, according to the composition of the test samples, 
scCapsNet-mask would output low probabilities for all training categories or several high 
probabilities (> 0.5) for several training categories. The capability of anomaly (non-standard 
sample) detection and the interpretable nature of scCapsNet-mask could further extend 
its applicability in functional analysis. One possible application area is research involv-
ing tumors. The scCapsNet-mask could be trained on normal cell populations and tested 
on tumor cells. The trained scCapsNet-mask model may measure the similarity between 
tumor cells and normal cells, thus inferring the source of the tumor cells with heterogene-
ous composition and different origins. Therefore, the scCapsNet-mask may contribute to 
the research on cancer progression and metastasis.

Conclusions
The scCapsNet-mask is an interpretable classifier with the capability of handling non-
standard samples. It uses a mask to realize the one-to-one correspondence between the 
primary capsules and type capsules, which greatly reduces the difficulty of model interpre-
tation in the original scCapsNet. Furthermore, the output of scCapsNet-mask would faith-
fully reflect the composition of the sample. When the sample is quite different from the 
reference, all items in the output are low; when the sample contains a mixture of cell types, 
many items in the outputs are relatively high. This feature makes the scCapsNet-mask more 
suitable for processing non-standard samples, and then extends its applicability in func-
tional analysis, such as fate bias prediction in less differentiated cells and cell type assign-
ment in spatial transcriptomics.

Methods
The RNA‑seq datasets and data preprocessing

We evaluated the values of our method for single-cell transcriptome analysis using 
Drop-Seq single cell data of mouse retinal bipolar cells (mRBC) [4, 27], 10X Genom-
ics single cell data of human peripheral blood mononuclear cells (hPBMC) [4, 26], 
and 10X Genomics single cell data of the tissue of kidney [28]. The transcriptome 
profiles included ~ 20,000 single mRBCs with average ~ 13,000 genes from 15 subcel-
lular groups and ~ 12,000 single hPBMCs with average ~ 3300 genes from 8 subcellular 
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groups, and ~ 35,000 cells with average ~ 6000 highly variable genes selected by using 
Conos 1.4.9 from 20 cell types [44]. All data were log-transformed before use.

The 10X single-cell RNA-seq datasets of early human hematopoietic stem cells 
(HSC) differentiation in bone marrow were downloaded from Setty et  al. [45]. The 
analysis was performed according to Zhou et  al. [30]. Briefly, we used the Scanpy 
package to normalize with total Unique Molecular Identifier(UMI) count per cell 
[46], select 1000 highly-variable genes, and renormalize after filtering for 4142 cells. 
All data were log-transformed before use.

We downloaded Slide-seqV2 and scRNA-seq datasets in the hippocampus [24]. 
The analysis was performed according to Cable et  al. [24]. Briefly, the single cell 
RNA-seq datasets in the hippocampus include 17 cell types, whose cell numbers are 
above 25 and subsampled 1000 in each cell type. Then we selected the differentially 
expressed gene in each cell type compared to all cell types, the cutoff was set log-
2Foldchange > 1.25 and a minimum average expression above 0.00015. After that, we 
acquired ~ 5000 genes for evaluating the methods.

scCapsNet‑mask model

The scCapsNet-mask is based on scCapsNet. A detailed description of scCapsNet 
architecture was previously described [14]. There are two major differences between 
scCapsNet and scCapsNet-mask. First, there are l neural networks in the scCap-
sNet-mask corresponding to l cell types in the dataset, and each neural network uses 
Rectified Linear Unit (ReLU) or tanh as the activation function. On the contrary, in 
scCapsNet, the number of the neural networks is designated as a hyperparameter.

Secondly, in “dynamic routing” process, scCapsNet-mask has an additional step 
after calculating the coupling coefficient. The coupling coefficients need to multi-
ply element-wise with a mask matrix, which is an identity matrix, with on-diagonal 
elements all being one and the off-diagonal elements all being zero. This operation 
concentrates the weights in the on-diagonal elements and ignores the off-diagonal 
elements of the coupling coefficient.

The implementation of the model is demonstrated by the following pseudocode.

(1)ui = ReLU Wi
px i ∈ [1, 2 . . . , l]

(2)
c = c ◦m
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The implementation of scCapsNet-mask can be found in https://​github.​com/​wangl​
f19/​scCap​sNet_​mask.

Margin loss for type classification

As in the capsule networks, the probability that an input sample belongs to a certain 
cell type is represented by the length of the corresponding type capsule (vector) in 
scCapsNet-mask. And only when the input sample belongs to a certain cell type, the 
length of the corresponding type capsule is long. The separate margin loss is used to 
train each type capsule [12, 14].

where Tk = 1 if the input sample belongs to that cell type according to the training label 
and m+  = 0.9 and m−  = 0.1. The λ is down-weighting of the loss and set to 0.25 in 
scCapsNet-mask. The total loss is the sum of the losses of all type capsules.

Average Coupling coefficients As described in scCapsNet[14] and multiCapsNet 
[47], the coupling coefficients connect the primary capsules and type capsules. Every 
input sample (single cell) will produce its own coupling coefficients. The average 
coupling coefficients for each cell type are shown below:

The average coupling coefficient matrix for each cell type contains an effec-
tive type capsule row. The overall average coupling coefficient matrix (over-
all heatmap) is composed of the effective type capsule rows from all cell types 
( ctype1averagei1 , c

type2average
i2 , c

type3average
i3  …) [47].

(3)Lk = Tkmax
(

0,m+

− ||vk ||
)2

+ �(1− Tk)max
(

0, ||vk || −m−

)2

(4)c
typeaverage
ij =

∑

type c
type
ij

∑

type 1

https://github.com/wanglf19/scCapsNet_mask
https://github.com/wanglf19/scCapsNet_mask
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Implementation and hyperparameters

We implement the scCapsNet-mask in the environment of Python 3.6, conda 4.4.10, 
keras 2.2.4, and tensorflow 1.11.0 on a notebook computer equipped with intel(R) 
Core(TM) i5-7300HQ CPU@2.50  GHz and 8  GB RAM. The user could establish 
the environment through code “conda create -n sccaps python = 3.6 keras = 2.2.4 
tensorflow = 1.11.0”.

The ‘randoms’ and ‘test_size’ are the hyperparameters of the method sklearn.model_
selection.train_test_split that used in scCapsNet-mask, in order to randomly split data-
set into training and test subsets. The ‘randoms’ controls the shuffling of the data before 
dataset splitting, and the ‘test_size’ controls the proportion of the dataset to include in 
the test subset. The ‘dim_capsule’ specifies the dimension of the primary and type cap-
sule. The default value is 16 for original CapsNet. We recommend setting this value 
to roughly twice the number of cell types. The hyperparameters ‘lr’, ‘batch_size’ and 
‘epoachs’ relate to the model training. The ‘lr’ is the learning rate for adam optimizers. 
When the loss is ‘NaN’ during the training, please reduce the learning rate and retrain 
the model. The model parameters are updated in each batch, and the ‘batch_size’ defines 
the number of samples in the batch. The ‘epochs’ specify the number of times the model 
will train for an entire training dataset. The ‘epochs’ can be adjusted according to the loss 
of training. The hyperparameters ‘pc_slice’ and ‘threshold’ are associated with selecting 
the specific group of genes responsible for the recognition of a particular cell type. The 
‘pc_slice’ specifies the fineness of division along the PC direction. The ‘threshold’ is the 
threshold for the prediction accuracy of the specific cell type, so that a dotted line is set 
when the prediction accuracy of the specific cell type is just below the threshold.

Methods for comparison
Traditional machine learning methods

A neural network with a softmax activation function was implemented in Keras. The 
support vector machine and random forest were implemented with the Python package 
‘scikit-learn’.

FateID

We applied the FateID from the R package FateID 0.2.1 to infer cell fate bias in multipo-
tent progenitors from the scRNA-seq dataset with default parameters [18].

RCTD

We applied the RCTD from the R package spacexr 2.0.0 to decomposition of cell type 
mixtures in spatial transcriptomics with default parameters [24].

Estimate the fate‑bias of cells with less differentiated states and order cells 

in pseudo‑temporal order

As FateID, we first train scCapsNet-mask model on the committed cell populations 
(Monocytes, dendritic cells (DCs), and erythrocytes), and use the trained model to meas-
ure the similarity between the cells with less differentiated states (HSCs and Precursors) 
and the committed cell population for each lineage. Then the lineage with the highest 
similarity is considered as the fate bias for that HSC or precursor. The pseudo-temporal 
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order of cells in each lineage is established through the absolute value of the fate bias 
(maximum values in the outputs) for each cell. Then, the expression of the lineage spe-
cific genes for each lineage and stemness marker genes are examined.

Abbreviations
scCapsNet	� Single cell capsule network
scRNA-seq	� Single cell RNA sequencing
snRNA-seq	� Single nucleus RNA sequencing
CapsNet	� Capsule network
RCTD	� Robust cell type decomposition
mRBC	� Mouse retinal bipolar cells
hPBMC	� Human peripheral blood mononuclear cells
NGS	� Next-generation sequencing
PCA	� Principal component analysis
PC1	� Principal component 1
MG	� Müller glia
pDC	� Plasmacytoid dendritic cell
DC	� Dendritic cell
HSC	� Human hematopoietic stem cell
UMI	� Unique molecular identifier
ReLU	� Rectified linear unit
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Additional file 1.Figure S1. The performance for single-cell type recognition in the scCapsNet-mask is compa-
rable to that of scCapsNet and other machine learning methods. The training accuracies and testing accuracies 
of scCapsNet-mask (mask), scCapsNet, neural network, random forest and support vector machine (SVM) on the 
human kidney dataset are plotted. The box-and-whisker plots drawn by boxplot from R show the training and test-
ing accuracies in nine replicates of each method. Figure S2. The average coupling coefficients show that the mask 
leads to the one-to-one correspondence between primary capsules and type capsules in the mRBC dataset. The 
average coupling coefficients (heatmaps) generated by scCapsNet-mask for the mRBC dataset with the cell types 
listed above. The row represents type capsules and the column represents primary capsules in each heatmap. These 
heatmaps show that applying the mask leads to a one-to-one correspondence between primary capsules and type 
capsules. Figure S3. The average coupling coefficients show that the mask leads to the one-to-one correspondence 
between primary capsules and type capsules in the human kidney dataset. The average coupling coefficients (heat-
maps) generated by scCapsNet-mask for the human kidney dataset with cell types listed above. The row represents 
type capsules and the column represents primary capsules in each heatmap. These heatmaps show that applying 
the mask leads to a one-to-one correspondence between primary capsules and type capsules. Figure S4. The 
average coupling coefficients show that lacking the mask leads to the complex correspondences between primary 
capsules and type capsules in the mRBC dataset. The average coupling coefficients (heatmaps) generated by scCap-
sNet-mask for the mRBC dataset with the cell types listed above. The row represents type capsules and the column 
represents primary capsules in each heatmap. These heatmaps show that lacking mask leads to the complex cor-
respondence between primary capsules and type capsules. Figure S5. The average coupling coefficients show that 
lacking the mask leads to the complex correspondences between primary capsules and type capsules in the human 
kidney dataset. The average coupling coefficients (heatmaps) generated by scCapsNet-mask for the human kidney 
dataset with cell types listed above. The row represents type capsules and the column represents primary capsules 
in each heatmap. These heatmaps show that lacking the mask leads to the complex correspondence between 
primary capsules and type capsules. Figure S6. The scCapsNet-mask could identify cell type associated genes along 
Principal Component 1 in mRBC dataset. A Each colored line represents the prediction accuracy for cell types along 
principal component in B. The y axis represents prediction accuracy, the x axis represents principal component in 
B and the dotted lines are corresponding to the chosen genes of blue dots in B. In the dotted lines, recognition 
accuracy degrades close to 0 for corresponding cell type listed above whereas other cell types are not significantly 
affected. B The plot depicts the two-dimensional PCA on the weight matrix for the primary capsule. Each dot repre-
sents a gene and the blue dots are chosen as cell type related genes (dotted line associated genes in A). The colored 
stars with labels represent the marker genes for each cell type (Prkca, Apoe, Sox6, Igfn1, Lect1, Slitrk5, Pcdh17, Nnat, 
Wls, Syt2, Lrrtm1, Erbb4, Chrm2, Col11a1, Serpini1). Figure S7. The fate bias inferred by FateID is less robust against 
the missing intermediate progenitor stages. A Left: The FateID trained on erythroid cell, monocytes, and dendritic 
cells. Middle: the fate bias of precursor and HSC estimated by FateID. Right: the fate bias of HSCs estimated by FateID 
when precursors are absent. B The composition of fate bias is dramatically changed for HSC population after the 
intermediate progenitor population is missing. Figure S8. Predicted spatial localization of cell types by RCTD and 
scCapsNet-mask in the Slide-seqV2 hippocampus. Left: CA1, CA3, Choroid, Dentate in RCTD. Right: CA1, CA3, Cho-
roid, Dentate in scCapsNet-mask. Figure S9. Predicted spatial localization of cell types by RCTD and scCapsNet-mask 
in the Slide-seqV2 hippocampus. Left: Entorhinal, Interneuron, Neuron.Slc17a6, Oligodendrocyte in RCTD. Right: 
Entorhinal, Interneuron, Neuron.Slc17a6, Oligodendrocyte in scCapsNet-mask. Figure S10. Predicted spatial localiza-
tion of cell types by RCTD and scCapsNet-mask in the Slide-seqV2 hippocampus. Left: Microglia_Macrophages, 
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Mural, Neurogenesis, Endothelial_Stalk, Endothelial_Tip in RCTD. Right: Microglia_Macrophages, Mural, Neurogen-
esis, Endothelial_Stalk, Endothelial_Tip in scCapsNet-mask. Figure S11. Predicted spatial localization of cell types by 
RCTD and scCapsNet-mask in the Slide-seqV2 hippocampus. Left: Astrocyte, Cajal_Retzius, Entorhinal, Polydendro-
cyte in RCTD. Right: Astrocyte, Cajal_Retzius, Entorhinal, Polydendrocyte in scCapsNet-mask.
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