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Abstract 

Background:  The genomes of SARS-CoV-2 are classified into variants, some of which 
are monitored as variants of concern (e.g. the Delta variant B.1.617.2 or Omicron variant 
B.1.1.529). Proportions of these variants circulating in a human population are typically 
estimated by large-scale sequencing of individual patient samples. Sequencing a mix-
ture of SARS-CoV-2 RNA molecules from wastewater provides a cost-effective alterna-
tive, but requires methods for estimating variant proportions in a mixed sample.

Results:  We propose a new method based on a probabilistic model of sequenc-
ing reads, capturing sequence diversity present within individual variants, as well as 
sequencing errors. The algorithm is implemented in an open source Python program 
called VirPool. We evaluate the accuracy of VirPool on several simulated and real 
sequencing data sets from both Illumina and nanopore sequencing platforms, includ-
ing wastewater samples from Austria and France monitoring the onset of the Alpha 
variant.

Conclusions:  VirPool is a versatile tool for wastewater and other mixed-sample analy-
sis that can handle both short- and long-read sequencing data. Our approach does 
not require pre-selection of characteristic mutations for variant profiles, it is able to use 
the entire length of reads instead of just the most informative positions, and can also 
capture haplotype dependencies within a single read.

Keywords:  SARS-CoV-2, Wastewater analysis, Variant proportion estimation, 
Probabilistic modeling, Weighted mixture model

Introduction
The pandemic of COVID-19 is accompanied by an unprecedented level of genomic 
surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with 
more than 13.7 million genomic sequences deposited in the GISAID database [1] by 
early November 2022. These sequences are mostly obtained from single-patient samples 
following a positive clinical test. Long-term studies have shown that the composition 
of viral RNA fragments in wastewater reflects qualitatively and quantitatively the 
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breakdown of virus lineages circulating in the population of the catchment [2, 3]. 
Wastewater-based epidemiology (WBE) has recently emerged as a cost effective and 
scalable alternative to sequencing individual sample patients [4, 5]. Various PCR-based 
techniques can be used to estimate virus gene copy numbers in wastewater to ascertain 
epidemiological trends. This can be accompanied by sequencing the mixture of virus 
genomes present in the sample, effectively mapping the sequence variation of the virus 
within a local population. Wastewater monitoring can help to address biases in analysis 
of clinical samples that are due to differences in test availability and willingness to 
undergo a clinical test. Moreover, increases in wastewater viral RNA levels can precede 
the results of clinical testing by several days or even longer when clinical testing is not 
readily available [5, 6], and thus wastewater analysis can provide early warning signals of 
worsening epidemic situation or emergence of new variants of the virus in a particular 
area. To this effect, wastewater based epidemiology has proven to be a complementary 
and independent perspective on the pandemic situation, valuable for public health 
authorities and their pandemic management efforts [7–9].

The World Health Organization monitors prevalence of virus variants around 
the world and selects variants of concern (VOCs) characterized by an increased 
transmissibility, virulence, or the ability to evade protection provided by vaccines and 
drugs. Several of these variants have caused massive epidemic waves, most notably the 
Alpha, Delta, and Omicron variants (Pango lineages B.1.1.7, B.1.617.2, and B.1.1.529, 
respectively). It is therefore of high interest to monitor the prevalence of these variants, 
particularly at an onset of a new wave, when the public health authorities expect the 
arrival of a new variant in a certain area.

Early work in analysis of SARS-CoV-2 wastewater samples concentrated on producing 
an overall consensus sequence of the sample or on detection of individual mutations 
followed by manual analysis of the results [2, 11–16]. Later, the presence of variants 
of concern was detected based on pre-selected mutations typical for each variant [17–
19]. Pre-selected sites with mutations characteristic for individual variants were later 
also used to quantify the variant prevalence. At each such site, the proportion of the 
allele belonging to the variant is estimated, and the final proportion is determined as 
a mean or a median of single-site estimates [20–23]. Since each variant is considered 
independently of others, the method can produce inconsistent estimates (e.g.  the 
sum of proportions of individual variants is greater than one) and can be biased by 
mutations shared by multiple variants, an issue which is likely to be exacerbated given 
the increased occurrence of convergent evolution events between different lineages 
due to selective pressures. To account for these shared mutations, Ellment et  al.  [24] 
estimated the proportions of variants by optimising the L2 metric between a mixture 
of base frequencies of individual variants and observed frequencies of specific mutation 
sites. Amman et  al.  [3] pushed this idea further by estimating the proportions jointly 
for multiple samples, taking the time of their collection into account. Such an approach 
could also be extended to account for geographical dependencies.

A similar problem was previously addressed in the context of virus populations. In the 
quasispecies spectrum reconstruction (QSR) problem, the aim is to analyze a sequencing 
sample containing reads from several distinct virus variants (also called haplotypes) to 
recover individual haplotype sequences and quantify their prevalence [25–27]. Typically, 
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haplotypes are recovered by specialized assembly algorithms employing read overlaps 
and sequence coverage (see e.g. the path cover approach in ShoRAH [26]), followed by 
quantification of individual variants. In general, these approaches assume that individual 
haplotypes yield a consistent coverage across the whole reference genome, that the 
sequencing reads are randomly sampled from the haplotypes, and that haplotypes 
themselves are well represented by a single consensus sequence, possibly with a few local 
variations attributable to sequencing errors.

However, these assumptions are not satisfied in the case of SARS-CoV-2 wastewater 
sequencing. SARS-CoV-2 wastewater samples are typically sequenced by ARTIC 
protocol, originally developed in the context of Zika virus epidemics [28]. The virus 
sequence is divided into overlapping segments (called amplicons) that are first amplified 
through PCR, so as to increase the number of molecules present in the sequencing 
sample. Depending on the protocol, the approximate length of amplicons varies 
between 400bp [29] (further referred to as short amplicons) and 1.5-2.5kbp [30–32] 
(long amplicons). Only after the PCR amplification, the pooled sample is sequenced 
by Illumina or Oxford Nanopore MinION sequencers. The efficiency of the PCR 
amplification varies between amplicons, resulting in highly uneven coverage along the 
genome. Moreover, sequencing reads do not span amplicon boundaries, breaking the 
haplotype linkage between the amplicons. Finally, individual SARS-CoV-2 variants 
typically include a large number of distinct sequences, and this diversity is difficult to 
express as a single consensus sequence.

In this paper, we introduce a new approach based on a probabilistic model of 
sequencing reads originating from a mixture of variants. Our model captures sequence 
diversity present within individual variants through employing variant profiles derived 
from available GISAID sequences for a particular variant. At the same time, we also 
model sequencing errors, which is essential in application to data sets obtained by 
sequencing technologies with higher error rates, such as nanopore sequencing. Our 
approach does not classify individual reads or sites as belonging to a particular variant, 
but instead searches for a solution that has the highest consistency with the observed 
data. Consequently, we do not require pre-selection of sites characteristic for each 
variant, and we can use the information contained in the full length of the sequenced 
reads. In this aspect, our approach is similar to the approach by Eriksson et  al.  [25], 
though our model is more complex due to the specifics of the wastewater analysis 
problem. Finally, our approach is able to exploit linkage between individual sites within 
the same sequencing read, which leads to an increased accuracy in case of using long 
nanopore amplicons, in spite of higher sequencing error rates of nanopore sequencing. 
We tested our software on analysis of both simulated and real data sets, and we showed 
that our approach outperforms the median approach previously employed for estimating 
proportions of SARS-CoV-2 variants in wastewater samples.

Results
Mixture model for variant proportion estimation

For a given sequencing sample, VirPool estimates the fraction of sequencing reads 
originating from selected variants. Variant k is characterized by its variant profile Pk , 
where Pk(i, a) is the probability of observing nucleotide a at position i in variant k. The 
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positions are numbered according to the reference genome, and all sequences that we 
consider are aligned to this reference genome.

The VirPool algorithm is governed by a probabilistic model that assigns a likelihood 
to weights of individual variants w1, . . . ,wK  , where K is the number of variant profiles. 
Intuitively, these weights correspond to proportions of sequencing reads originating 
from individual variants mixed in a particular sample. Assuming that a particular read 
R = r1r2 . . . r|R| starting at position s originates from a variant k, the probability of 
observing this read is simply

This probability needs to be also adjusted for sequencing errors (for details, see 
Methods).

The overall likelihood is the probability of observing sequence of reads 
ρ = (R1, . . . ,Rm) given the variant weights w1, . . . ,wK  . In our model, each read is 
generated independently; thus the likelihood can be expressed as

Here, we assume that starting positions and lengths of individual reads are fixed in 
advance. Note that if these were sampled from any distribution independent of variants, 
this would only add a constant factor to the likelihood and would have no influence on 
the weight optimization.

For a given set of sequencing reads and variant profiles, the weights are estimated 
so that the likelihood L(w1, . . . ,wK |ρ) is maximized. For details of the optimization 
algorithm, see Methods.

The results of VirPool analysis are dependent on the selection of variants included 
in the analysis. In our work, we rely on Pango lineage classification of sequenced 
virus genomes [10], which is based on phylogenetic analysis. Selected clades of the 
phylogenetic tree are assigned Pango lineage identifiers, leading to a hierarchical system 
of subclades nested in larger clades. We use a selection of several Pango lineages as virus 
variants in our analysis. Typically, one would select variants of interest circulating in a 
given region at a considered time. In our experiments, we also include variant “other” 
that represents all the remaining SARS-CoV-2 sequences not belonging to the selected 
variants. A high weight of the “other” variant in the result allows the user to detect that 
the set of the variants should be adjusted.

Accurate prediction of variant proportions for different sequencing technologies

To evaluate the accuracy of our methods, we prepared synthetic mixtures combin-
ing several single-patient sequencing read sets downloaded from public databases, 
each containing sequencing reads from a single virus variant. We selected four vari-
ants common in Europe in the fall of 2020 (B.1.1.7, B.1.160, B.1.177, B.1.258), as well 
as samples from other variants which should be correctly classified as “other” profile 
(B.1.221, B.1.1.170, B.1.367, B.1.1.37, AP.1); see Methods for the mixture creation details. 

(1)Pr(R|k) =

|R|

i=1

Pk(s + i − 1, ri).

(2)L(w1, . . . ,wK | ρ) = Pr(ρ |w1, . . . ,wK ) =

m
∏

i=1

K
∑

k=1

wk Pr(Ri|k).
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We estimated proportions of these profiles both by VirPool and by the baseline median 
method described in Methods and compared the results to true proportions.

Table 1 shows that in almost all cases, VirPool can accurately estimate the true propor-
tions. This is true for all three considered sequencing protocols (Illumina paired 150bp 
reads with 400bp amplicons, Oxford Nanopore short 400bp amplicons, and Oxford 
Nanopore long 2kbp amplicons). The method also worked well when the mixtures con-
tained variants included in the “other” combined profile. The median method [21], while 

Table 1  Comparison of true and estimated variant proportions for the synthetic mixtures

The first group corresponds to mixtures created with Oxford Nanopore reads with long (2 kbp) amplicons, the second 
group corresponds to mixtures created with Oxford Nanopore reads with short (400 bp) amplicons, and the third group 
corresponds to mixtures created with Illumina reads. The proportion of other for the median estimator is calculated as 1 
minus the sum of the estimated proportions (therefore it can be negative)

Mixture name B.1.1.7 B.1.160 B.1.177 B.1.258 Other

Ont-long-1 True 0.19 0.42 0.23 0.16 0.00

VirPool 0.18 0.42 0.23 0.17 0.00

Median 0.19 0.43 0.24 0.17 − 0.03

Ont-long-2 True 0.17 0.38 0.21 0.15 0.09

VirPool 0.16 0.38 0.22 0.15 0.09

Median 0.17 0.38 0.20 0.15 0.09

Ont-long-3 True 0.42 0.00 0.00 0.35 0.23

VirPool 0.41 0.00 0.00 0.37 0.22

Median 0.39 0.01 0.02 0.36 0.23

Ont-long-4 True 0.00 0.65 0.35 0.00 0.00

VirPool 0.00 0.64 0.36 0.00 0.00

Median 0.01 0.63 0.43 0.02 − 0.08

Ont-short-1 True 0.19 0.42 0.23 0.16 0.00

VirPool 0.18 0.42 0.23 0.17 0.00

Median 0.19 0.43 0.24 0.17 − 0.03

Ont-short-2 True 0.17 0.38 0.21 0.15 0.09

VirPool 0.16 0.38 0.22 0.15 0.09

Median 0.17 0.38 0.20 0.15 0.09

Ont-short-3 True 0.42 0.00 0.00 0.35 0.23

VirPool 0.41 0.00 0.00 0.37 0.22

Median 0.39 0.01 0.02 0.36 0.23

Ont-short-4 True 0.00 0.65 0.35 0.00 0.00

VirPool 0.00 0.64 0.36 0.00 0.00

Median 0.01 0.63 0.43 0.02 -0.08

Illumina-1 True 0.15 0.23 0.27 0.34 0.00

VirPool 0.16 0.26 0.29 0.29 0.00

Median 0.20 0.26 0.30 0.35 − 0.11

Illumina-2 True 0.13 0.20 0.23 0.29 0.16

VirPool 0.14 0.22 0.25 0.25 0.13

Median 0.17 0.23 0.25 0.30 0.06

Illumina-3 True 0.16 0.25 0.00 0.37 0.21

VirPool 0.18 0.29 0.01 0.33 0.19

Median 0.23 0.32 0.00 0.38 0.07

Illumina-4 True 0.00 0.46 0.54 0.00 0.00

VirPool 0.00 0.47 0.53 0.00 0.00

Median 0.00 0.49 0.66 0.00 − 0.16
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providing in many cases similar results to VirPool, systematically overestimates the 
explicitly listed variants, in many cases resulting in estimates of named variants sum-
ming to more than 1.

Prediction accuracy at low coverages

To evaluate the accuracy at lower coverages, we subsampled our synthetic mixtures. Fig-
ure 1 shows the mean squared error of predictions averaged over multiple subsamples. 
Even though nanopore sequencing has a much higher sequencing error rate than Illu-
mina, the best weight estimates are achieved with nanopore long 2kb amplicons. This 
suggests that VirPool can effectively take advantage of long-range dependencies between 
positions covered by a single amplicon. For both nanopore and Illumina with short 
amplicons, the error decreases with increasing coverage until reaching a plateau, in most 
cases around 100× genome coverage. In most cases, the median approach has signifi-
cantly larger error than VirPool.

Reliability of detection of low‑abundance variants

To test detection of variants occurring at low frequencies, we created artificial mixtures 
of two variants from among the fall of 2020 samples, with the minor variant present in 
frequencies ranging from 0.1 to 20%. Fig. 2 shows that VirPool is generally accurate for 
frequencies of 5% or more. Even frequencies of 2% were generally detected, but the vari-
ance in the results is high. Conversely, at very low frequencies, the presence of the minor 
variant may be overestimated. Note that detection of such low-frequency variants has 
been shown to be difficult and requires an extremely high coverage even with Illumina 
sequencing data [34].

We also attempted to replicate data corresponding to the Alpha (B.1.1.7) wave 
transitioning to Delta (B.1.617.2) (Fig. 3) and Delta transitioning to Omicron (B.1.1.529, 
specifically BA.1 subvariant) (Fig.  4). Again, results above 5% are reliable, with the 

Fig. 1  Variant proportion estimation errors as a function of sequencing coverage. Left: long nanopore 
mixtures; Center: short nanopore mixtures; Right: Illumina mixtures. The mean squared error (MSE) was 
averaged over ten random subsamples of synthetic mixtures from Table 1 for each considered coverage. Both 
axes are in logarithmic scale
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exception of short nanopore data in the Omicron wave, where the estimated weights of 
Omicron are lower due to a false prediction of the “other” variant.

In‑vitro mixture of patient samples

Using nanopore long amplicons, we sequenced and analyzed a mixture of eight 
clinical samples. Presence or absence of individual variants was correctly identified 
by VirPool (Table  2), and the estimated proportions agree well with a separate 
analysis based on examination of frequencies of mutations specific for individual 
clinical samples, as determined by previous sequencing of each sample individually. 
Even though an effort has been made to balance the original sample proportions 
using dilution factors based on measured Cq values (Additional file  1: Table  S2), 
the resulting proportions are influenced by many factors, such as different levels of 
fragmentation of RNA and subsequent differences in amplification efficiency.

(a) ONT long (b) ONT short (c) Illumina
Fig. 2  Estimated proportion of the minor variant in synthetic experiments among fall 2020 samples. Blue 
crosses represent the true proportion of the minor variant. Orange lines represent the median, red circles are 
outliers. In each setting, the graphs show the distribution for 10 randomly generated data sets for each pair of 
variants (including the “other” group). The average coverage for each synthetic data set was 5000

(a) ONT short (b) Illumina

Fig. 3  Estimated proportion of the minor variant in synthetic mixtures of the Alpha and Delta variants. Blue 
crosses represent the true proportion of the minor variant. Orange lines represent the median, red circles 
are outliers. In each setting, the graphs show the distribution for 20 randomly generated data sets with the 
prescribed minor variant proportion, with Alpha and Delta playing the role of the minor variant in 10 samples 
each. The average coverage for each synthetic data set was 5000
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Analysis of wastewater samples from the Alpha wave

We applied VirPool to time series data sets of wastewater samples spanning several 
months in regions of Bischofshofen, Austria (Illumina data) [3] and Nice, France 
(nanopore data) [21]. Wastewater samples are highly challenging, because the cover-
age is often highly uneven (see Additional file 1: Fig. S1).

Figure 5 shows the analysis of a time series sampled between December 2020 and 
February 2021 from the area of Bischofshofen, Austria (State of Salzburg), sequenced 
by Illumina short read protocol. Comparing VirPool analysis to the analysis by 
VaQuERo pipeline [3], both tools predict a sharp increase in the Alpha variant in 
January and February of 2021, which is also apparent in the clinical samples from 
GISAID.

Both methods also agree on the general composition of samples and most of the 
trends (Additional file  1: Table  S4). One of the notable differences is a lower prev-
alence of the Alpha variant at the end of February in VirPool predictions, which is 
compensated by a rebound in the B.1.258 prevalence to 10%. By examining allele fre-
quencies, we found 7 alleles that strongly support inclusion of B.1.258 (Additional 
file  1: Table  S5); three of these alleles are typical for the whole B.1.258 clade, while 
four additional alleles are characteristic for subvariant B.1.258.17, which was indeed 
detected in clinical samples in the state of Salzburg (12 samples out of 136 in GISAID 
in February and March). In contrast, several alleles very common in B.1.258 are either 
missing completely (e.g., 8047T) or are present at very low frequencies (e.g., 7767C, 
22879A, 29734C). This may be a consequence of a very uneven coverage or variant-
specific differences in amplification efficiency for specific primers. It may possibly 
also indicate recombination or some other variant sharing characteristic mutations 
with B.1.258.17; ten samples in GISAID outside of B.1.258 collected between January 
and March share the same 7 alleles. Their classification is typically generic (B.1), while 
some of them are classified as B.1.367 or B.1.221. In spite of this uncertainty, the data 

(a) ONT short (b) Illumina

Fig. 4  Estimated proportion of the minor variant in synthetic mixtures of the Delta and Omicron variants. 
Blue crosses represent the true proportion of the minor variant. Orange lines represent the median, red 
circles are outliers. In each setting, the graphs show the distribution for 20 randomly generated data sets with 
the prescribed minor variant proportion, with Delta and Omicron playing the role of the minor variant in 10 
samples each. The average coverage for each synthetic data set was 5000
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seem to support a lower prevalence of the Alpha variant and a possible presence of 
B.1.258.17 variant in agreement with the VirPool predictions.

One of the strengths of VirPool is that the same method can be applied to both 
Illumina and nanopore data sets, only changing settings for the sequencing error rate. 
Figure 6 shows the result of analysis of selected samples from Nice, France, sequenced by 
the short-amplicon nanopore sequencing protocol. In agreement with Rios et al. [21], we 
observe a very sharp increase in the Alpha variant prevalence in February 2021, which 
is not observed in the clinical samples from GISAID in the Provence-Alpes-Côte d’Azur 
region, suggesting that this outbreak was not captured in a timely manner by genome 
sequencing efforts. In agreement with Rios et al. [21], we see a significant prevalence of 
the Alpha variant in the Les Moulins site already in January 2021.

VirPool consistently predicts several percent of the Alpha variant in all samples from 
October 2020. Rios et al. [21] also observe several mutations characteristic for the Alpha 
variant in October 2020, but do not comment or investigate this phenomenon. Upon 
closer examination, we see a similar pattern as in the case of B.1.258 variant in the 
Austrian samples, with some mutations characteristic for a given variant (in this case 
Alpha) having a relatively high frequency, while others being absent (Additional file 1: 
Table S6). Here, having samples from multiple locations, we observe that some genome 
positions give consistent results, while others vary between samples, further supporting 
the hypothesis of amplification efficiency differences. Overall, we hypothesize that 

Table 2  Estimated proportions for the in-vitro mixture sample of eight patient samples

The second rows shows a simple estimate based on computing the median of frequencies for mutations unique to one of 
the eight samples and then summing the medians over the samples with the same variant

B.1.1.7 B.1.160 B.1.177 B.1.258 other

Number of samples 2 samples 1 sample 0 samples 4 samples 1 sample

Estimate from unique mutations 0.55 0.08 0.00 0.33 0.07

VirPool estimate 0.53 0.07 0.00 0.25 0.15

Fig. 5  Estimated proportions of the Alpha (B.1.1.7) variant in wastewater samples from Bischofshofen, 
Austria [3]. The red line represents the proportions estimated by VirPool model. The green line represents 
the proportions estimated by VaQuERo model [3]. The blue circles represent the daily proportions of B.1.1.7 
among Austrian samples submitted to GISAID, the number of samples is reflected by circle size; blue line is 
the smoothed version of those data
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Fig. 6  Estimated the Alpha (B.1.1.7) proportions in wastewater samples from Nice, France, using data 
from Rios et al. [21]. If multiple samples were sequenced for a given location and month, the median was 
taken. The last row (“GISAID”) is the proportion of sequences with variant B.1.1.7 submitted to GISAID 
database from French region Provence-Alpes-Côte d’Azur in the same month
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the Alpha variant was indeed present in the area, which is further supported by three 
GISAID Alpha samples collected in Marseille in the same month.

VirPool also estimates a significant decrease in the Alpha variant proportions in 
several locations between February and March 2021. We investigated this decrease in 
the Harbor location (from 74% in February to 59% in March), where VirPool estimates 
a rebound of variants B.1.177 (to 11%) and B.1.160 (to 15%). The predicted increase in 
B.1.177 seems to be driven by C22227T mutation, which is characteristic for B.1.177 
and very rare in B.1.1.7; nonetheless, it appeared at the frequency of 69% in the reads 
from this sample (Additional file  1: Table  S7). All the other mutations characteristic 
for B.1.177 are either present at much lower frequencies or completely missing. Also, 
C22227T mutation occurs in several B.1.1.7 GISAID samples from France. All this 
evidence leads us to a conclusion that a B.1.1.7 subvariant with this mutation has been 
highly prevalent in this area and the rebound of B.1.177 is a false positive. This points 
to a weakness of variant characterization by probabilistic profiles representing global 
distribution of mutations, which may not agree with locally circulating strains, although 
as we see in other experiments, this usually does not cause problems in the estimation.

Methods
Variant profile estimation

Our method requires a set of K profiles, each representing one variant of the SARS-
CoV-2 virus. In these profiles, Pk(i, a) is the probability of observing nucleotide a 
at position i in variant k, where positions are numbered according to the reference 
sequence (we use Wuhan/Hu-1/2019). In our experiments, we build these profiles 
from the SARS-CoV-2 genomic sequences downloaded from the GISAID database [1]. 
We used GISAID version from February 5, 2022, omitting sequences with incomplete 
or missing collection date, and incomplete genomes with less than 25kbp of sequence. 
We then subsampled the data so that at most roughly 50,000 sequences were kept per 
month. In specific experiments, we use only a subset of GISAID records corresponding 
to the period from which our samples originate.

In each experiment, we selected several variants designated by their Pango lineage 
identifier (Additional file  2, part B). The profile for each selected variant is built from 
the samples assigned to this lineage and its sublineages according to GISAID metadata. 
Specifically, we assign each sequence to the nearest ancestor clade from our list of 
selected lineages. This allows for selecting both a lineage and its sublineage, such as B.1.1 
and B.1.1.7; in such case sequences from the sublineage are excluded from the parent 
lineage profile. If no ancestor clade is in the list, the sequence is assigned label “other”, 
representing genomic background of all other lineages.

Each sequence was aligned to the common reference sequence Wuhan/Hu-1/2019 
by minimap2 [35]. Intuitively, value Pk(i, a) would be estimated from data as the relative 
frequency of symbol a at position  i among the genomes assigned to the variant k. 
However, some variants contain characteristic deletions shared by almost all genomes 
belonging to the variant. As a result, some genomic positions are covered by only a small 
number of genomes belonging to variant k. Let γk be a threshold on the coverage. Then 
we set the variant profile probabilities as follows:
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where Ck(i, a) is the number of occurrences of base a at position i among genomes of 
variant k. Thus, the positions with coverage lower than γk , typically containing gaps 
characteristic for the variant, will have the sum of values Pk(i, a) lower than one. This 
will have no impact on reads originating from variant k, because they have gaps at such 
positions, but it will penalize reads from other variants that do not have such gaps. In 
our experiments, we set γk as the coverage at the first percentile (smallest 1%) of coverage 
within the genome for each variant k.

To select the list of variants for analysis of new samples, the user would choose ones 
that circulate in a particular area at the time, with additional variants added from 
relevant watch lists (such as WHO variants of concern and variants of interest). The 
profiles should be built based on sequences with recent collection dates (latest months) 
and updated periodically in order to include recent evolutionary changes within virus 
sequences.

Substitution error

The mixture model characterized by equations (1) and (2) in the Results section 
assumed error-free sequencing. In our final model, we add substitution sequencing 
errors that occur uniformly at random with error rate ε . The probability of observing 
read R = r1 . . . r|R| at position s from variant k is then

In our experiments, we use ε = 0.001 for Illumina reads and ε = 0.05 for nanopore 
reads. Note that both real insertions and insertion errors are ignored by our model; read 
positions with a deletion are treated as missing data.

Mixture weight estimation

The optimal weights W = w1, . . . ,wK  for a read set {R1, . . . ,Rm} are estimated via 
minimisation of the negative log-likelihood

To simplify the optimisation task to an unconstrained case, we use softmax 
transformation [36]. Namely, we define auxiliary variables ξ1, . . . , ξK  and set the values of 
the original weight variables w1, . . . ,wK  as the softmax of the auxiliary variables:

Pk(i, a) =
Ck(i, a)

max
{

γk ,
∑

b Ck(i, b)
} ,

Pr[R|k , ε] =

|R|
�

i=1



(1− ε) · Pk(s + i − 1, ri)+
ε

3
·
�

a�=ri

Pk(s + i − 1, a)





W ∗ = arg min

wk ≥ 0,
∑

wk = 1

−

m
∑

i=1

log

[

K
∑

k=1

wk · Pr[Ri|k]

]

wi =
eξi

∑K
j=1 e

ξj
,
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This transformation ensures that all weight variables are non-negative and sum up to 1. 
This leads to the following unconstrained optimization task:

The minimisation is done using the L-BFGS-B algorithm [37] implemented in scipy 
Python library [38] with symbolic Jacobian. We  use numba library to speed up the 
calculations by pre-compilation of time-critical functions.

Analysis of sequencing samples

Alignments of sequencing reads to the reference genome were downloaded from 
ENA, or where needed, were produced by minimap2 for ONT reads and bwa-mem 
for Illumina reads. We use only primary alignments for each read. In our analysis, we 
consider a paired read as a single unit with both parts originating in the same variant, 
and we require that both parts are aligned.

Some mutations tend to occur repeatedly within the virus evolution (homoplasic sites). 
To avoid confusion between variants, we mask known homoplasic sites [39] and do not 
consider them in the analysis. Some variants have mutations within primer binding 
positions. These positions will appear in the reads as matching the primer, not the 
sequenced sample. Since in most cases, these primers are not trimmed in the underlying 
data sets, we mask primer positions (ARTIC protocol V3 or V4 as appropriate).

Baseline method and evaluation

In our experiments, we compare VirPool with an estimator based on median proportions 
previously used by Rios et al. [21]; similar methods were also used by other studies [20, 
22, 23]. For each selected variant, this estimator needs a list of characteristic mutations; 
we use the lists by Rios et al. [21] from their code repository [40]. The relative frequency 
of each characteristic mutation is computed among reads aligned to the corresponding 
position. The resulting estimator of the variant’s proportion is the median of these 
frequencies. Since the median estimate is computed independently for each variant, 
it is not guaranteed that proportions of all variants will sum to one. We attribute the 
remaining probability to the background “other” variant; this can also be a negative 
number.

To evaluate the accuracy of both VirPool and the median estimator on 
simulated data, we use the mean squared error (MSE) measure defined as 
MSE(W , Ŵ ) = 1

K ·
∑K

k=1

(

wk − ŵk

)2 , where W = (w1, . . . ,wK ) and Ŵ = (ŵ1, . . . , ŵK ) 
are the true and estimated proportions of variants, respectively. Note that this metric 
supports negative weight estimates, so it can be used for the median estimator.

Synthetic mixtures

The synthetic mixtures for evaluating the accuracy of our method were created by 
combining reads from several single-patient sequencing samples downloaded from ENA 
(see Additional file  2 parts A and B). For initial experiments, we selected a subset of 
considered variants and pooled all mapped reads from all fall 2020 samples belonging 

W ∗ = softmax

{

arg min
ξ1,...,ξK

−

m
∑

i=1

log

[

K
∑

k=1

eξk
∑K

j=1 e
ξj
· Pr[Ri|k]

]}

.
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to these variants (Additional file  2, part A). For experiments evaluating the accuracy 
at low coverages, we subsampled these mixtures to the desired coverage. To assess the 
sensitivity to low abundance variants, we created mixtures of pairs of variants, again 
pooling all samples belonging to a particular variant from the fall 2020 samples. The 
reads corresponding to the two variants were then subsampled to achieve the desired 
proportions and the total average coverage of 5000. A similar procedure was used for 
samples representing transitions from Alpha to Delta and from Delta to Omicron. 
In all syntetic mixtures, the true proportions were defined as the proportion of reads 
originating from the samples belonging to a particular variant.

In vitro mixture sequencing

We created and sequenced a mixture of eight single-patient samples (Additional file 1: 
Table  S2) that were previously sequenced individually at the Biomedical Research 
Centre of the Slovak Academy of Sciences in Bratislava, Slovakia. The samples originated 
from oropharyngeal swabs collected in January 2021. The sample processing and 
sequencing library construction were carried out as described earlier [41], generally 
following the COVID-19 virus protocol (PTC_9096_v109_revF_06Feb2020; Oxford 
Nanopore Technologies, Oxford, UK) with some modifications. After RNA extraction 
for each sample, SARS-CoV-2 RNA was quantified by an RT-qPCR assay carried on 
QuantStudio™ 5 Real-Time PCR System (Applied Biosystem, Foster City, California, 
USA). Individual samples were diluted according to the obtained quantification cycle 
(Cq) to obtain approximately equimolar mixture (Additional file 1: Table S2). From this 
mixture of all eight samples, 11µ l was then used for reverse transcription. The resulting 
cDNA was amplified using the 2-kb primer scheme [30], and the sequencing library was 
constructed using a ligation kit (SQK-LSK109). A single library was used for sequencing, 
and thus no barcoding was performed. The library was sequenced using an R9.4.1 flow 
cell (FLO-MIN106) on a MinION Mk-1b device (Oxford Nanopore Technologies, 
Oxford, UK). Nanopore sequencing data were base called using Guppy v.4.4.1 and 
aligned using minimap2 v.2.13-r852 [35].

Wastewater samples

As some wastewater samples have a very uneven coverage, signal from extremely highly 
covered positions can overwhelm the rest of the genome. Therefore we subsample reads 
from such highly covered positions. In our experiments, we set coverage threshold t 
to 1000. For each read, we compute the median coverage mr of the genome in the area 
covered by this read. The read is then chosen into the subsampled set with probability 
min{1, t

mr
} . As a result, all reads are kept in regions with coverage below t.

To visually compare the time series obtained by our wastewater analysis with variant 
proportions from GISAID (as in Fig. 5), we smooth the GISAID frequencies using locally 
weighted linear regression [42], as the number of samples sequenced in a single day in the 
location of interest can be low. The data set used for regression contains a point for each 
sample from a given location in GISAID. This point is (d, 1) for a sample from date d 
with the given variant or (d, 0) for any other variant. In other words, vector X consists of 
dates of the samples (converted to e.g. day difference from the beginning of year 2020), 
and vector Y contains values 0 and 1, depending on the variant of each sample. We use 
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the Gaussian distance function w(x, z) = exp
(

− (x−z)2

2τ 2

)

, where τ is a smoothness 

parameter.

Discussion
In this paper, we presented a new method for estimating the proportions of SARS-
CoV-2 variants in mixed samples based on a probabilistic model, which captures known 
genetic variability of each variant. Explicit modeling of sequencing errors and utilization 
of haplotype information makes the proposed approach particularly useful for current 
long-read sequencing technologies. We demonstrated on synthetic mixtures that our 
tool gives accurate results for different sequencing technologies and with different 
variant combinations, including variants that were included in the background “other” 
profile. The proportions can be estimated even at relatively low coverage and even for 
variants with proportions as low as 5%. This makes it also relevant for deconvoluting 
coinfections in single-patient samples. Our tool can be easily adapted to other viruses 
where a comprehensive database of sequences belonging to individual clades is available.

Our work suggests several open problems in this area. First, we selected the set of 
variants manually in this paper. This is often practical, as various authorities post lists 
of variants of concern. Nonetheless, automated selection of relevant variants for a given 
sample is an interesting problem. Some work in this direction was done by Amman 
et al. [3] who select variants prior to estimating their proportions.

It would be also desirable to provide some measure of confidence whether a given 
variant actually appears in the sample, particularly when the model predicts relatively 
low proportion. This can be achieved by measuring of the statistical significance of 
individual estimated proportions, similarly to classic regression analysis, or by requiring 
that reads supporting a given variant are spread along the entire genome. Highly uneven 
support of a variant along the genome can be caused by the presence of recombinant 
viruses. It would be interesting to extend our model to discover the presence of such 
recombinants in the sample.

We could also extend our probabilistic model by removing various assumptions 
built into it. Although the entire read is in our model generated from one variant, and 
thus the positions in a read are not independent, once the variant is fixed, the bases in 
the variant profile are assumed to be independent. By building more complex variant 
profiles it would be possible to capture linkage between different genome positions, 
particularly positions within a single amplicon. Similarly, although we do not assume 
that the coverage is uniform at all positions, we assume that the variant proportions are 
the same at all positions in the genome. However, mutations occurring at primer binding 
sites may render some primer pairs less efficient in some variants, which violates this 
assumption (see e.g. changes in the ARTIC primer sets V4 and V4.1 to avoid mutations 
in the Delta and Omicron variants, respectively). To handle this phenomenon, our 
model can be extended to consider the starting position of the read as a random variable. 
The typical read depth profiles of individual variants necessary for this change can be 
estimated from single-patient samples sequenced using the same technology and primer 
set.
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A crucial property of our model is its ability to capture long-range dependencies 
within reads, which is particularly relevant when coupled with use of long amplicons 
and nanopore sequencing. In fact, an early version of our model [33], which was una-
ble to take this information into account, suffered from lower accuracy which had to be 
addressed by ad-hoc heuristics. The utilization of long-read sequencing technology can 
also by beneficial for the de novo characterisation of variants from wastewater sequenc-
ing data alone, which is still an open and challenging task. Furthermore, the usefulness 
of WBE critically depends on a timely availability of its results to health authorities and 
policymakers [7, 8]. The portability of Oxford Nanopore MinION devices potentially 
makes an on-site application feasible, drastically reducing logistical challenges. VirPool’s 
evidenced capability to use nanopore data thus may serve as a catalyst for a technology 
shift.
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