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Abstract 

Background:  Medication recommendation based on electronic medical record (EMR) 
is a research hot spot in smart healthcare. For developing computational medication 
recommendation methods based on EMR, an important challenge is the lack of a large 
number of longitudinal EMR data with time correlation. Faced with this challenge, this 
paper proposes a new EMR-based medication recommendation model called MR-KPA, 
which combines knowledge-enhanced pre-training with the deep adversarial network 
to improve medication recommendation from both feature representation and the 
fine-tuning process. Firstly, a knowledge-enhanced pre-training visit model is proposed 
to realize domain knowledge-based external feature fusion and pre-training-based 
internal feature mining for improving the feature representation. Secondly, a medica-
tion recommendation model based on the deep adversarial network is developed to 
optimize the fine-tuning process of pre-training visit model and alleviate over-fitting of 
model caused by the task gap between pre-training and recommendation.

Result:  The experimental results on EMRs from medical and health institutions in 
Hainan Province, China show that the proposed MR-KPA model can effectively improve 
the accuracy of medication recommendation on small-scale longitudinal EMR data 
compared with existing representative methods.

Conclusion:  The advantages of the proposed MR-KPA are mainly attributed to knowl-
edge enhancement based on ontology embedding, the pre-training visit model and 
adversarial training. Each of these three optimizations is very effective for improving 
the capability of medication recommendation on small-scale longitudinal EMR data, 
and the pre-training visit model has the most significant improvement effect. These 
three optimizations are also complementary, and their integration makes the proposed 
MR-KPA model achieve the best recommendation effect.
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Introduction
Electronic medical records (EMRs) represent a patient’s historical visit sequence, where 
each sequence contains a series of clinical events (diagnosis, procedure, medication, etc.) 
for a single admission. More and more attention has been paid to EMR-based auxiliary 
diagnosis and treatment, such as clinical knowledge question answering [1, 2], health 
risk warning [3–6], auxiliary diagnostic [7, 8] and electronic prescription recommenda-
tion [9, 10]. Medication recommendation is an important research direction in EMR-
based applications. Given a patient’s current clinical events and history of visits, the goal 
of the medication recommendation task is to provide a personalized combination of 
medications appropriate to his or her health status. It is a crucial data mining task for 
an intelligent healthcare system [11] and many important recommendation models have 
been developed [12–16].

Existing EMR-based medication recommendation methods are mainly data-driven 
and adopt machine learning methods, especially deep networks, to model on various 
clinical event sequences. In order to improve the accuracy of recommendation, related 
studies mainly adopted longitudinal sequential recommendation methods which inte-
grated patient’s current health conditions and historical visit information to effectively 
leverage the temporal dependencies among clinical events for medication recommenda-
tion [13, 17]. Recent studies focused on developing novel and complex neural networks 
to capture deep-level data features, including complete structure information [11], drug-
drug interactions [12], multiple-level importance [18], relationships between historical 
and current diagnoses [19], irregular time-series dependencies [20], for improving rec-
ommendation capabilities.

However, some diseases may require multiple follow-up visits while others do not. 
Patients may also visit different hospitals each time resulting in incomplete multiple-visit 
records. So patients’ longitudinal EMR data with multiple visits are relatively few. For 
example, in the experiment we collected a total data of 151,908 EMRs but only 10,448 
EMRs were involved with multiple visits. The longitudinal data only account for 6.9 % of 
the total data. They are often discontinuous and can lead to information bias in research 
[21]. The lack of longitudinal data has become an important challenge for EMR-based 
medication recommendation.

Few-shot learning, which use small sample data for effective model training, is a cur-
rent research hot spot. Related methods are divided into three categories usually, includ-
ing fine-tuning, data enhancement and migration [22]. Data enhancement methods 
[23] usually need high-quality domain knowledge bases and are easy to introduce noise. 
Migration methods [24] need a group of labeled data in the similar fields for transfer 
learning. Hence, fine-tuning methods [25], especially pre-training [26], have become the 
main means for few-shot learning of EMR-based models. At present, EMRs or EHRs 
pre-training is attracting attentions [27–29]. However, existing EMRs pre-training meth-
ods need a large number of unlabeled data, which have the same source as labeled data, 
and neglect the optimization of the fine-tuning process. They also only focus disease 
prediction tasks whose number of classifications is far lower than medication recom-
mendation tasks. Therefore, these existing EMRs pre-training methods cannot be used 
directly to solve the problem of lacking longitudinal data in EMR-based medication 
recommendation.
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Based on the above observations and our previous study [30], this paper proposes a 
MR-KPA model which combines knowledge-enhanced pre-training with a deep adver-
sarial network to realize medication recommendation based on small-scale longitudinal 
EMR data. The main contributions can be summarized as follows:

•	 Firstly, a knowledge-enhanced pre-training visit model is proposed to realize domain 
knowledge-based external feature fusion and pre-training-based internal feature 
mining for improving medication recommendation on small-scale longitudinal 
EMR data. Different from existing EMRs pre-training methods, this visit model uses 
a large number of single-visit EMR data for pre-training, in order to avoid splitting 
longitudinal EMR data that is already insufficient.

•	 Secondly, a medication recommendation model based on the deep adversarial net-
work is developed to apply EMRs pre-training to medication recommendation for 
the first time. By introducing adversarial training, the fine-tuning process of pre-
training visit model can be optimized to alleviate over-fitting of model caused by the 
task gap between pre-training and recommendation.

•	 Finally, a group of experiments have been performed based on real EMR data from 
medical and health institutions in Hainan Province, China. Experimental results 
show that the proposed method can effectively improve the accuracy of medication 
recommendation based on small-scale longitudinal EMR data.

The rest of this paper is organized as follows. “Related work” section introduces related 
work. “Medical codes and data sets” section describes medical codes and data sets. 
“Method” section introduces the proposed MR-KPA model. In “Experiment” and “Dis-
cussion” sections, the predictive performance of this model is compared and analyzed 
with baselines and variants. Finally, “Conclusion” section gives the conclusions and 
future work.

Related work
Leveraging recommendation algorithms [31, 32]to recommend rational and effective 
medications in time for patients, as a paramount recommendation task in the health 
domain, has been widely researched [11]. Existing methods are mainly data-driven and 
depended on large amounts of EMR data.

Early approaches often adopted instance-based methods, which only focused on cur-
rent health conditions and failed to make full use of historical information. Syed-Abdul 
et al. [33] proposed a smart medication recommendation model for the electronic pre-
scription. In order to reduce the probability of illegal prescription, this smart model 
adopted the association rule mining technology to find the relationship between two 
labels for reducing the probability of illegal prescription. Zhang et  al. [34] proposed 
the LEAP model to predict combination of medicines by giving patient’s diagno-
ses. This LEAP model is a variant of sequence-to-sequence model based on content-
attention mechanism and, focuses on modeling mappings between instances and tag 
dependencies.

Obviously, patients’ historical EMR data can help to do medication recommenda-
tion. At present, studies on EMR-based medication recommendations mainly adopt 
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longitudinal sequential recommendation methods which recommend medications based 
on both current health conditions and historical information [12, 17]. Choi et al. used a 
two-level neural attention model to detect influential past visits and significant clinical 
variables within those visits for improved medication recommendation [17]. An et  al. 
proposed a relational perception LSTM (R-LSTM) to deal with the relationship between 
diseases and medications in longitudinal medical records, which can better integrated 
historical information into medication level patient representation [13]. Wang et al. pro-
posed the adversarially regularized model for medication recommendation (ARMR), 
which built a key-value memory network based on information from historical admis-
sions and carried out multi-hop reading on the memory network to recommend medi-
cations [12]. An et al. proposed a multilevel selective and interactive network (MeSIN) 
which fully leveraged the inherent multilevel structure of EHR data to learn a compre-
hensive patient representation for reasonable medication recommendation [11].

Table 1 gives a comparison of the above EMRs-based medication recommendation 
methods. As shown in this table, existing studies on longitudinal sequential medica-
tion recommendation mainly focused on developing different deep neural networks 
to capture deep-level features in EMR data. Such approaches depended on massive 
longitudinal EMR data. Therefore, the lack of longitudinal EMR data has become an 
important challenge of EMR-based medication recommendation. At present, medi-
cation recommendation based on relatively small-scale longitudinal EMR data is not 
given enough attention. The studies on few-shot learning of EMRs-based models 
mainly focused on pre-training of EMRs or EHRs data in disease prediction tasks. 
Various EMRs or EHRs pre-training tasks are designed to learn feature expression 
from large-scale unlabeled data through a self-supervised learning method [26]. For 
examples, Rasmy et al. [27] proposed Med-BERT, which adapted the BERT framework 
originally developed for the text domain to the structured EHR domain. Fine-tuning 

Table 1  A Comparison of EMRs-based medication recommendation methods

aMean Prescription Rank
bCoverage Rate
cRecurrent Neural Networks
dRelation-aware LSTM
eThe module contains the encoder and memory network
f Interactive Long-short Term Memory Network
g Attentional Selective Module
h A global selective fusion module

Method/reference Classification Shallow/deep 
learning

Strategy Data size

Smart Model [33] Instance-based Shallow learning MPRa +CRb 103,480,000

LEAP [34] Instance-based Deep learning Recurrent Decoder 50206(Mimic-3), 
2415414 (Sutter)

Retain [17] Longitudinal 
sequential

Deep learning RNNc 14,366,030

RAHM [13] Longitudinal 
sequential

Deep learning R-LSTMd /

ARMR [12] Longitudinal 
sequential

Deep learning MedRece +GAN Over 40,000(Mimic-3)

MeSIN [11] Longitudinal 
sequential

Deep learning InLSTMf  +ASMg 
+GSFMh

11,809(Mimic-3)
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experiments on two clinical databases showed that Med-BERT can benefit disease 
prediction studies with small local training datasets, reduce data collection expenses, 
and accelerate the pace of artificial intelligence aided healthcare. Ren et al. proposed 
[28] a novel model RAPT, which stands for representation by Pre-training time-aware 
Transformer, and devise three pre-training tasks to handle data insufficiency, data 
incompleteness and short sequence problems. Extensive experimental results for four 
downstream tasks have shown the effectiveness of the proposed approach. Meng et al. 
[29] presented a temporal deep learning model to perform bidirectional representa-
tion learning on EHR sequences with a transformer architecture and the pre-training 
task of masked language modeling to predict future diagnosis of depression. However, 
these EMRs pre-training methods cannot be used directly to solve the problem of 
lacking longitudinal EMR data in EMR-based medication recommendation:

•	 In data, existing EMRs pre-training methods relied on a large number of unla-
beled data, which have the same source as labeled data. The existing researches 
above usually split experimental data and use most of them for pre-training. This 
method of obtaining pre-training data is not applicable to longitudinal EMR data 
that is lacking in itself.

•	 In the downstream task, existing EMRs pre-training methods mainly aiming at 
disease prediction, which is usually a binary classification problem. On the con-
trary, there are often hundreds of classifications in medication recommendation. 
Therefore, the application of EMRs pre-training in medication recommendation 
should be studied separately.

•	 In the fine-tuning process, existing EMRs pre-training methods focused on pre-
training tasks and neglected the optimization of the fine-tuning process. However, 
the gap between pre-training and downstream tasks can bring the catastrophic 
forgetting problem [35, 36]. With the increase of the number of fine-tuning iter-
ations, the downstream tasks increasingly focuses on labelled data and leads to 
over-fitting of model. Therefore, it is necessary to improve the downstream mod-
els for optimizing the fine-tuning process of pre-training model.

In addition, the fusion of knowledge and big data is a recent research hotspot. 
Integrating formal domain knowledge, such as term ontology [37, 38], knowledge 
graph (KG) [39, 40] and so on into deep neural networks has become an important 
approach to improve feature expression in various applications of deep learning, such 
as finance [41] and medicine [42]. For EMR-based medication recommendation, fus-
ing domain knowledge to improve feature expression of EMR has also received atten-
tion. For an example, Choi et al. represented the medical concept as a combination of 
its ancestors in the medical ontology using an attention mechanism for enriching the 
input of EMR-based medication recommendation [17]. However, their studies still 
only depended on longitudinal EMR data. Though medical concepts enriched fea-
ture expression of EMR, model training still needed a large number of EMR data. The 
training datasets in Choi et al.’s study included three data sets, Sutter PAMF, Mimic-
III and Sutter heart Failure (HF) cohort, in which the numbers of visit records were 
13920759, 19911 and 572551 respectively.
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In order to improve robustness and interpretability of the models, knowledge 
enhanced pre-training models (KEPTMs) are attracting attention. Yang et al. [43] cat-
egorized existing KEPTMs into three groups: entity enhanced pre-trained models [44, 
45], triplet enhanced pre-trained models [46, 47] and other knowledge enhanced pre-
trained models [48, 49]. However, all of these KEPTMs were oriented to text corpora. 
Though Shang et  al. [16] proposed G-Bert which modified Bert pre-training tasks to 
realize knowledge-enhanced pre-training on large-scale single-visit EMR data, G-Bert 
only considered two types of medical codes and pre-training tasks only focused on 
themselves and their relations of medical codes. Other important information, especially 
symptoms, and its prediction ability for medication recommendation were not consid-
ered in pre-training tasks. Moreover, their researches also neglected the gap between 
pre-training and downstream tasks, which is particularly serious when labelled data are 
obviously smaller than unlabeled pre-training data. As stated above, longitudinal EMR 
data only account for 6.9% of the total data and the remaining 93.1% were single-visit 
data, which was indeed the case. Therefore, it is necessary to improve the recommenda-
tion model for optimizing the fine-tuning process of the single-visit pre-training model.

Based on the above analysis, we propose the MR-KPA model which combines knowl-
edge-enhanced pre-training with a deep adversarial network to improve medication rec-
ommendation from both feature expression and recommendation model structure, for 
realizing medication recommendation based on small-scale longitudinal EMR data. The 
details are introduced in the following sections.

Medical codes and data sets
Medical codes

Medical codes are usually categorized according to a tree-structured classification sys-
tem for diagnosis and drug. Figure 1 gives tree structures of ICD-10 ontology and NDC 
ontology. All codes are the lowest leaf nodes.

Fig. 1  Tree structures of ICD-10 and NDC
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The left of Fig. 1 is an example of ICD-10 J98.4 which is the ICD-10 code of “other 
lung diseases” and its sibling node J98.1 is the ICD-10 code of “Pulmonary collapse”. 
They have a common parent node J98. This means that both these two kinds of diseases 
belong to “other respiratory diseases” whose ICD-10 is J98.

The right of Fig. 1 is an example of NDC(Chinese National Drug Code). 869004500000
11(86,9,00450,00001,1) is the NDC code of “Ceftazidime for Injection”. The codes in line 
with Chinese national drug coding standards have 14 digits. The first 2 digits “86” are the 
drug country code and the third digit “9” represents the drug category code. The fourth 
to eighth “00450” represents the enterprise identifier and the ninth to thirteenth “00001” 
represents the product identifier. The last digit “1” represents different drugs.

Data sets

In this study, the real EMRs are from medical and health institutions in Hainan Prov-
ince, China. Six important fields, PATIENT ID, INPATIENT FORM NO, OUTPA-
TIENT DIAG CODE, DRUG STANDARD CODE and CHIEF COMPLAINTS are 
extracted from the IN SUMMARY DISCHARGE DIAG table, IN SUMMARY DRUG 
DETAIL table and ADMISSION INFORMATION RECORD table in the electronic 
medical record system. PATIENT ID records the patient’s unique ID and INPATIENT 
FORM NO records the unique ID of one visit to hospital. OUTPATIENT DIAG CODE 
records the ICD-10 codes of diagnosis, DRUG STANDARD CODE records NDC codes 
of drug and CHIEF COMPLAINTS records the patient’s current symptoms. This study 
uses word segmentation to divide symptom description sentence into words, and then 
remove pause words during word segmentation to create the symptom set of each EMR. 
Table 2 gives the data statistics. The single-visit records were used for training the pre-
training model and the multiple-visit records were used for training and testing the pre-
diction model. Compared with those data sizes in Table 1, our data set is very small.

Method
An overview

A longitudinal sequential medication recommendation task can be defined as follows:

Table 2  Statistics of the data set

Statistical field Single-visit Multiple-visit

Total number of records 141,460 3155

Number of patients 141,460 1390

Number of diagnosis codes 1946 754

Number of drug codes 12,993 1467

Number of symptoms 6523 2016

Avg number of diagnosis codes 2.233 1.400

Avg number of drug codes 16.77 3.943

Avg number of symptoms 1.000 0.774

Avg number of visit 1.0 2.270

Max number of diagnosis codes 26 30

Max number of drug codes 345 69

Max number of symptoms 2 7

Max number of visit 1 8
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Definition 1: Longitudinal EMR Data. In EMR data, each patient’s records can be 
represented as a sequence of multivariate observations: Sn =

{

P
(n)
1

,P
(n)
2

, · · ·P
(n)

T (n)

}

 

where n represents the n-th patient and T (n) is the number of visits of the n-th patient. 
The EMR record of the t-th visit is described as P(n)

t = d
(n)
t ,m

(n)
t , s

(n)
t  where d(n)t  is a 

collection of diagnostic codes for ICD-10, m(n)
t  is a collection of drug codes for 

National Drug Codes (NDC), s(n)t  is the collection of self-reported symptoms named 
as SYM, such as “fever”.
Definition 2: Longitudinal Sequential Medication Recommendation Task. Given the 

n-th patient’s history EMR records S(n)
1:t−1

=
{

P
(n)
1

,P
(n)
2

, · · ·P
(n)
t−1

}

 , diagnostic codes 

d
(n)
t  , drug codes m(n)

t  and symptoms s(n)t  at the t-th visit, we want to recommend the 
drugs at the t-th visit by generating multi-label output ŷt ∈ {0, 1}MLwhich ML repre-
sents the number of drug codes. That is to say, the output of the medication recom-
mendation is a list of appropriate drugs. And the recommendation problem is 
transformed to a multi-label classification problem.

This study proposed a MR-KPA model to realize this task based on small-scale data. 
On the one hand, the proposed model adopts a knowledge-enhanced pre-training. A 
large number of single-visit EMR data is used as the pre-training data for avoiding 
segment limited longitudinal EMR data. The classification knowledge of diagnostic 
and drug codes was encoded as external domain features and then fused into EMR 
embeddings. On the other hand, this model integrated adversarial training into multi-
layer perceptron (MLP) to avoid the over-fitting of model during the fine-tuning 
process.

The whole framework of MR-KPA is described in Fig. 2. It includes three modules: 
input representation, pre-training and prediction. The input representation mod-
ule transforms each EMR record into the diagnosis code embedding, the drug code 
embedding and the symptom embedding. Based on these three types of embeddings, 
the pre-training module creates a pre-training visit model by performing two types 
of pre-training tasks. Finally, the prediction module fine-tunes the pre-training visit 
model and obtains the predicted drug code based on patient’s multiple-visit records. 
The details will be described in the following subsections.

Fig. 2  The whole framework of MR-KPA. It includes three modules: the input representation, pre-training and 
prediction
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Input representation

The input representation module transforms each EMR into a group of multi-dimen-
sional embeddings as the input of the subsequent module. As shown in Fig. 3, multiple-
visit records are inputted into this module. Each record includes columns SUBJECT ID, 
HADM ID, ICD-10, NDC, and SYM, which represent the patient ID, hospital ID, diag-
nostic code, drug code, and symptom participle respectively. They are transformed into 
two ontology embeddings and one dictionary embedding.

For the EMR of n-th patient at t-th visit P(n)
t =

{

d
(n)
t ,m

(n)
t , s

(n)
t

}

 , its input embedding 

can be obtained as follows.
Ontology embedding. Ontology embedding is adopted to realize domain knowledge-

based external feature fusion. Two types of code ontology embeddings are constructed 
from ICD-10 ontology Od and NDC ontology Om . Because medical codes in raw EMR 
data are leaf nodes in code ontology trees, code ontology embedding can be obtained 
by using graph attention network (GAT) [8, 10, 12, 13]. It can encode the classifica-
tion knowledge in diagnostic and drug code trees as external domain features. For each 

Fig. 3  The framework of Input Representation. Both diagnose embedding and medicine embedding adopt 
ontology embeddings based on code trees. Symptom embedding adopts the dictionary embeddings
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medical code c∗ ∈ d
(n)
t ∪m

(n)
t  is the embedding dimension, and then the procedure is 

performed to obtain its ontology embedding as follows:

where ∗ ∈
{

d,m
}

 , Nc∗ = {{c∗} ∪ {pa(c∗)}} are the parent nodes of c∗ and itself, ‖ repre-
sents concatenation which enables the multi-head attention mechanism, σ is a nonlinear 
activation function, Wk ∈ R

m×d is the weight matrix for input transformation, and akc∗,j 
is the corresponding k-th normalized attention coefficient.
Dictionary embedding. Dictionary embedding is constructed from a symptom diction-

ary Ds , which contains all symptoms in EMR data. For each symptom si ∈ s
(n)
t , its dic-

tionary embedding dsi is just its index value in Ds.

Pre‑training

The pre-training module creates a pre-training visit model based on the input embed-
ding transformed from single-visit records of EMR. By pre-training, a large number of 
single visit data are effectively used to mine the richer internal features of EMR.

Before pre-training, a multi-layer Transformer architecture [50] is adopted to derive 
visit embedding from two ontology embedding and one dictionary embedding of each 
EMR data. For P(n)

t  , three types of visit embedding can be obtained as follows:

where vtd is diagnostic visit embedding, vtm is drug visit embedding, vts is symptom visit 
embedding, and [CLS] is the first tag of each sequence whose final hidden state will be 
used as an aggregate sequence representation of the classification task for enabling BERT 
to better handle various downstream tasks. In order to obtain the consistent length of 
the input token, it is necessary to align the tokens obtained by padding.

This paper conducts the following two kinds of pre-training tasks to make visit embed-
ding absorb enough information about medication recommendation.
Mask EMR Field Task (Mask EF Task). This task randomly masks some of the embed-

ding to better represent information about the composition of EMR records. By chang-
ing word token masking of sentences [51] into field masking of EMR records, the 
following loss function is calculated:

(1)oc∗ = g(c∗, pa(c∗),He) =�kk=1
σ





�

j∈Nc∗

akc∗,jW
khj





(2)vtd =Transformer
(

{[CLS]} ∪
{

odi | di ∈ d
(n)
t

})

(3)vtm =Transformer
(

{[CLS]} ∪
{

omi | mi ∈ m
(n)
t

})

(4)vts =Transformer
(

{[CLS]} ∪
{

dsi | si ∈ s
(n)
t

})

(5)

Ls

(

v∗,C
(n)
∗

)

= −logP
(

C(n)
∗ | v∗

)

= −
∑

c∗∈c
(n)
∗

logP(c∗ | v∗)+
∑

c∗∈(c∗\c
(n)
∗ )

logP(c∗ | v∗)
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where C(n)
∗ =

(

d
(n)
t ∪m

(n)
t ∪ s

(n)
t

)

 is an union set of medical codes and symptoms of n-th 

patient, c∗ ∈ C
(n)
∗  denotes a medical code or symptom involved in the n-th patient and 

c∗ ∈
{

c∗ \ c
(n)
∗

}

denotes the medical codes or symptoms not used for the n-th patient, 

∗ ∈
{

d,m, s
}

 . We minimize the binary cross entropy loss Ls to make the model have 
stronger self-prediction ability.
Correlation Prediction Task (CorP Task). This task is used to represent information 

about the correlation among diagnostic codes, drug codes and symptoms. In BERT, 
the next sentence prediction (NSP) task facilitates the prediction of sentence relations. 
G-Bert revised the NSP task as the multidirectional prediction task for predicting 
unknown disease or drug codes of the sequence [16]. This paper revises the NSP task 
[52] as the CorP Task. For mutual prediction of diagnostic codes, drug codes and symp-
toms, the following three loss functions are calculated:

Finally, the pre-training optimization objective can simply be the combination of the 
aforementioned losses:

Prediction

A MLP module with adversarial training is used to achieve the final prediction task. 
Based on the pre-training model, multi-visit EMR sequences can be transformed to 
three types of visit embedding sequences. Concatenating the average of previous diag-
nostic visit embedding, drug visit embedding, and symptom visit embedding before 
the t-th visit, as well as the diagnostic visit embedding and symptom visit embedding at 
the t-th visit, the MLP [53] can predict the recommended drug codes at the t-th visit as 
follows:

where W ∈ R
|Cm|×3l is a learnable transformation matrix.

Therefore, the loss function can be calculated as follows:

(6)Ldm =− logP
(

C
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d | vm

)

− logP
(
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m | vd

)

(7)Lds =− logP
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where y is the predicted value sequence and ŷ is the true value sequence. In this formula, 
t =2 means that the prediction starts from the second visit of the patient. The reason is 
that this paper focuses on longitudinal sequential medication recommendation which 
predicts the drugs currently suitable for the patient based on the patient’s historical and 
current diagnosis and symptom.

In order to avoid the over-fitting of model, this paper integrates the adversarial training 
FGM into the deep prediction model [54]. Adversarial training can not only improve the 
defense ability of the model against adversarial samples, but also improve the generaliza-
tion ability of the original samples. For the prediction task, the disturbance radv−d and 
radv−m are added to the diagnostic ontology embedding and the drug ontology embed-
ding respectively, in order to make the model wrong as much as possible and increase 
the robustness. Referring to [54], the disturbance can be calculated as follows:

where ǫ is a constant. radv−d and radv−m are normalized values with the gradient of vtd 
and vtm . The drug sequence yt is predicted from the disturbed vτ ′d  and vτ ′m which can be 
combined with the real drug sequence ŷt to construct a loss function. In back propaga-
tion, the gradient of counter training is accumulated on the basis of the normal gradient. 
Then the original values of vτd and vτm are restored. Finally, the parameters are updated 
according to the gradient of accumulated adversarial training. The loss function after 
adversarial training is defined in the same way as Eq. (11) where yt is calculated from the 
disturbed diagnostic ontology embedding and drug ontology embedding on the basis of 
Eq. (13) as follows:

Experiment
Baselines

We compared the proposed MR-KPA with the following baseline methods. All methods 
were developed under Pytorch and implemented on Nvidia Quadro P2000:

•	 Learn to Prescribe (LEAP) [34]: LEAP is an example based model that aims to pre-
scribe effective and safe drug combinations for patients with recurrent diseases. It 
uses cyclic decoders to model labels and captures label instance maps using content-
based attention in order to decompose treatment recommendations into a continu-
ous decision-making process while automatically determining the appropriate drug 
quantity. The epoch of this model is set as 30.
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•	 Logistic Regression (LR) [55]: This study adopts a logistic regression model with 
L1/L2 regularization as the baseline method. We represented sequential multiple 
medical codes by summing up multiple hot vectors per visit.

•	 Reverse Time Attention Model (RETAIN) [17]: RETAIN is a medication recom-
mendation model based on a two-stage neuro attention that examines past influ-
ential visits and important clinical variables such as critical diagnoses within those 
visits. In this study, the epoch of the model is set to 30 which has the best per-
formance by experiment. When the model predicts that the probability of a drug 
being recommended is greater than 30% , the drug is recommended.

Metrics

This paper uses the Jaccard Similarity Coefficient [56] and average F1 [57] to measure 
experimental results. They can be calculated as follows:

where Ŷ (k)
t  is the predicted set and Y (k)

t  is the ground truth set.

where P(k)
t  is the precision rate, R(k)

t  is the recall rate, N is the number of patients in the 
test set and Tk is the number of visit of the k-th patient. And we also use Precision Recall 
AUC (PR-AUC) to evaluate the performance of the algorithm.

Implementations

We used all single-visit data for pre-training, and randomly divided multi-visit data 
into the training set, the verification set and the test set in a 4:1:1 ratio. We set the 
number of attention heads in the GAT model as 4, and the hidden layers in the 
pre-training model as 2 with 4 attention heads. In the prediction model, the learn-
ing rate was set as 5e-4. In this paper, the prediction was not made after the pre-
training model was fully trained. Instead, the pre-training was carried out first, and 
then the prediction with the pre-trained model was made in alternate cycles, so as to 
artificially imitate the way of multi-task. Although the two models were not trained 
together, the two models influenced each other and improved each other in the cycle 
process, which effectively solved the problem of parameter forgetting of the pre-train-
ing model and effectively improved the model generalization ability.
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(k)
t |

| Ŷ
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Results

Table  3 shows the performance results of different models. LEAP is obviously less 
effective than other baseline models and the proposed MR-KPA. As an instance-based 
medication recommendation model, LEAP does not take into account longitudinal 
EMR data. Therefore, this results prove that it is necessary to adopt the longitudi-
nal sequential method, namely medication recommendation based on longitudinal 
EMR data in this study. LR is a shallow machine learning model and widely used in 
medication recommendation. RETAIN is a medication recommendation model based 
on the deep neural network. Compared with their results, the Jaccard score and PR-
AUC score of LR are significantly higher than those of RETAIN. This indicates that, 
the deep learning models are no better than traditional shallow machine learning 
models based on the small-scale longitudinal EMR data. Therefore, it is also neces-
sary to adopt the knowledge-enhanced pre-training visit model for realizing few-shot 
learning in this study. Finally, the proposed MR-KPA obtains the best results on all 
evaluating indicators. This shows that the proposed model can effectively improve 
the accuracy of medication recommendation based on small-scale longitudinal EMR 
data.

Discussion
Knowledge enhancement based on ontology embedding, the pre-training visit model 
and adversarial training are three core optimizations in this paper. This section will 
discuss their effectiveness by an ablation study. Seven MR-KPA variants are designed 
as follows:

•	 MR− KPAK−,P−,A− : Compared with MR-KPA, this model deletes knowledge 
enhancement based on ontology embedding, the pre-training visit model and adver-
sarial training, and only uses MLP to predict drug codes based on input embedding 
of diagnostic codes, drug codes and symptoms;

•	 MR− KPAP−,A− : Compared to MR-KPA, this model deletes the pre-training visit 
model and adversarial training, and only keeps knowledge enhancement based on 
ontology embedding;

•	 MR− KPAK−,A− : Compared to MR-KPA, this model deletes knowledge enhance-
ment based on ontology embedding and adversarial training, and only keeps the pre-
training visit model.

Table 3  Experimental results from MR-KPA and baselines

Methods Jaccard F1 PR-AUC​

LEAP 0.0945 0.1188 0.1650

LR 0.1618 0.1722 0.4120

RETAIN 0.1254 0.2098 0.3069

MR-KPA 0.4482 0.5293 0.5889
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•	 MR− KPAK−,P− : Compared to MR-KPA, this model deletes knowledge enhance-
ment based on ontology embedding and the pre-training visit model, and only keeps 
adversarial training.

•	 MR− KPAK− : Compared to MR-KPA, this model deletes knowledge enhancement 
based on ontology embedding, and keeps the pre-training visit model and adversarial 
training.

•	 MR− KPAP− : Compared to MR-KPA, this model deletes the pre-training visit 
model, and keeps knowledge enhancement based on ontology embedding and adver-
sarial training.

•	 MR− KPAA− : Compared to MR-KPA, this model deletes adversarial training, and 
keeps knowledge enhancement based on ontology embedding and the pre-training 
visit model.

All of three optimizations are effective and compatible

Table 4 gives the experimental results of the ablation study. Compare the baseline mod-
els, the result of MR− KPAK−,P−,A− is similar to that of RETAIN. Its three evaluating 
indicators are significantly higher than those of LEAP and two evaluating indicators are 
lower than those of LR. This once again proves the necessity of adopting longitudinal 
sequential medication recommendation and the shortcomings of deep learning models 
in medication recommendation based on small-scale longitudinal EMR data.

Compared with MR− KPAK−,P−,A− , the result of MR− KPAP−,A−,MR− KPAK−,A− 
and MR− KPAK−,P− achieve the better performance, which indicates that knowledge 
enhancement based on ontology embedding, the pre-training visit model and adversar-
ial training, which are three core optimizations in this paper, are very effective. Further-
more, the results of MR− KPAK− , MR− KPAP− and MR− KPAA− are also significantly 
improved than those of MR− KPAK−,P−,A− . Finally, the proposed MR-KPA model 
achieved the best results. This indicates that these three optimizations are compatible 
with each other and their combination can greatly improve EMR-based medication 
recommendation.

The pre‑training visit model are the most effective optimization

Referring to [54], this section will further discuss the training effects of the three opti-
mizations through the analysis of training loss curve. Figure 4 gives the learning curves 

Table 4  Experimental results of the ablation study

Methods Jaccard F1 PR-AUC​

MR − KPAK−,P−,A− 0.1553 0.2142 0.2792

MR − KPAP−,A− 0.1720 0.2304 0.2860

MR − KPAK−,A− 0.3266 0.4151 0.4899

MR − KPAK−,P− 0.2184 0.2853 0.3348

MR − KPAK− 0.4037 0.4893 0.5515

MR − KPAP− 0.2275 0.2966 0.3791

MR − KPAA− 0.3643 0.4570 0.5392

MR − KPA 0.4482 0.5293 0.5889
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of training loss of MR-KPA, MR− KPAK− , MR− KPAP− and MR− KPAA− . As shown 
in Fig. 4a, the training loss of MR− KPAK− drops a little faster than that of MR-KPA in 
the early stage, but it basically fits the training loss curve of MR-KPA in the later stage. 
This indicates knowledge enhancement based on ontology embedding affects the train-
ing speed in the early stage, but it has little impact on the recommendation results of the 
whole model. This is consistent with the results in Table 3. MR− KPAK− has the clos-
est result to MR-KPA. This indicates that knowledge enhancement based on ontology 
embedding has the minimal improvement effect on the EMR-based medication recom-
mendation task.

Figure 4b gives the comparison of training loss between MR-KPA and MR− KPAP− . 
With the increase of iteration times, the loss of MR-KPA gradually decreased, but the 
loss change of MR− KPAP− is not obvious. This indicates that the pre-training visit 
model is the key to ensure the convergence of the model on relatively small-scale lon-
gitudinal EMR data. It has a significant effect on improving the edication recommenda-
tion based on small-scale longitudinal EMR data. This is also consistent with the results 
in Table 3. Among MR− KPAK−,MR− KPAP− and MR− KPAA− , MR− KPAP has the 
worst results.

Figure 4c gives the comparison of training loss between MR-KPA and MR− KPAA− . 
With the increase of iteration times, the downward trend of loss of MR− KPAA− is 
much slower than that of MR-KPA. The loss values MR-KPA are always below that of 
MR− KPAA− in the later. This indicates adversarial training has played a role in prevent-
ing the model from over-fitting on small-scale longitudinal EMR data. Therefore, it can 
effectively improve medication recommendation based on small-scale longitudinal EMR 
data, as shown in Table 3.

Comparing Fig. 4a–c, only the loss curve of MR− KPAP− decreases slowly, and even has 
an upward trend in the later period, indicating that the model does not converge. Therefore, 

Fig. 4  The change of training loss values in MR-KPA and three variants
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MR− KPAP− has the worst result among MR− KPAK−,MR− KPAP− and MR− KPAA− , 
as shown in Table 3. That is to say, the pre-training visit model are the most effective opti-
mization in this study.

Limitations of this study

There are still some limitations in this study. Due to the addition of adversarial training, the 
computational complexity of the proposed MR-KPA inevitably increases, and the running 
time also increases. However, due to the small-scale training data, this limitation of recom-
mendation model can be compensated partly. Another limitation of this study is that the 
temporal features of longitudinal data are not fully utilized. Therefore, an important future 
work is to effectively mine temporal features by various deep neural network, such as linear 
networks.

Conclusion
In this paper, we propose a new EMR-based medication recommendation model called 
MR-KPA. By combining knowledge-enhanced pre-training with the deep adversarial net-
work, MR-KPA improves both feature representation and the fine-tuning process to real-
ize effectively medication recommendation based on small-scale EMR data. To our best 
knowledge, MR-KPA is real first that integrates current popular graph neural network, 
pre-training and adversarial training for EMR-based medication recommendation. The 
ablation experiments and comparative experiments prove that these three technologies 
are complementary and their integration makes the proposed MR-KPA model effectively 
realize medication recommendation on small-scale longitudinal EMR data. By reducing 
the dependence on high-quality labelled data, this study can greatly reduce the time and 
economic costs required for model construction, and help to promote the comprehensive 
application of EMRs based medication recommendation.
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