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Abstract 

Purpose:  Autism spectrum disorder (ASD) is the most prevalent disease today. The 
causes of its infection may be attributed to genetic causes by 80% and environmental 
causes by 20%. In spite of this, the majority of the current research is concerned with 
environmental causes, and the least proportion with the genetic causes of the disease. 
Autism is a complex disease, which makes it difficult to identify the genes that cause 
the disease.

Methods:  Hybrid ensemble-based classification (HEC-ASD) model for predicting ASD 
genes using gradient boosting machines is proposed. The proposed model utilizes 
gene ontology (GO) to construct a gene functional similarity matrix using hybrid gene 
similarity (HGS) method. HGS measures the semantic similarity between genes effec-
tively. It combines the graph-based method, such as Wang method with the number 
of directed children’s nodes of gene term from GO. Moreover, an ensemble gradient 
boosting classifier is adapted to enhance the prediction of genes forming a robust clas-
sification model.

Results:  The proposed model is evaluated using the Simons Foundation Autism 
Research Initiative (SFARI) gene database. The experimental results are promising as 
they improve the classification performance for predicting ASD genes. The results are 
compared with other approaches that used gene regulatory network (GRN), protein 
to protein interaction network (PPI), or GO. The HEC-ASD model reaches the highest 
prediction accuracy of 0.88% using ensemble learning classifiers.

Conclusion:  The proposed model demonstrates that ensemble learning technique 
using gradient boosting is effective in predicting autism spectrum disorder genes. 
Moreover, the HEC-ASD model utilized GO rather than using PPI network and GRN.

Keywords:  Gene prediction, Boosting techniques, Gene ontology, Ensemble learning, 
Functional gene network, Gene classification

Introduction
The prevalence of autism among children is one of the most important topics that must 
pay attention to know the causes of the disease and to take the initiative to find solutions 
for effective treatment. Autism is a disorder that belongs to a group of developmental 
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disorders called autism spectrum disorders (ASD) [1], which appears in childhood, 
often before the age of three. Although the symptoms of autism vary from one patient to 
another, all ASDs affect a child’s ability to communicate with other people around him 
and develop relationships with them. Many researchers have focused on the search for 
autism through the symptoms that appear on the patient, but few are interested in find-
ing the genetic causes of the disease, so in this research, we are interested in predicting 
genes of autism.

Most studies use machine learning (ML) to predict the genes of autism spectrum 
disorder, which defines the problem as binary classification, positive (disease genes) 
and negative (non disease genes). Many genes were produced through extensive 
research, so identifying disease-causing genes from this comprehensive database 
has become difficult [1]. However, machine learning can analyze such large amount 
of data and identify the most distinct traits, which helps to predict disease-causing 
genes. Machine learning techniques are helpful in different biomedical problems such 
as drug discovery [2, 3], gene prediction [4, 5], disease gene interactions [6], genome 
annotations [7], gene regulatory network derivation [8], microarray data classification 
[9],and protein function prediction [10]. Some predictive models [11] were proposed 
to identify genes related to ASD and gene sets associated with autism according to 
specific cell types. They give higher priority to high-confidence candidates genes 
from Simons Foundation Autism Research Initiative (SFARI) to construct a predictive 
model. Their predictive model is multi-labeled to predict the type of cell associated 
with genes and the set of candidate genes that may be used as an identifier to diag-
nose ASD.

A support vector machine model was built in [12] to identify ASD risk genes and their 
influence on the temporospatial areas in the brain at different times using gene expres-
sion. Some researchers utilized deep learning techniques in gene prediction models [13], 
the DeepHE model was proposed to train a multilayer network using DNA sequence 
data and the data from the protein-to-protein network (PPI). These models that depend 
only on one PPI network gained low performance, as the PPI network is not fully com-
pleted till now (do not include whole protein interactions) and has more noise data 
connection.

Moreover, a weighted classifier using support vector machine(SVM) was proposed to 
detect the association relationships between genes in the brain and ASD [14]. They uti-
lized a hybrid network to train a weighted SVM classifier. This network combined the 
PPI network, gene expression (GE), and brain network genes, then evaluated on the 
highest confidence genes from SFARI dataset. This model had some restrictions as the 
PPI network and gene expression did not have representation for weak connections, 
which limit the classifier performance.

Recent studies utilized gene ontology(GO) [15, 16] to predict disease genes, as it is 
believed that two genes are similar if their phenotypes are similar. In [17], a group of 
genes may belong to the same biological process (the same branch in GO) if these genes 
are disrupted by the same genetic variants. Prediction of gene function [18] using gene 
ontology may be categorized into four categories:
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•	 Prediction using internal relationships between gene ontology terms.
•	 Prediction with dimension reduction for gene ontology terms matrix.
•	 Prediction using different species of gene data.
•	 Prediction using semantic similarity between genes.

Gene ontology (GO) is constructed as a hierarchical-directed acyclic graph of gene 
ontology terms and the relations between them. In the first category, prediction using 
internal relations between terms can divided into two types: the trivial relationships 
between terms, including the occurrence of the terms, and the second type uses their 
hierarchical relationships to measure the similarity. In [19], they predict new terms 
to annotate genes using the term occurrence of the same two genes. ProDM [20] is a 
proposed algorithm that uses the maximum dependencies between genes features and 
genes annotations using GO to predict new annotation terms for genes. In [21], the 
Noisy GO annotation model was proposed to predict disease genes using the taxonomic 
relationships of GO terms using its hierarchical graph and measuring the semantic simi-
larity between genes using their annotation terms.

The second category, dimension reduction for gene ontology term matrix, can be 
done using two different techniques; applying matrix factorization [22, 23], which 
reduces the matrix of genes terms to predict genes’ new annotations, or using a hash-
ing function. Ref. [24], clusterDCA method is proposed to perform matrix factori-
zation on gene ontology terms. Their method uses the singular value decomposition 
(SVD) technique into two adjacent matrices obtained from GO DAG. It reduces the 
noise in the two matrices producing low matrix dimensions that infer the associative 
relationships between genes and their annotation terms. NoisyGO model does not 
check reliability as it does not remove the noisy annotations in measuring the semantic 
similarity between genes. Moreover, NOGOA model is proposed in [25] gives weight 
to GO annotations to distinguish between genes and detect noises using a weight of 
genes evidence codes.

Furthermore, using hashing solutions is effective in speeding up the process of meas-
uring the semantic similarity between genes [26], researchers build hashing functions 
for coding gene ontology terms to compress vast GO terms, [26] build a network that 
includes GO terms with their binary code, then calculating the semantic similarity 
between genes utilizing hamming distance function to predict genes. In the third cat-
egory [27], they build a new network that combines GO hierarchical structure and PPI 
network and one or more species of sequenced data homology to improve the prediction 
of gene function.

The last prediction category uses semantic similarities between genes choosing adja-
cent genes and using their annotation to measure the similarity. Measuring the semantic 
similarity between genes using GO is divided into two types based on the taxonomy of 
GO terms. The first type is a pairwise method, which uses two combination measures, 
maximum strategy [28] and best match average strategy (BMA), which is a combination 
of max and average [29]. The second type is groupwise, which traits terms as vectors 
or subgraphs from DAG to measure the semantic similarity [30], SORA method uses 
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the information content (IC) for each term to make an overlap ratio and measure the 
similarity between their associated genes. Moreover, [31] they use GO to measure the 
semantic similarity between genes contributed to the same biological process trained on 
the ASD SFARI dataset, and evaluated using stratified cross-fold validation using differ-
ent classifiers.

Deep learning (DL) algorithms are used to predict genes associated with a specific dis-
ease, but some studies showed restrictions on using DL in predicting genes of a particu-
lar disease. The number of observed genes that caused specific diseases is too small to 
train a deep learning model. Some algorithms proposed integration between different 
data sources constructed with multimodal data view [32] using deep learning techniques 
to identify the valuable features to predict the biological process of genes. Moreover, 
[33], dgMDL model is proposed to predict associations between all known disease and 
their genes utilizing DBN rather than predicting only genes of a specific disease. This 
model effectively increases the number of known genes associated with a specific dis-
ease using all known associations. Recently, some researchers applied ensemble learning 
techniques [34] to effectively predict genes associated with a specific disease. An ensem-
ble learning model is proposed in [35] to improve the classification of heart disease using 
an ensemble of machine learning techniques collected using a voting strategy to predict 
disease genes of heart disease. The results show higher accuracy, using ensemble tech-
niques than using a single classifier.

A summary of all recent techniques used in ASD prediction is shown in Table  1, 
which are machine learning (ML), deep learning (DL), similarity measures (SM), Gene 
expression (GE), protein-to-protein (PPI) network, gene regulatory network (GRN), 
and gene ontology (GO). Moreover, the disadvantages of each method showed in 

Table 1  Comparison between ASD research papers using different methods

Studies ML DL Similarity measures Gene 
expression

PPI GRN GO

Graph-based IC-based

Guan [11] Yes No No No Yes No No Yes

Lin [12] Yes No No No Yes No No No

Zhang [13] No Yes No No No Yes No Yes

Krishnan [14] Yes No No No Yes Yes Yes No

Ismail [16] Yes No No Yes No No No Yes

Asif [31] Yes No No Yes No No No Yes

Table 2  Disadvantages of each research method

Studies methods Disadvantages

ML In unbalanced dataset, the results will be biased to the majority class

DL Requires large number of genes to train deep learning model

SM Long time consuming

GE,PPI,GRN Neglects some weak interaction, so not be represented in the network

GO Some genes do not have annotated terms in GO
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Table  2. According to the disadvantages of these methods, we propose a new hybrid 
ensemble-based classification model,“HEC-ASD,” for predicting ASD genes. The HEC-
ASD model utilizes GO to annotate candidates ASD genes and build a functional 
similarity gene matrix. Moreover, a new hybrid gene similarity (HGS) is proposed to 
measure the similarity between genes. Different machine learning classifiers are trained 
and tested in these metrics to evaluate the proposed model. For more improvement, 
ensemble learning techniques [36] are utilized to enhance the performance of our 
model, such as Adaptive boosting [37] and Gradient boosting machines [38]. HEC-
ASD, based on a Gradient boosting machine, classifies ASD candidate genes effectively 
with high performance.

Hybrid ensemble‑based classification model (HEC‑ASD)
The general framework of the proposed model is shown in Fig. 1, which consists of five 
phases: ASD dataset preparation, gene ontology enrichment, Gene pre-classification 
process, Classification and evaluation. In the first phase, the dataset is collected from 
the Simons Foundation Autism Research Initiative (SFARI) gene database. SFARI Gene 
is a database specialized in autism research, which spots gene candidates as one of the 
autism genes. Secondly, genes are annotated using gene ontology, and the similarity 
between genes is calculated using different similarity functions such as Resnik, Wang, 
Relevance, and the proposed hybrid gene similarity (HGS) function. Then, resample the 
class distribution to be balanced before classification. In the fourth phase, ASD genes are 
predicted using Random Forest (RF) [39], Support Vector Machine (SVM) [40], Naive 

Fig. 1  Proposed model (HEC-ASD) framework to predict ASD genes

Fig. 2  Classification of SFARI database
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Bayes (NB) [41], K-nearest neighbor (KNN) [42], Adaptive boosting (AdaBoost), and 
Gradient Boosting classifiers to classify ASD genes perfectly. Finally, All classifiers are 
evaluated using cross-fold validation, and the performance of the classifiers is measured 
using precision, recall, f-measure, and accuracy.

ASD dataset preparation

Simons Foundation Autism Research Initiative (SFARI) gene database https://​gene.​sfari.​
org/ is used to assist the proposed model. SFARI contains all genes associated with ASD 
classified as in Fig. 2. Each gene has an evidence score that reflects how it is associated 
with the evolution of autism disease. SFARI genes are categorized into seven different 
categories based on their evidence score. Genes with the highest confidence relating to 
ASD belong to category one, and genes with less confidence than genes in category one, 
which may be strong candidates for ASD gene, belong to category two. Categories three 
and four have the lowest evidence of ASD candidate genes. Category five has an indi-
rect relationship with ASD, and category six is not supported by ASD. Therefore, in this 
research, categories one, two,three, and four are used for the analysis. Moreover, another 
type of syndrome gene in a specific column has symptoms or signs which may corre-
late with ASD. While dataset preparation, only syndrome genes that belong to categories 
one, two, three, and four will participate in the analysis. SFARI database sets categories 
one and two as the highest confidence genes (HCG) and three and four as the lowest 
confidence genes (LCG).

Gene ontology enrichment

ASD genes are enriched using gene ontology (GO) [15] to calculate the functional simi-
larity between genes. Gene annotation means that each gene is annotated with terms 
extracted from GO database. The gene ontology (GO) is constructed as a hierarchal 
graph that annotates genes in terms. Each term in GO is represented with a node, and 
the relations between nodes are included in the edges. Each term belongs to one of these 
three categories, which describes the different functions as follows:

•	 Molecular Function Gene Ontology (MFGO).
•	 Biological Process Gene Ontology (BPGO).
•	 Cellular Component Gene Ontology (CCGO).

The gene ontology consists of three core branches. The first one, molecular function, 
illustrates the activity itself, regardless of the reasons or where these actions could hap-
pen. On the other hand, the biological process describes the relation between the ini-
tial configurations and the final product, ignoring the mechanism of the process itself. 
The third is a cellular component that figures the positioning relative to the entire cell 
structure.

The proposed model focuses on the biological process of gene ontology for analysis. 
A gene functional similarity matrix must be built to classify the candidate’s ASD genes. 
Then, measuring the similarity between genes indicates the semantic similarity between 
their terms. Therefore, if the terms of genes are similar in their semantic value, their 
genes also must be identical in their functions. Different gene functional similarity 

https://gene.sfari.org/
https://gene.sfari.org/
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methods are used, such as Resnik [43], Relevance [44], and Wang [45]. Resnik and Rel-
evance are information content-based methods (IC), which utilize all the information in 
the ontology corpus file to measure the semantic similarity between two genes. Wang’s 
method depends on the structure of GO, so it considers as a graph-based method.

Resnik is based on the information content of terms, which is the negative logarithm 
of the probability of the term as in Eq. 1.

Pro(t) is the probability of term t, which is the occurrence number of term t in the GO 
corpus as in Eq. 2. The relationship between IC and the amount of information that this 
term contains is negative, which means if this term rarely appears in the corpus, it will 
have more amount of information content.

After that, the semantic similarity between the two terms is calculated using the infor-
mation content of their most common informative ancestor (MICA) as in Eq. 3.

Relevance method also depends on IC calculations as in Eq. 4

Wang, in Eq. 5, calculates the similarity between genes terms depending on the position 
of these terms in the GO-directed graph and their linkage with their ancestors. There-
fore, Wang considers the relations is-a and part-of-edges.

(1)ICt = −log(Pro(t))

(2)Pro(t) =
Number Of tChildren

Total Num of Terms in the Corpus

(3)termsimilrityResnik(t1, t2) = IC(MICA)

(4)Relevance =
2 ∗ IC(MICA)(1− Pro(MICA))

IC(t1)+ IC(t2)

(5)similarityWang (X ,Y ) =
t∈TX∩TY

SX (t)+ SY (t)

SV (X)+ SV (Y )

Fig. 3  Similarty between two genes annotations
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A hybrid gene similarity (HGS) function is proposed to measure the similarity between 
two ASD genes. HGS uses Wang as the basic function considering the number of term 
children, given their ancestor nodes with its descendent nodes. Alg. 1 and 2 illustrate 
the robust algorithm steps of the HGS method, which helps measure the similarity 
between two genes. This method uses a GO graph to calculate the number of children 
nodes rather than using IC values of the term and integrates this number with the Wang 
method.

The gene functional similarity matrix should be calculated before gene classifica-
tion, which is the semantic similarity between genes. Figure 3 represents how we can 
measure the semantic similarity using their annotated terms from GO. Algo. 1 illus-
trates the steps to build “TermSimM” which contains all semantic values between 
two gene terms. Then the average best matching strategy [29] is used to mix the 
semantic similarity between gene ontology terms. First, we extracted all annotated 
terms of two genes g1 and g2 . Each term in g1 will be calculated with all terms of 
g2 as in Fig.  3. For each term, the directed acyclic graph “DAG” is extracted from 
GO. DAG of x as in Algo. 1 is the term x with its ancestor terms Tx and the edges Ex 
between these terms. GO is represented in three branches (MFGO, BPGO, CCGO). 
Our experiment involves only BPGO branch. After that, the contributed seman-
tic value of each term is calculated using steps in Algo. 2, which is the semantic 
function of Wang method using different weight function. The weight We in Wang 
method reflect the semantic value of term edges. Researches in [45, 46] find that the 
number of children of a specific term is negatively related to its IC Value. Therefore, 
the semantic weight function ( we ) assigns different values for d constant depending 
on the type of edge, for part-of relation d equals 0.3 and 0.4 for is-a relationship. The 
C constant value represents the suitable minimum value of correlation with other 
methods when c is equal to 0.67. Hence, HGS depends on Wang’s method using the 
number of the ancestor’s children rather than the information content of ancestor 
terms. This method saves time when computing the similarity between two genes 
rather than the IC-based methods.

Algorithm 1 Hybrid gene similarity function algorithm
Input: two ASD genes g1, g2.
Output: Semantic Similarity score between g1, g2 using HGS function.
Declare:g1 = t11, t12, t13, .., t1m, g2 = t21, t22, t23, .., t2n, TermSimM =[]m∗n

1: Extract all gene ontology terms associated with g1, g2
2: for each term x in g1 do
3: for each term y in g2 do
4: DAGx ← (x, Tx, Ex)
5: DAGy ← (y, Ty , Ey)
6: SV (x) ← CalculateSemanticV alueOFTerm(DAGx, Sx(t))
7: SV (y) ← CalculateSemanticV alueOFTerm(DAGy , Sy(t))

8: TermSimMi,j(x, y)
∑

t∈(Tx∩Ty)
Sx(t) + Sy(t)

SV (x) + SV (y)
9: end for
10: end for
11: return TermSimM
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Algorithm 2 CalculateSemanticValueOFTerm (DAGx, Sx(t))
1: for each Term t in DAGx do
2: if t = x then
3: Sx(t) = 1
4: else
5: w =

1
numOfChilderen(t) + c

+ d

6: Sx(t) = max(w ∗ SA(t′)) � t′belongs to children(t)
7: end if
8: end for
9: return SV = t∈tx

Sx(t)

Gene pre‑classification process

The Autism Spectrum database SFARI has a problem of unbalanced class distribu-
tion, where the majority class is negative (Not ASD), and the minority class is posi-
tive (ASD). Dealing with the dataset as it is will result in false classification with high 
accuracy, which biases the machine learning classifiers and result in neglecting the 
minority class. Therefore, dealing with this problem, resample dataset class distribu-
tion is the best choice. Resampling techniques can be either deleting some exam-
ples randomly from the majority class (random undersampling) or duplicating some 
examples from the minority class (random oversampling ). To neglect the overfitting 
of data, random undersampling class distribution skips some of the examples from 
the majority class randomly until the dataset becomes balanced as in Eq. 6

Classification

Baseline classifiers

Different machine learning classification techniques are used to evaluate the pro-
posed model, such as Naive Bayes (NB) [41], Support Vector Machine (SVM) [40], 
K-nearest neighbors (KNN) [42], and Random Forest (RF) [39]. The input for this 
phase are two functional similarity matrices, one for the highest confidence genes 
(HCG) and the second for the lowest confidence genes (LCG). Therefore, NB, SVM, 
KNN, and RF are applied to HCG and LCG. Naive Bayes is a Bayesian classification 
technique, which is based on calculating the conditional probability that is called 
the“ Bayes Theorem.” NB method is fast, accurate, and suitable for high dimensional 
data, but it is considered that all features are independent, which is not acceptable in 
most applications.

Support Vector Machine is a supervised machine learning technique that treats 
its predictors as dependent features. SVM draws a separate line to split the input 
data into groups and then uses this line to predict new data on the place side. SVM 
seeks to find the most suitable place to put the hyperplane, separating the data into 
classes, effectively giving high performance. There are two types of SVM, linear 
SVM and radial SVM. SVM works well with low dimensional data.

(6)PrecUnder =
num of positive instances

num of negative intstances
∗ 100
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Ensemble learning techniques

Boosting is one of the ensemble learning techniques utilized to enhance the perfor-
mance of the proposed model for predicting ASD genes. It is an iterative technique to 
build a strong learner from a set of weak learners. It corrects the previous model error 
sequentially, as the second weak learner model attempts to correct the error from the 
first model, etc. Two different algorithms of boosting are used to propose a more accu-
rate model for predicting autism genes.

•	 Adaptive Boosting M1 (AdaBoost)
•	 Gradient Boosting Machines.

Adaptive Boosting M1 (AdaBoost) is the trivial boosting technique, as shown in Fig. 4. 
It runs at decision stumps as weak learner models, aggregate stronger ones, enhancing 
the predictive model performance. The steps of the AdaBoost algorithm are in Algo. 
3. In the beginning, all training samples are given equal weights, which indicates that 
all samples are equally important, “one divided by the total number of samples. ”After 
that, in each iteration of building a new decision stump, these weights will be updated to 
guide the building of the decision stump (DS). The value of total error and alpha have an 
opposite relationship; if the total error decreases, then the weak learner (DS) influences 
the training sample prediction. The total error is a summation of incorrectly classified 
instance weights. The idea of AdaBoost is to minimize the loss function. In this tech-
nique, the exponential loss function gives more weight to misclassified instances and the 
opposite to correctly classified cases. The algorithm builds decision stumps, either by 

Fig. 4  Adaptive boosting general framework
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reaching the number of tree input parameters or the error becomes zero. Finally, the 
output is a substantial learner prediction value, which is the summation of all hypoth-
eses from the weak learner.

Algorithm 3 AdaBoost
Input: (x1, y1)...(xn, yn) training sample set from the data set where xi ∈ X and yi ∈ Y ,

T : Maximum number of trees
1: Intialize each example in the training sample with Dw1(i) = 1

N
,∀i = 1 → N

2: for each t in T do
3: Learn a weak classifier model c to the training sample with distribution weight Dwt

4: if errt = 0 then
5: break;
6: else
7: Calculate the error errt after training ht distribution weight
8: Choose the weak classifier model ht that minimize errt

9: errt =
n∑

i=1
DW i,t , where ht(xi) �= yi

10: Calculate the influence of ht in training sample with t

11: αt = 1
2 ln(

1−errt
errt

)
12: Use exponential loss function to update sample distribution weight
13: for each i in n do
14: Dwt+1(i) = Dwt(i) ∗ e−αtyiht(xi).
15: end for
16: end if
17: end for
18: return H(x) = sign

T

t−1
αt ∗ ht(x)

The value of alpha may be positive or negative:

•	 Positive alpha means that the predicted class label is equal to the actual sample class, 
which indicates that the samples are correctly classified. Accordingly, the weights for 
these samples are decreased.

•	 Negative alpha means that the predicted class label and the actual sample class are 
unequal, indicating that the samples are not correctly classified. Accordingly, the 
weights for these samples are increased to build the next weak learners (Decision 
Stump) to not repeat these misclassified instances in the following stump.

Gradient Boostingis another updated boosting algorithm that aims to form strong 
learners from weak learners using gradient and iterative algorithms. Gradient algorithm 
proposes to minimize the loss function and must be able to have derivation. Figure  5 
shows the main process of the proposed gene prediction-based regularized gradient 
boosting classification model. HEC-ASD based on gradient boosting depends on four 
components for enhancing the prediction of ASD genes as follows:

•	 Loss Function, which measures the efficiency of the proposed model in classifying 
new genes that measure the difference value between the predicted value and the 
actual observed value.

•	 Weak learners are used in the training phase, which results in low accuracy with 
high error; decision stumps are utilized to be the weak learner.

•	 Additive model, which means that the model works sequentially, adding trees 
(weak learners) iteratively and additive. In each iteration, the loss function should be 
decreased to form a stronger learner model.
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•	 Regularization parameters are parameters used to regulate the loss function to 
prevent overfitting or underfitting problems. The parameters are the number of 
trees, learning rate, maximum depth, and lambda l2 regularization. The learning 
rate is used to decrease the iterative gradient steps. Lambda ? l2 regularization is a 
hyperparameter that measures the regulation degree.

HEC-ASD, based on gradient boosting, utilized the Log loss function to minimize the 
total prediction error using Eq. 7, where yi is the actual observed class value.

Fig. 5  Regularized gradient boosting flowchart
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Experimental results
Database

The proposed prediction model uses SFARI database for performance assessment. SFARI 
database sets categories one and two as the highest confidence genes (HCG), and categories 
three and four as the lowest confidence genes (LCG). SFARI gene database contains 990 
genes associated with ASD, 82 genes from them classified as HCG, which are the genes 
with the highest evidence, 506 genes classified as LCG, which are the genes with the low-
est evidence associated with ASD. The rest 402 genes are excluded from the analysis in the 
case of syndrome genes not belonging to any category from 1 to 4, also with genes that have 
no evidence score or have hypothesis evidence. Moreover, 1189 genes annotated as non-
mental genes are included in the analysis process, which is considered as negative examples 
(non-ASD genes). A random undersampling is used to solve the showed imbalance in class 
distribution.

HEC‑ASD evaluation

The proposed model for predicting ASD genes is evaluated using a stratified cross-fold vali-
dation assessment till five-fold. This assessment does the following steps in validating data:

•	 Split the dataset into equal five folds.
•	 Use four folds as training data.
•	 Use the remaining fold as testing data.
•	 These steps are repeated five times and chosen in the diverse fold for testing

Performance measures

Four different performance metrics are used to measure the performance of the proposed 
classification method, recall in Eq. 8 , precision in Eq. 9, f-measure in Eq. 10, and accuracy 
in Eq. 11. The term True Positive (TP) refers to the number of the documents correctly 
selected to this class. True Negative (TN) is the number of documents correctly rejected 
to be chosen for this class label. False Positive (FP) is the number of documents incorrectly 
rejected that was selected for this class label. False Negative (FN) is the set of documents 
incorrectly chosen for this class label.

(7)logloss = −
1

N

N∑

i=1

yi ∗ log(p(yi))+ (1− yi) ∗ log(1− p(yi))

(8)Recall =
TP

TP + FN

(9)Precision =
TP

TP + FP

(10)F-measure =
2 ∗ Precision ∗ Recall

Precision+ Recall
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Two versions of the gene functional similarity matrix are constructed, one using 
the highest confidence genes (HCG) and non-mental genes from Krishnan et  al., and 
the second for both highest and lowest confidence genes, and non-mental genes 
(HCG+LCG+non-mental genes). These versions of data are built using Wang, Rel-
evance, and Resnik semantic similarity measures and then tested using different basic 
classifiers in the first step, such as Naive Bayes (NB), Random Forest (RF), Support vec-
tor machine (SVM), and K-nearest neighbors (KNN). Table 3 illustrates a comparison 
of these two versions of matrices in terms of accuracy. The data version of (HCG+non-
mental) showed the highest performance compared to the other version of the data 
especially using Random Forest classifier with a Resnik similarity measure 80%.

After that, hybrid gene similarity (HGS) is applied to the version of the data (HCG+ 
non-mental genes). The four functional similarity measures (Wang, Resnik, Relevance, 
and HGS) are used to represent the results in terms of precision, recall, F-measure, 
accuracy, and the area under the curve of the receiver operating characteristic (AUC-
ROC). Figure  6 shows the precision of different classifiers using the four similarity 
measures that represent the ratio of positive gene samples that are correctly classi-
fied. Figure 7 represents the ratio of real positive genes predicted correctly in terms of 
recall. Moreover, Figs. 8, 9, and 10 show the proposed model’s results in F-measure, 
accuracy, and AUC-ROC. The HGS method reached an improved accuracy of 84% 
using a Random Forest classifier compared with the highest reached accuracy using a 
Resnik method with Random Forest, which reached 80%. This improvement using the 
hybrid HGS method indicates a valuable measure in enhancing the prediction of new 
ASD genes.

Ensemble learning techniques are utilized in the proposed model to enhance its 
performance. The first part used the hybrid gene similarity function (HGS) with Ada-
Boost ensemble learning machines. Figure 11 shows a detailed performance measure 
in terms of true positive rate (TP Rate), false positive rate (FP Rate), Precision, Recall, 

(11)Accuracy =
TP + TN

TP + FP + TN + FN

Table 3  The performance of different classifiers evaluated on HCG and LCG SFARI dataset using 
different semantic similarity measures

SM measure Classifier HCG+non-mental % HCG+LCG+non-
mental %

Resnik NB 71.8 66.7

RF 80 75.9

SVM 48.6 59.6

KNN 78.4 67.3

Relevance NB 70.6 65

RF 76.8 74.8

SVM 52.4 61

KNN 74.9 63

Wang NB 71.5 62.7

RF 74.5 74

SVM 54 58.6

KNN 70.3 60.6
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F-measure, AUC-ROC and Accuracy, which reached 84.35%, increasing the accuracy 
of Random Forest by around 4.5%.

Moreover, HEC-ASD based on a gradient boosting model used regularization 
parameters to prevent overfitting the model. The model is tested using num of trees 
= 500, learning rate = 0.1, limited depth of individual trees = 3, and lambda= 5 
(regularization parameter). The results are shown using the area under the curve of 
ROC (AUC-ROC), f-measure, precision, recall, classification accuracy, and specificity 
performance measure. Specificity in Eq. 12, indicates that high specificity refers to a 
lower error rate.

(12)specificity =
number of TN

number of TN + number of FP

Fig. 6  The performance of different classifiers evaluated on SFARI dataset using different semantic similarity 
measures in terms of precision

Fig. 7  The performance of different classifiers evaluated on SFARI dataset using different semantic similarity 
measures in terms of recall
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Fig. 8  The performance of different classifiers evaluated on SFARI dataset using different semantic similarity 
measures in terms of f-measure

Fig. 9  The performance of different classifiers evaluated on SFARI dataset using different semantic similarity 
measures in terms of accuracy

Fig. 10  The performance of different classifiers evaluated on SFARI dataset using different semantic similarity 
measures in terms of AUC-ROC
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Figure  12 contains the results of the proposed HEC-ASD based on a gradient 
boosting model, the model getting the highest accuracy with a low error rate as gets 
the highest Specificity. The proposed HEC-ASD model gained promising results of 
around 88% compared to Krishnan et al. [14] and [16, 31], which gained 73% and a 
maximum 80% in [16]. Krishnan et al. use a gene regulatory network and protein-to-
protein network to predict the ASD genes, and in [16] gained improved performance 
than Krishnan et  al. using the basic classifiers using the basic semantic measures. 
HEC-ASD outperforms both methods using gene ontology as a reference database for 
genes utilizing new hybrid gene similarity function (HGS), which improves the accu-
racy of the proposed model to 84%. Ensemble boosting techniques using AdaBoost 
gained enhancement to 86% and gradient boosting is used to propose the highest-
performed model HEC-ASD which increase the performance of the proposed model 
to around 88%.

Fig. 11  The performance of AdaBoost ensemble boosting classifier evaluated on SFARI dataset using HGS 
semantic similarity measure

Fig. 12  The performance of HEC-ASD based on gradient boosting classifier evaluated on SFARI dataset using 
HGS semantic similarity measure
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Discussion and interpretation
Autism spectrum disorder (ASD) is a complex disease diagnosed mainly from the outward 
symptoms and behavior of the child. Moreover, ASD lacks genetic causes. In this study, the 
HEC-ASD model is proposed to predict genes related to ASD. HEC-ASD model outper-
forms the reported model in [14] that used a weighted SVM model utilizing the information 
in gene expression, gene regulatory, and PPI network. The reported model [14] is selected 
to be the basic state-of-art method to compare with our proposed model. The comparison 
is conducted as a HEC-ASD model uses the same dataset and machine learning techniques 
using the same measurement. The proposed HEC-ASD model makes the same processes in 
[14] with different behavior. HEC-ASD enrichment technique utilizes gene ontology (GO) 
to annotate genes with terms. Moreover, the proposed HEC-ASD model used different 
semantic similarity functions to construct a gene functional similarity matrix. The results of 
HEC-ASD showed that the Random forest classifier using Resnik showed the highest accu-
racy compared to other basic classifiers such as NB, SVM, and KNN. More improvement 
using ensemble learning techniques such as AdaBoost and gradient boosting machines. 
Moreover, a hybrid gene similarity function (HGS) is proposed to measure the semantic 
similarity between genes. The proposed model using gradient boosting with HGS outper-
forms other classifiers, resulting in a performance of around 88 %. The proposed HEC-ASD 
model is trained and tested on HCG and non-mental genes and outperforms the reported 
model [14], which reaches an accuracy of 73%.

The improvement in the classifiers’ performance using the HGS function approved that 
HGS semantic similarity is an effective method to measure similarities between genes as 
follows:

•	 HGS takes the benefits from information content and the Wang method, so it is a 
hybrid method.

•	 HGS is fast, as there is no need to count the IC for gene terms from a large corpus GO.
•	 HGS considers the number of child nodes for gene terms instead of their IC values in 

calculating the semantic similarity between the terms.

Moreover, it confirmed the importance of using GO rather than PPI, gene expression, and 
gene regulatory network reported in [14], which neglects some interaction between genes. 
Furthermore, ensemble learning techniques improve the performance of the proposed pre-
dictive model, minimizing model errors. The limitation in our proposed model is that cer-
tain genes are not included in the analysis process because these genes have not annotated 
GO terms. This limitation does not affect the performance because their number is low 
compared to the number of genes. In the future, more improvements can be made integrat-
ing some other annotation resources with GO; also, GO is usually updated with more infor-
mation, which may solve this limitation.

Conclusion
Complex diseases such as autism lack the presence of genetic causes of the disease, as 
most research has focused on the environmental causes of the disease. Therefore, iden-
tifying disease-causing genes is a challenge. An effective methodology for predicting 
genes cause ASD is proposed using gene ontology (GO) to overcome the problems using 
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protein to protein interactions (PPI) network, which is used in state-of-the-art methods. 
Using GO to calculate genes’ functional similarities, which enhances predicting ASD 
genes. The semantic similarity between genes is between zero and one score using differ-
ent similarity measures. A new hybrid semantic similarity function was used, which is a 
hybrid between information content methods and Wang method. This measure showed 
improved accuracy than traditional semantic measures evaluated using different classi-
fiers. Random Forest (RF) classifier evaluated on high confidence genes using a hybrid 
gene similarity function (HGS) showed better performance than others classifiers. More-
over, a hybrid ensemble-based classification model (HEC-ASD) using regularized gradi-
ent boosting is proposed. HEC-ASD is boosting techniques, building models iteratively 
and sequentially, where each model seeks to correct the previous model errors. HEC-
ASD gets the highest improvement in accuracy predicting ASD disease genes compared 
with other models that used protein to protein networks and gene expression or gene 
regulatory networks. The results obtained from HEC-ASD model get the highest perfor-
mance accuracy, 88%, compared with other techniques, which gained 73%. This effective 
improvement indicates that gene ontology is effective in annotating genes, as it contains 
updated information about genes, and using gradient ensemble learning machines helps 
get an efficient model for predicting ASD disease genes automatically.
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