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Abstract 

Background:  Drug–drug interactions (DDIs) occur when two or more drugs are taken 
simultaneously or successively. Early detection of adverse drug interactions can be 
essential in preventing medical errors and reducing healthcare costs. Many computa-
tional methods already predict interactions between small molecule drugs (SMDs). As 
the number of biotechnology drugs (BioDs) increases, so makes the threat of interac-
tions between SMDs and BioDs. However, few computational methods are available to 
predict their interactions.

Results:  Considering the structural specificity and relational complexity of SMDs 
and BioDs, a novel multi-modal representation learning method called Multi-SBI is 
proposed to predict their interactions. First, multi-modal features are used to ade-
quately represent the heterogeneous structure and complex relationships of SMDs 
and BioDs. Second, an undersampling method based on Positive-unlabeled learning 
(PU-sampling) is introduced to obtain negative samples with high confidence from 
the unlabeled data set. Finally, both learned representations of SMD and BioD are fed 
into DNN classifiers to predict their interaction events. In addition, we also conduct a 
retrospective analysis.

Conclusions:  Our proposed multi-modal representation learning method can extract 
drug features more comprehensively in heterogeneous drugs. In addition, PU-sampling 
can effectively reduce the noise in the sampling procedure. Our proposed method 
significantly outperforms other state-of-the-art drug interaction prediction methods. In 
a retrospective analysis of DrugBank 5.1.0, 14 out of the 20 predictions with the highest 
confidence were validated in the latest version of DrugBank 5.1.8, demonstrating that 
Multi-SBI is a valuable tool for predicting new drug interactions through effectively 
extracting and learning heterogeneous drug features.

Keywords:  Drug–drug interactions, Multi-modal representation learning, PU-sampling

Introduction
DDIs refer to the phenomenon in which one drug alters the pharmacological effects 
of another drug when two or more drugs are taken simultaneously or sequentially [1]. 
DDIs may lead to unexpected adverse drug side effects [2]. Early detection of DDIs 
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can effectively prevent medical errors and reduce healthcare costs. Early on, research-
ers identified DDIs by wet experiments and later used high-throughput screening and 
in  vivo models. However, these methods are time-consuming and labor-intensive, so 
systematic combinatorial screening of potential DDIs remains challenging. To reduce 
the cost in time and money, computational methods are gaining more highlights. Early 
researchers collected drug data from the literature, reports, etc., to predict DDIs, and 
some proposed machine learning methods to predict DDIs [3].

The current DDI prediction methods based on machine learning are broadly classified 
into similarity-based and network-based methods. Similarity-based methods assume 
that drugs with similar properties interact with the same drugs [4]. Early research used 
molecular structure similarity information to identify new DDI [4]. Since single molecu-
lar structure information is insufficient to express drug characteristics, [5] established a 
DDI prediction model by integrating multiple drug similarity measures. Moreover, four 
classifiers were adopted to construct predictive models simultaneously [6]. With the 
advancement of deep learning research, DeepDDI [7] used the drug name and chemical 
structure as inputs to the deep neural network (DNN) to predict the DDI types of drug 
pairs and drug-food component pairs. The DDIMDL [8] constructed four sub-models 
using features of each drug and used joint deep learning DNNs to predict DDI-related 
events. The latest study combines two drugs in four different ways. It feeds the combined 
drug feature representation into four different drug fusion networks to obtain the latent 
feature vectors of the drug pairs [9]. The network-based method converts the graph into 
a low-dimensional space that preserves the information of the structural graph and then 
uses the learned low-dimensional representation as a feature for prediction. [10] con-
structed a network based on chemical structure and side effect similarities of drugs and 
applied a label propagation algorithm to identify DDIs. Decagon, a graph convolutional 
neural network, was designed for running on large multi-modal graphs [11]. Based on 
this model, a three-picture information dissemination (TIP) model improved prediction 
accuracy and time and space efficiency [12].

Generally, most of the state-of-the-art methods mentioned above only predict whether 
there exists a DDI between a pair of SMDs. As the number of biotech drugs (BioDs) 
increases, so makes the threat of adverse interactions between SMD and BioD. Biolog-
ics are medicines derived from living cells or biological processes [13, 14]. Unlike the 
relatively simple structure of SMDs, the structural complexity of biologics makes the 
characterization of SMD and BioD drug pairs difficult [15]. Besides that, most methods 
straightforwardly employ random sampling in unlabeled data for generating negative 
samples, resulting in many false negatives in the sampled negative samples [16, 17].

To overcome these limitations, we propose a multi-modal representation learning 
method called Multi-SBI for predicting the interaction between SMDs and BioDs. Con-
sidering the structural specificity and relational complexity of SMDs and BioDs, we first 
apply multi-modal representation learning to learn drug features thoroughly. On the one 
hand, it takes the one-dimensional sequence information of two types of drugs as input. 
It learns the sequence features separately through traditional methods such as convo-
lutional neural networks (CNN). On the other hand, the association information of all 
drug nodes in the heterogeneous network is encoded as a one-dimensional feature vec-
tor. Then, we adopt the PU-sampling to select high-confidence negative samples, which 
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can reduce sampling noise. Finally, different modal drug pair features of dimensionality-
reducing are input into DNN classifiers to predict the new SMD-BioD interaction (SBI). 
In the SBI prediction experiment on the public data set, the fully designed Multi-SBI 
has a higher accuracy rate and performs better than several state-of-the-art methods. In 
addition, in retrospective analysis, the high-confidence SBI predicted by the Multi-SBI 
model has been verified by the latest version of the DrugBank database, proving that 
our model has solid predictive capabilities. To summarize, the main contributions of this 
paper are:

•	 A multi-modal representation learning model is developed for predicting SBI that 
can effectively characterize drugs through the structural information of drugs and 
topological associations in heterogeneous networks.

•	 PU-sampling is designed to extract unbalanced unlabeled negative samples, which 
can extract negative samples with high confidence.

•	 The experiments show that Multi-SBI has achieved excellent performance in all indi-
cators (accuracy, AUC, AUPR, F1, precision, and recall). It yielded higher perfor-
mance in predicting SBI.

The rest of this paper is structured as follows. The “Methods” section introduces the 
basic concepts and processes of Multi-SBI. In addition, the experiments are analyzed in 
the “Experiments” section. Next, the Multi-SBI is analyzed and verified through various 
experiments in the “Discussion” section, finally showing the retrospective analysis. In 
the “Conclusion” section, the work that has been carried out and the direction of future 
research are summarized.

Methods
Problem description

As shown in Fig. 1a, conventional DDI prediction focuses on SMDs, only containing one 
type of drug node and drug-protein association, and drug features only consist of struc-
tural forms like SMILES. In comparison, in Fig.  1b after adding BioDs three types of 

Fig. 1  Two DDI diagrams. a The traditional drug interaction (SSI) prediction task contains one type of drug 
node and two types of node associations. b Two types of drug nodes and five types of node associations are 
included in the SMD-BioD interaction (SBI) prediction task
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nodes and five types of associations make the SBI prediction more complex. Further-
more, BioDs are composed of amino acid sequences, which differ from SMDs. The other 
problem is that there are no accurately annotated negative samples in the database, 
which means the prediction results depend on the sampling strategy. To solve the above 
problem, we use multi-modal representation learning to learn complex drug pair fea-
tures and apply the PU-sampling method to deal with imbalanced data.

Multi‑modal representation learning

The performance of deep learning methods is largely reflected in efficient data represen-
tation, which means that a model can automatically discover the representation needed 
for feature extraction or classification from raw data using a set of techniques. This pro-
cess is called representation learning, which is one of the fundamental steps in end-to-
end deep learning. Many works have integrated deep learning methods into the feature 
representation design of input data to more easily extract useful feature information 
[18–24].

The workflow of Multi-SBI is depicted in Fig. 2. Considering the structural specificity 
and relational complexity of SMD and BioD, our multi-modal representation learning 
comprises two separate pathways. As shown in Fig. 2a, structure feature representation 
and network topology representation are obtained. In addition to traditional methods, 
we propose two independent three-layer 1D-CNN blocks to learn the drug structure 

Fig. 2  The overall workflow of Multi-SBI. a Multi-modal representation learning obtains structure and 
network topology features from the diverse drug types. b PU-sampling is introduced to obtain negative 
samples with high confidence from the unlabeled data set. c Combining multi-modal data into the DNN 
classifiers provides a complementary view of SBI
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features from the sequence input(Structure/Sequence). After one-hot encoding the four 
interconnected networks (SMD-protein interaction (SPI), BioD-protein interaction 
(BPI), SMD-SMD interaction (SSI), and BioD-BioD interaction (BBI)), the similarity is 
encoded into a heterogeneous network to fully characterize drugs relational topology 
representation.

Structure feature representation

In previous studies, the information about the chemical structure of SMD derives from 
the drug’s chemical substructure, i.e., molecular fingerprints. Here, we apply Chemistry 
Development Kit (CDK) [25], an open-source tool commonly used in DDI prediction, to 
generate substructures. In more detail, we select the daylight fingerprint method in the 
CDK toolkit, which is the most typical representative of the topological molecular fin-
gerprint. The raw inputs are the simplified molecular input line entry system (SMILES) 
of all drugs downloaded from DrugBank [26], and 1024-dimensional molecular struc-
ture features of SMDs are extracted after the algorithm.

The structure of BioD is similar to protein, both of which are composed of pri-
mary amino acid sequences. Many feature extraction methods are based on amino 
acid sequences [27, 28]. Expressly, these features usually represent information about 
the physicochemical properties or positions of amino acids that appear in the protein 
sequence. However, BioD sequence data are scarce in the field of a drug interaction. This 
study has only 148 unique BioDs, and traditional methods cannot extract highly dis-
criminative features in such a small amount of data. Therefore, here we utilize ESM [29] 
to pre-train BioDs. Because the ESM specially adopts a masking language to model the 
target and contains information that is not available in other feature extraction methods. 
Given a BioD, we intercept the top 1024 bits of its amino acid sequence and encode it 
through the ESM algorithm. In this way, each BioD is encoded into a 1280-dimensional 
vector.

Traditional methods directly apply molecular fingerprints or molecular descriptors 
of drugs and targets without considering the local connection between atoms and the 
chemical structure of amino acids [30, 31]. In addition to daylight and ESM, we integrate 
two 1D-CNN blocks for the original sequence features to complementarily extract the 
complex chemical information and contextual relationships between the local structures 
in the sequence.

In this study, the SMILES string for SMD consists of 64 different characters, and BioD 
consists of 25 different characters. We represent each character with the corresponding 
integer (e.g. "[": 1, "H": 2, "@": 3). In addition, both SMILES and amino acid sequences 
have different lengths in order to represent the two classes of drugs efficiently, we con-
vert each SMILES and amino acid sequence into embedding vectors of length 1000 and 
100, and input them into a two-channel CNN in the module.

As shown in Fig. 3, the two-channel CNN module in this study contains two inde-
pendent CNN blocks, and each aims at learning representations from SMILES strings 
and amino acid sequences. For each CNN block, we use three consecutive 1D con-
volutional layers with an increasing number of filters. The second layer has twice 
as many filters as the first layer, and the third convolutional layer has three times as 
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many filters as the first. The last layer is the maximum pooling layer. The output of the 
maximum pooling layer are connected and fed into the three-layer DNN classifier.

Network topology feature representation

The integration of bioinformatics prior knowledge can effectively improve the 
accuracy of prediction [8]. Therefore, in addition to applicable drug structure and 
sequence features, we use four network topology features from the DrugBank data-
base as another modality.

The topology network inputs for Multi-SBI are constructed based on known prior 
knowledge: SSI, BBI, SPI, and BPI. Among them, the protein in the SPI and BPI 
includes four parts: target, enzyme, carrier, and transporter. Multi-SBI first performs 
one-hot encoding on each network to obtain the distribution of each drug node, 
which captures its topological relationship to all other nodes in the heterogeneous 
network. We generate a 2308-dimensional SSI embedding and a 1910-dimensional 
SPI embedding for each SMD through the one-hot encoding strategy. The value (1 or 
0) indicates the presence or absence of the protein-related interaction with the cor-
responding drug. Similarly, we generate the 151-dimensional BBI embedding and the 
201-dimensional BPI embedding for BioDs.

Fig. 3  Two independent three-layer 1D-CNN blocks extract context structure information from different 
drug sequence inputs. The length of the convolution filters is fixed to 8, while the filter numbers are 64, 128, 
and 192, respectively
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A critical problem of direct one-hot encoding is that the calculated topological rela-
tionship is not entirely accurate, partly because of the noisy, incomplete, and high-
dimensional nature of biological data. To speed up the prediction process and eliminate 
noise as much as possible, we compress features to reduce sparsity. Instead of using bit 
vectors, we use the Jaccard similarity metric to calculate paired drug–drug similarity 
from bit vectors. Jaccard similarity is calculated by Eq. (1):

Among them, A and B are the set forms of the position vectors of the two drugs; 
|A ∩ B| is the intersection of A and B. Using Jaccard similarity, we convert topological 
features of SMD drugs and BioD drugs to 1941 and 148 dimensions (determined by the 
number of drugs). Because SMD drugs have 1941 dimensions, we use PCA to reduce the 
feature dimension to 512 dimensions.

Finally, we obtain the drug pair feature consisting of two types of sequence features 
and two types of topological features.

PU‑sampling

In some applications, such as drug interaction prediction, only positive cases are known 
and labeled, while unlabeled data may include negative and unlabeled positive cases. 
Previous methods used experimentally verified DDI as positive samples and randomly 
generated negative samples to learn predictive models. However, randomly generated 
negative samples may include unknown true positive samples. A classifier trained with 
such randomly generated negative samples may produce high cross-validation accuracy, 
but it is likely to perform poorly on independent real test data set. Therefore, screen-
ing highly reliable negative samples is essential to improve the effectiveness of computa-
tional prediction methods [32].

As shown in Fig. 2b, to address the unbalanced data set problem in DDI prediction, we 
introduce an undersampling method, PU-sampling, based on Positive-unlabeled learn-
ing (PU Learning) [33]. The core concept of PU Learning is converting positive and unla-
beled examples into a series of supervised binary classification problems discriminating the 
known positive examples from random subsamples of the unlabeled set. As more details 
are shown in Fig. 4, positive samples are labeled with red triangles. Firstly, PU-sampling 

(1)J (A,B) =
|A ∩ B|

|A| + |B| − |A ∩ B|

Fig. 4  PU-sampling flow chart
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scores all unlabeled examples through many simple decision tree classifiers. Then removes 
low-confidence negative sample drug pairs that are painted in light green circles. Finally, 
during the training process, high confidence samples are selected from the remaining unla-
beled set with the same number of positives to compose the 1:1 balanced data set. As will 
be introduced in the “Experiment” section, there are 148 BioDs and 1,941 SMDs in the data 
set, generating 287,268 potential SBI drug pairs. However, only 40,959 SBI are verified posi-
tive in DrugBank. The remaining 246,309 are unlabeled. Here, we denote positive drug pairs 
as set P, unlabeled drug pairs as set U, and selected high-confidence negative drug pairs as 
N, correspondingly. The PU-sampling algorithm is as follows:

1.	 Randomly select the same number of P from U temporarily considered as negative 
in binary classification, and utilize the decision tree model to evaluate the unlabeled 
examples with a score from 0(negative) to 1(positive);

2.	 Repeat step (1) T times and record the scores from the classifiers, which means T 
decision tree models have been trained and the unlabeled drugs have been evaluated 
many times. It is believed that the average score can be used as the confidence of the 
negative samples;

3.	 Finally, after sorting all the scores, set 1 as the threshold to eliminate positive sam-
ples. Then samples with a score close to 0 can be regarded as high-confidence nega-
tive. Because the "true" negative samples theoretically are distinguishable from the 
labeled positive drugs, whose values should be very close to zero. Thus samples with 
the lowest score are taken as the negative samples set N in the following experiments.

Finally, as the positive samples are 40,959, the same number of negative samples were 
retained from 246,309 unlabeled drug pairs.

DNN construction

Multi-SBI is designed as a multi-classification model that can predict multiple SBI types for 
a given drug pair (multiple output neurons are activated simultaneously, and each neuron 
represents one SBI type). In this work, we adopt "DNN" as the multivariate classifier. Since 
there are four types of feature, we construct four sub-models based on each type of feature 
using the DNN. The average operator combines the outputs from sub-models to produce 
the final prediction.

Figure 2c shows that each prediction sub-model concatenates a pair of SMD and BioD 
embedding vectors, which is input to the fully connected layer to calculate the interacting 
probability. The output layer has 49 output neurons, representing the 49 classification types 
considered in this study. These output neurons have activity values between 0 (no interac-
tion) and 1 (possible interaction), which can be considered a probability [34].

As shown in Fig. 2c, the DNN consists of three layers, with the number of nodes being 
512, 256, and 49.

Experiments
Data resources

The number of drugs in the database has dramatically increased in the past few years. 
The DrugBank [35] database integrates bioinformatics and chemoinformatics resources, 
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providing detailed drug data. We collect features about SBI and drugs from DrugBank 5.1.8 
released in January 2021: molecular structure of SMD, amino acid sequence of BioD, SMD-
SMD interaction (SSI), BioD-BioD (BBI) interaction, SMD-Protein Interaction (SPI), BioD-
Protein Interaction (BPI) and known SBI. We select drugs with at least one SBI and SPI, and 
the experimental data obtained are shown in Table 1.

For SBI classification categories, we use a similar method in [8] to extract SBI and define 
the expression of SBIs as a quaternary structure: (drug A, drug B, mechanism, action). 
The "mechanism" means the effect of drugs in terms of metabolism, serum concentration, 
therapeutic efficacy, and other aspects. The "action" means an increase or decrease of the 
corresponding mechanism. With the above definition, we obtain 48 events to describe the 
existing SBI types. When it is worth noting that in order to facilitate analysis [8], deleted 
the DDI related to a single event and selected events with more than 10 DDIs. Although 
such label preprocessing is beneficial to program design and improves the accuracy of drug 
interaction prediction, it is unreasonable in actual clinical trials. Therefore, to retain all 
DDIs and perform cross-validation, we reserved events with no more than 10 DDIs into a 
single category to facilitate subsequent experiments.

The number of 48 different SBI events and negative samples (as category 0) is described 
in Fig. 5. Due to the unbalanced data distribution, the negative and most positive samples 
are centralized on the left side of the histogram.

Evaluation metrics

We evaluate the prediction performance of Multi-SBI using a five-fold cross-validation pro-
cedure, in which 80% of the drug pairs are randomly selected as the training set, and the 
remaining 20% of the drug pairs are used as the test set. The final performance of the model 
takes the average of the five-fold results. For each fold of each prediction model, the follow-
ing indicators are calculated:

(2)ACC =
TP + TN

TP + FP + TN + FN

(3)AUC =

n

i=1

TPRi�FPRi

Table 1  Data statistics from DrugBank

Data Category Number

Entity SMD 1941

BioD 148

Protein 1910

Interaction (SMD-SMD)SSI 2308

(BioD-BioD)BBI 151

(SMD-Protein)SPI 1910

(BioD-Protein)BPI 201

(SMD-BioD)SBI 40959
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where TP means true positive, TN means true negative, FP means false positive, FN 
means false negative, i is ith true-positive/false-positive operating point, and j is jth pre-
cision/recall operating point.

Experimental setup

There are four essential hyper-parameters in our model, namely the layer number, 
optimizer, learning rate, and dropout rate on the model.

First, we discuss the number of DNN layers. We set a rule that the number of neu-
rons in a layer is half the previous layer and then fixed the number of neurons in the 
last hidden layer to 256. We consider 2, 3, 4, and 5 hidden layers and adopt a three-
layer structure (the number of nodes is 512, 256, and 49, respectively) because it can 
achieve the best performance.

In order to optimize the model, we use the Adam optimizer [36] to train up to 100 
epochs (training iterations) with a learning rate of 0.3 and stop training if the verifica-
tion loss does not decrease in 10 epochs [37]. This strategy can prevent over-fitting 
while considerably speeding up the training process.

(4)AUPR =

n∑

j=1

Prej�Recj

(5)F1 =
2 ∗ Sen ∗ Pre

Sen+ Pre

(6)Pre =
TP

TP + FP

(7)Rec = TPR =
TP

TP + FN

(8)FPR =
FP

FP + TN
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Fig. 5  All classification categories (category 0 for negative samples and 1 to 48 for SBI types)
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In order to make the model generalize well to the unobserved drug pairs, we apply 
regular dropout [38] to hidden layer units. We set the dropout rate from 0 to 0.5 in steps 
of 0.1 and get the highest Accuracy (ACC) when dropout is equal to 0.3.

Feature evaluation

Here, we first evaluate the impact of multi-modal features on model performance. While 
keeping other parameters constant, we use different drug features for drug representa-
tion. Specifically, four types of features: CNN, daylight/EMS, SPI/BPI, and SSI/BBI are 
used to compare. Then we test the following 15 drug feature combinations to make 
predictions.

It can be seen in Table  2, using only CNN, that the performance indicators of the 
model are significantly higher than other single features. The results show that CNN 
can more effectively represent long-distance associations and global information in 
long sequences, thereby improving the performance of predicting SBI. The performance 
of the feature combination of daylight/EMS and CNN is higher than that of daylight/
EMS or CNN alone, which indicates that the combination of different feature repre-
sentations of the same data source can extract features from different perspectives and 
thus improve prediction accuracy. In addition, the best results can be obtained when all 
modalities are used, proving the superiority of our proposed multi-modal representa-
tion learning framework, combing drug structure information and the relevant infor-
mation of heterogeneous networks. Therefore, we choose CNN + daylight/EMS + SPI/
BPI + SSI/BBI as the model feature.

PU‑sampling evaluation

In related work, randomly selected instances from unlabeled data are used as nega-
tive DDI [7, 8]. This approach may introduce noisy data and lead to a lack of dis-
tinction between positive and negative samples. To test whether PU-sampling can 
accurately screen out high-confidence negative samples, we compare PU-sampling 

Table 2  The performance of Multi-SBI with different feature combinations

The best performance is shown in bold

Method ACC​ AUC​ AUPR F1 Pre Rec

CNN 0.9336 0.9993 0.9794 0.8016 0.8111 0.8221

daylight/EMS 0.9106 0.9991 0.9652 0.8047 0.8683 0.7983

SPI/BPI 0.7736 0.9960 0.8770 0.4772 0.5741 0.4577

SSI/BBI 0.8211 0.9976 0.9190 0.5623 0.6503 0.5219

CNN + daylight/EMS 0.9427 0.9995 0.9807 0.8337 0.8569 0.8410

CNN + SPI/BPI 0.9353 0.9992 0.9705 0.8005 0.8302 0.8028

CNN + SSI/BBI 0.9381 0.9993 0.9745 0.8131 0.8450 0.8096

daylight/EMS + SPI/BPI 0.9423 0.9994 0.9817 0.8462 0.8862 0.8259

daylight/EMS + SSI/BBI 0.9413 0.9994 0.9803 0.8167 0.8645 0.8070

SPI/BPI + SSI/BBI 0.8809 0.9985 0.9524 0.6384 0.7016 0.6135

daylight/EMS + SPI/BPI + SSI/BBI 0.9410 0.9994 0.9810 0.8399 0.9003 0.8208

CNN + daylight/EMS + SPI/BPI 0.9492 0.9996 0.9860 0.8461 0.8627 0.8506

CNN + daylight/EMS + SSI/BBI 0.9490 0.9996 0.9859 0.8582 0.8741 0.8577
CNN + SPI/BPI + SSI/BBI 0.9404 0.9994 0.9791 0.8120 0.8467 0.8086

CNN + daylight/EMS + SPI/BPI + SSI/BBI 0.9676 0.9997 0.9892 0.8673 0.9039 0.8509
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with traditional random sampling and the classical sampling method SMOTE [39]. As 
shown in Table 3, the results of traditional random sampling are significantly lower 
than the other two methods, proving the necessity of sampling negative samples in 
the DDI data set. In addition, PU-sampling outperforms SMOTE, verifying the effec-
tiveness of PU-sampling in identifying noise in negative samples.

Comparison with existing state‑of‑the‑art methods

We compared Multi-SBI with the most advanced interaction prediction methods 
DDIMDL [8], DeepDDI [7], and drug-target prediction methods HyperAttentionDTI 
[18], DeepDTA [19]. Table 4 and Fig. 6 show the performance of Multi-SBI and the 
four methods on the test set. Because these baselines adopted the random-sampling 
strategy, Multi-SBI with different negative sampling would get another negative sam-
ple distribution. Thus, we added Multi-SBI (random-sampling) in Table  4 for a fair 
comparison. As we can see from the table, Multi-SBI (random-sampling) still led 

Table 3  The performance of Multi-SBI with random sampling and PU-sampling

The best performance is shown in bold

Method ACC​ AUC​ AUPR F1 Pre Rec

PU-sampling 0.9676 0.9997 0.9892 0.8673 0.9039 0.8509
SMOTE 0.9512 0.9994 0.9632 0.8456 0.8829 0.8398

random sampling 0.9101 0.9991 0.9586 0.8345 0.8693 0.8139

Table 4  The performance of different methods

The best performance is shown in bold

Method ACC​ AUC​ AUPR F1 Pre Rec

Multi-SBI 0.9676 0.9997 0.9892 0.8673 0.9039 0.8509
Multi-SBI(random-sampling) 0.9101 0.9991 0.9586 0.8345 0.8693 0.8139

HyperAttentionDTI 0.9093 0.9991 0.9652 0.8145 0.8653 0.8043

DeepDTA 0.8804 0.9983 0.9263 0.7594 0.8026 0.7628

DDIMDL 0.8764 0.9982 0.9196 0.7460 0.7934 0.7568

DeepDDI 0.8541 0.9979 0.9092 0.7129 0.7681 0.7230

Fig. 6  The performance of different methods
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other advanced methods in five out of six metrics. It is found that all evaluation indi-
cators obtained by Multi-SBI are higher than other methods. We can conclude that 
our method improves further with the enhancement of PU-sampling.

In addition, the precision-recall curves of the above methods are shown in Fig. 7. We 
can see that the area under the precision-recall curves of Multi-SBI is more extensive 
than all other methods. These results go beyond previous reports, showing that Multi-
SBI can effectively predict SBI.

During the experiments, we noticed that all the AUC metrics in different models were 
high (close to 1). So we analyzed the data distribution in Fig. 5. Most of the samples were 
concentrated in a few categories on the left side of the histogram (the first ten classes 
containing 90% data), which played a decisive role in the multi-classification tasks. 
Although the AUC metrics of the models were close to each other, our model performed 
well on the recall metric (Rec in Table 4) under both sampling mechanisms. The recall 
metric can reflect the ability to predict "Right" without considering the negative differ-
ence, which is acceptable to illustrate the capability of our model.

Discussions
Very few computational methods can currently predict the interaction between SMDs 
and BioDs. Although determining the precise SBI is critical to improving patient care, it 
remains a challenging task that has not been fully studied through predictive modeling. 
This study proposes a multi-modal representation learning framework called Multi-SBI 
to predict potential SBI.

The feature representation of SMD and BioD drug pairs is much more complex than 
that of SMD drug pairs. We use multi-modal representation learning to represent drug 
pair features adequately. On the other hand, no specific database represents non-inter-
acting drugs. We apply PU-sampling to filter unlabeled negative samples. The experi-
ments demonstrate the ability of PU-sampling to remove imbalanced data set, and 
multi-modal features improve the performance of drug interaction prediction.

To fully demonstrate the ability of Multi-SBI to discover potential drug interactions, 
we perform retrospective analysis. In DrugBank 5.1.0, We obtained 8,547 drug interac-
tions between 1,249 SMDs and 105 BioDs and used them as a training set for testing in 

Fig. 7  The precision-recall curves of different methods
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unlabeled samples. The 14 out of the 20 drug pairs with the highest prediction scores 
can be found in the latest version of the DrugBank5.1.8, indicating the effectiveness of 
our model in predicting unknown drug interactions. The results are shown in Table 5.

Conclusions
Identifying novel drug interactions is critical for improving clinical care. This paper pre-
sents a multi-modal representation learning method for interaction prediction between 
SMDs and BioDs. To our knowledge, this work is the first attempt to predict the interac-
tion between SMDs and BioDs computationally.

On the one hand, in addition to the traditional method, we use two independent CNN-
based blocks to extract the SMD and BioD sequences. On the other hand, we obtain 
the heterogeneous network information of the drug through one-hot encoding. Then, 
we use PU-sampling to obtain a balanced data set. Compared with previous methods of 
predicting drug interactions, Multi-SBI not only digs deep into the structural informa-
tion of drugs but also considers node associations in heterogeneous networks. At the 
same time, the high-confidence negative sample set is selected. The prediction perfor-
mance of our model in experiments has been significantly improved, and some new SBI 
predictions have been confirmed. These results show that Multi-SBI can provide a valu-
able tool for extracting and learning drug features to predict new SBI. It can provide 
biologists with SBI candidates, reduce the workload of wet laboratory experiments, and 
promote the development of new drug discovery and drug repositioning.

Table 5  Top 20 prediction results from the retrospective analysis on DrugBank 5.1.0

*Event Type: 1: The metabolism of Drug A can be increased when combined with Drug B; 2: The risk or severity of adverse 
effects can be increased when Drug A is combined with Drug B; 3: The risk or severity of hypoglycemia can be increased 
when Drug A is combined with Drug B

No SMD A BioD B *Event Type Evidence

1 Glisoxepide Nesiritide 1 N.A

2 Vorapaxar Tocilizumab 2 DrugBank5.1.8

3 6-O-benzylguanine Tocilizumab 2 DrugBank5.1.8

4 Raltitrexed Protein S human 3 DrugBank5.1.8

5 Domoic Acid Tocilizumab 2 N.A

6 Talazoparib Tocilizumab 2 N.A

7 Glisoxepide Insulin 3 DrugBank5.1.8

8 Glisoxepide Insulin pork 3 DrugBank5.1.8

9 Vorapaxar Siltuximab 1 DrugBank5.1.8

10 Domoic Acid Siltuximab 1 N.A

11 Zolmitriptan Tocilizumab 1 DrugBank5.1.8

12 Desonide Tocilizumab 1 N.A

13 Glisoxepide Insulin glulisine 3 DrugBank5.1.8

14 6-O-benzylguanine Siltuximab 1 DrugBank5.1.8

15 Fluocinolone acetonide Tocilizumab 1 DrugBank5.1.8

16 Fluocinonide Tocilizumab 1 DrugBank5.1.8

17 Desonide Siltuximab 1 N.A

18 Glisoxepide Mecasermin 3 DrugBank5.1.8

19 Glisoxepide Insulin detemir 3 DrugBank5.1.8

20 Glisoxepide Insulin lispro 3 DrugBank5.1.8
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Despite the promising performance described above, our method still needs to 
address some limitations and provide insights for future research. First, the lengths of 
BioD sequences in the DrugBank database are pretty different. How to uniformly extract 
and characterize protein drugs of different lengths is still a complex problem, and we will 
improve this later. In addition, in the future, we will conduct biological experiments on 
the newly predicted drug pair to determine its authenticity.
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