
Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Hahn et al. BMC Bioinformatics          (2022) 23:547  
https://doi.org/10.1186/s12859-022-05105-y

BMC Bioinformatics

Unsupervised outlier detection applied 
to SARS‑CoV‑2 nucleotide sequences can 
identify sequences of common variants 
and other variants of interest
Georg Hahn1*, Sanghun Lee1,2, Dmitry Prokopenko3, Jonathan Abraham4, Tanya Novak5, Julian Hecker6,7, 
Michael Cho7, Surender Khurana8, Lindsey R. Baden9, Adrienne G. Randolph5,6, Scott T. Weiss6,7 and 
Christoph Lange1,6,7 

Abstract 

As of June 2022, the GISAID database contains more than 11 million SARS-CoV-2 
genomes, including several thousand nucleotide sequences for the most common 
variants such as delta or omicron. These SARS-CoV-2 strains have been collected from 
patients around the world since the beginning of the pandemic. We start by assessing 
the similarity of all pairs of nucleotide sequences using the Jaccard index and principal 
component analysis. As shown previously in the literature, an unsupervised cluster 
analysis applied to the SARS-CoV-2 genomes results in clusters of sequences according 
to certain characteristics such as their strain or their clade. Importantly, we observe that 
nucleotide sequences of common variants are often outliers in clusters of sequences 
stemming from variants identified earlier on during the pandemic. Motivated by this 
finding, we are interested in applying outlier detection to nucleotide sequences. We 
demonstrate that nucleotide sequences of common variants (such as alpha, delta, or 
omicron) can be identified solely based on a statistical outlier criterion. We argue that 
outlier detection might be a useful surveillance tool to identify emerging variants in 
real time as the pandemic progresses.

Keywords:  SARS-CoV-2, Nucleotide sequences, Outlier detection, Variants of interest, 
Machine learning

Introduction
More than 13 million nucleotide sequences of the SARS-CoV-2 virus have been col-
lected from patients around the world since the beginning of the pandemic and made 
available in the GISAID database [1, 2]. Among them are thousands of nucleotide 
sequences of the most common variants, precisely for the alpha (B.1.1.7), beta (B.1.351), 
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delta (B.1.617.2), gamma (P.1), GH (B.1.640), lambda (C.37), mu (B.1.621), and omicron 
(B.1.1.529) variants [3].

The emergence of new variants of the SARS-CoV-2 virus poses a threat to the pro-
gress made by ongoing vaccination campaigns against COVID-19. Therefore, the 
detection and possible identification of newly emerging variants of the SARS-CoV-2 
virus in (close to) real time is of great interest.

Currently, a tool called “genomic surveillance” is used by the Centers for Disease 
Control (CDC) to detect new variants [4]. This is done both through the National 
SARS-CoV-2 Strain Surveillance (NS3) program, as well as through commercial and 
academic laboratories contracted by the CDC, where genetic information of SARS-
CoV-2 specimen are analyzed and classified into variants. By definition, a variant is 
characterized by having one or more mutations which differentiate it from other vari-
ants of the SARS-CoV-2 virus [5]. A group of variants with similar genetic changes (a 
lineage) can be classified as a variant of concern (VOC) or a variant of interest (VOI) 
if they share characteristics that potentially necessitate public health action. For 
example, the U.S. government SARS-CoV-2 Interagency Group (SIG) classified omi-
cron as a Variant of Concern (VOC) on 30 November 2021 due to the fact that omi-
cron emerged in multiple countries without apparent travel history, the replacement 
of certain delta variants as predominant variants in South Africa by omicron, and its 
number of mutations in the spike protein which indicated a reduced susceptibility to 
sera from vaccinated individuals and certain monoclonal antibody treatments. The 
purpose of this article is to explore the ability of new unsupervised learning method-
ology to detect emerging variants of interest.

As shown previously in the literature [6, 7], an unsupervised cluster analysis in 
which the similarity of all pairs of nucleotide sequences is assessed using the Jaccard 
index, and subsequent application of principal component analysis to the Jaccard 
similarity matrix, results in clusters of sequences according to certain characteristics 
such as their strain or their clade. Importantly, in [8] the authors notice that nucleo-
tide sequences the omicron variant cluster among sequences stemming from variants 
identified earlier on during the pandemic. Due to the fact that the aforementioned 
unsupervised approaches successfully clustered nucleotide sequences by strain or 
clade, and revealed features of the omicron variant, we likewise focus on an unsuper-
vised approach based on the Jaccard similarity matrix in connection with principal 
component analysis in this work.

This finding immediately prompts the question whether the nucleotide sequences 
belonging to common variants can be identified by unsupervised outlier detection. 
In this article, we investigate this question by applying outlier detection to nucleotide 
sequences, both before the emergence of a variant and after a variant has emerged. We 
demonstrate that indeed, the number of detected outliers often increases shortly after 
the emergence of a new variant, and that nucleotide sequences of common variants can 
be identified solely based on a statistical outlier criterion.

Our findings could have important implications for the automated, unsupervised iden-
tifications of SARS-CoV-2 strains. We argue that outlier detection might be a useful 
surveillance tool to identify emerging variants of interest in real time as the pandemic 
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progresses. This is also important for vaccination strategies, to identify emerging vari-
ants that may be resistant to available vaccines [9].

The article is structured as follows. The “Methods” section introduces the methodol-
ogy we use for this article, starting with data acquisition and cleaning, and how the simi-
larity of sequences is assessed. We then describe the outlier detection method we use. 
The  “Results” section presents our findings on the clustering and outlier detection of 
SARS-CoV-2 nucleotide sequences. The article concludes with a “Discussion” section.

Methods
In this section, we highlight methodological features of the analysis. In particular, we 
describe data acquisition and cleaning (“Data acquisition and cleaning” section), the 
assessment of the similarity of nucleotide sequences (“Assessing the similarity of nucle-
otide sequences” section), the methods used for outlier detection among sequences 
(“Outlier detection” section), and the calibration of the outlier detection (“Calibration” 
section).

Data acquisition and cleaning

All findings reported in this article are based on an image of all available SARS-CoV-2 
nucleotide sequences in the GISAID database [1, 2] until 28 March 2022, consist-
ing of 211,167 sequences having accession numbers in the range of EPI_ISL_403962–
EPI_ISL_11498019. By timestamp we always refer to the collection date on GISAID. 
Sequences are only included in the analysis if they satisfy the four data quality attributes 
on GISAID. To be precise, all nucleotide sequences have to satisfy the criterion of being 
complete (defined as sequences having length at least 29,000 bp), high coverage (defined 
as sequences with less than 1% N-bases), with patient status (defined as sequences with 
meta information consisting of age, sex, and patient status), and collection date com-
plete (defined as sequences with a complete year-month-day collection date) (Additional 
file 1).

We aim to investigate if it is possible to detect sequences of a new variant among the 
other sequences in circulation upon emergence of that new variant. We consider eight 
common SARS-CoV-2 variants available on GISAID. Those are alpha (B.1.1.7), beta 

Table 1  Local outlier detection approach

Number of detected outliers in Figs. 4, 5, 6, 7, 8, 9, 10 and 11 before and after the emergence of each of the eight variants. 
True positives among the detected outliers, and number of sequences included for each variant

Variant Before emergence of variant After emergence of variant

T1 No. outliers True 
positives

No. seq T2 No. outliers True 
positives

No. seq

Alpha 2020-10-01 1314 0 0 2021-02-16 1070 329 788

Beta 2020-02-18 78 0 0 2021-01-27 1902 88 99

Delta 2020-03-12 0 0 0 2021-07-21 212 175 1085

Gamma 2020-08-24 1589 0 0 2021-03-09 97 3 140

GH 2021-10-25 137 0 0 2021-11-22 179 0 4

Lambda 2021-01-17 2067 0 0 2021-01-18 2066 4 4

Mu 2021-03-07 0 0 0 2021-04-30 0 0 16

Omicron 2021-11-12 191 0 0 2021-12-26 276 19 25
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(B.1.351), delta (B.1.617.2), gamma (P.1), GH (B.1.640), lambda (C.37), mu (B.1.621), and 
omicron (B.1.1.529) variants (Table 1).

To detect a new variant, we generate two reference datasets for each variant. For 
the first dataset, we determine the timepoint T1 at which the first sequences of each 
variant under consideration emerge on GISAID. We then generate the first reference 
dataset using only sequences from GISAID with a timestamp before T1. The second 
dataset emulates the emergence of a new variant. For this we determine the timepoint 
T2 at which 10% of all the sequences of a variant under consideration are available on 
GISAID (the threshold of 10% is arbitrary). We then generate the second reference 
dataset using only sequences from GISAID with a timestamp up to T2. The details of 
the reference dataset up to T1 are given in Table 2, the sequences we aim to detect for 
each variant are given in Table 3, and the combined dataset simulating the emergence 
of each variant up to timepoint T2 is given in Table 4. As before, the timestamps T1 
and T2 mentioned in the article and in Tables 2, 3 and 4 refer to the collection date on 
GISAID.

Our planned subsequent computations on the nucleotide sequences (the calcula-
tion of the principal components of the Jaccard similarity matrix) are too computa-
tionally intensive to be carried out for all available sequences on GISAID. For this 

Table 2  Composition of the reference dataset

The reference dataset is used as a baseline before the emergence of each new variant. Range of accession numbers 
extracted from the GISAID database, their time stamps, and the total number of sequences included

Variant From accession ID To accession ID From date To date No. seq.

Alpha 403,963 11,229,661 2020-01-10 2020-09-30 9999

Beta 403,962 10,338,097 2020-01-08 2020-02-17 437

Delta 404,227 11,396,757 2020-01-10 2020-03-11 10,000

Gamma 403,962 11,448,682 2020-01-08 2020-08-23 9999

GH 408,430 11,468,153 2020-01-10 2021-10-24 10,000

Lambda 403,962 11,359,366 2020-01-08 2021-01-16 10,000

Mu 408,484 11,448,683 2020-01-10 2021-03-06 10,000

Omicron 412,970 11,468,160 2020-01-24 2021-11-11 10,000

Table 3  Composition of the sequences (by variant) that we aim to detect, consisting of the first 10% 
of all sequences per variant

Range of accession numbers extracted from the GISAID database, their time stamps, and the total number of sequences 
included

Variant From accession ID To accession ID From date To date No. seq.

Alpha 733,573 11,230,479 2020-10-01 2021-02-15 788

Beta 660,611 10,980,370 2020-02-18 2021-01-26 99

Delta 1,716,736 11,267,911 2021-01-09 2021-07-20 1085

Gamma 875,689 11,396,742 2020-12-25 2021-03-08 140

GH 6,370,560 6,651,704 2021-11-03 2021-11-10 4

Lambda 1,111,316 1,111,334 2021-01-17 2021-01-17 4

Mu 2,500,943 5,196,329 2021-04-01 2021-04-29 16

Omicron 7,834,399 9,462,827 2021-12-04 2021-12-25 25
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reason, we down-sample each dataset by drawing an unbiased sample of size 10,000 
without replacement.

Using the alignment tool MAFFT [10] and the official SARS-CoV-2 reference sequence 
(available on GISAID under the accession number EPI_ISL_402124), we align all n 
sequences to the reference genome. We employed MAFFT with the keeplength option in 
order to obtain a well-defined window (of length L = 29,891 base pairs) for comparison 
of all sequences. All other parameters of MAFFT were kept at their default values.

Assessing the similarity of nucleotide sequences

We next convert all sequences into a binary Hamming matrix X ∈ Bn x L (where B = {0,1} 
is the set of binary numbers) as follows. We compare the reference genome to each 
aligned nucleotide sequence, and set Xij = 1 if the sequence with number i differs at 
position j from the reference sequence. Otherwise, we set Xij = 0. Here, the number of 
rows of X is set to the number of nucleotide sequences, and L = 29,891 is the number of 
base pairs in the comparison window. The row sums of X correspond to the Hamming 
distance of each nucleotide sequence to the reference genome. This methodology has 
already been used in the literature [6–8, 11].

We employ the Jaccard similarity measure [12–14] to assess the similarity of all pairs 
of sequences. To be precise, each entry (i,j) of the Jaccard matrix J(X) ∈ ℝn x n (having 
n rows and n columns) is a measure of similarity between the binary rows i and j of X. 
An entry (i,j) of J(X) of zero encodes that the two genomes do not share any deviations 
from the reference genome, while an entry of one encodes equality of rows i and j of X. 
We employ the R-package “locStra”, available on CRAN [15, 16], to compute the Jaccard 
matrix.

For all figures included in this work, we visualize the Jaccard similarity measures 
by computing its first two principal components. We plot the first principal compo-
nent against the second principal component, thus effectively interpreting the entries 
of the first eigenvector as x-coordinates, and the ones of the second eigenvector as 

Table 4  Combined dataset consisting of both Tables 2 and 3, subsampled again to size 10,000

Range of accession numbers extracted from the GISAID database, their time stamps, and the total number of sequences 
included

Variant From accession ID To accession ID From date To date No. seq.

Alpha 406,592 11,403,614 2020-01-08 2021-02-15 10,000

Beta 403,963 11,229,964 2020-01-10 2021-01-26 10,000

Delta 404,227 11,403,612 2020-01-16 2021-07-20 10,000

Gamma 407,079 11,448,683 2020-01-10 2021-03-08 10,000

GH 404,227 11,468,151 2020-01-10 2021-11-10 10,000

Lambda 406,593 11,330,894 2020-01-10 2021-01-17 10,000

Mu 408,489 11,468,147 2020-01-10 2021-04-29 10,000

Omicron 410,301 11,448,664 2020-01-13 2021-12-25 10,000
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y-coordinates. We color each point according to either a time stamp, according to its 
cluster membership, or according to whether it is an outlier.

Outlier detection

We are interested in detecting sequences falling into neighborhoods or clusters in which 
they are classified as outliers (subject to a certain criterion). To be precise, we are inter-
ested in sequences falling into neighborhoods consisting of sequences having much 
older (or newer) time stamps.

We aim to utilize an approach which is not dependent on previously identified clus-
ters. One way to achieve this is to define a local environment of radius eps > 0 around 
each sequence in a principal component plot (each sequence corresponds to a point in 
the principal component plot), and to consider all other (that is, similar) sequences fall-
ing into that local environment. Comparing the time stamp of the sequence under con-
sideration to the distribution of timestamp in the local environment allows one to define 
an outlier. We say that a sequence is an outlier in its local environment if its time stamp 
is more than f > 0 standard deviations from the mean date in the environment.

Calibration

Our clustering approach depends on two tuning parameters, the radius of the local envi-
ronment eps, and the factor f that specifies how many standard deviations away from 
the mean date are needed to define a sequence as an outlier. To calibrate both param-
eters, we look at the number of outliers which are identified in the data as a function of 
both eps and f. This results in a typical “elbow” plot, though here in two dimensions (see 
Fig. 2). For small values of f, meaning values close to the mean, many outliers are flagged. 
As f increases, fewer and fewer outliers are identified. The decrease is usually not linear. 

Fig. 1  Omicron variant (see Table 4). First two principal components of the Jaccard matrix, colored by 
the collection time stamp of each nucleotide sequence. The color scale encodes early (green) to late (red) 
sequences according to the color scheme shown on the right. Sequences of the omicron variant (see Table 3) 
are highlighted as triangles
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Instead, the number of outliers usually drops rapidly at a certain cutoff f before leve-
ling off, thus giving the plot its name. The point at which the plot levels off can be used 
to determine f. We apply the elbow method to both set the parameter f, as well as the 
parameter eps.

Fig. 2  Omicron variant. Heatmap showing the number of outliers (from low, depicted in light blue, to 
high, depicted in red) as a function of the radius of the local environment eps and the number of standard 
deviations f

Fig. 3  Omicron variant (see Table 4). First two principal components of the Jaccard matrix with subsequent 
local outlier detection approach. Parameters eps = 1e-2 (the neighborhood radius) and f = 1.5 (the multiplier 
for the standard deviations). Outliers depicted as yellow triangles
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Results
We first focus on the newest variant, omicron. Figure 1 shows a plot of the first two 
principal components of the Jaccard matrix as outlined in section “Assessing the simi-
larity of nucleotide sequences”. As observed previously [8] the genomes from GISAID 
exhibit a particular progression pattern, with older sequences (green) clustering in 
the middle of the plot, while newer samples (red) cluster at the bottom of the plot. 
The progression of genomes seems to take place from the early point cloud (green, 
middle), to genomes with intermediate timestamps (top), to new samples (red, bot-
tom). As also observed in the aforementioned publication, genomes of the omicron 
strain are most similar to genomes in stemming from early on in the pandemic. This 
is visible from Fig.  1 as omicron samples (triangles) fall into a point cloud of early 
(green) genomes.

Interestingly, the observations for Fig.  1 are virtually identical with the ones made 
in [8], even though both experiments are made with independent, and thus entirely 

Fig. 4  Alpha variant. First two principal components of the Jaccard matrix for the alpha variant before (top 
left, see Table 2) and after (top right, see Table 4) the emergence of the alpha variant, where sequences of 
the alpha variant (see Table 3) are highlighted as triangles. Color scheme as in Fig. 1. Local outlier detection 
applied before (bottom left) and after (bottom right) the emergence of the alpha variant, with outliers 
depicted as yellow triangles
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different, subsamples without replacement of size 10,000 taken from all complete 
sequences available on GISAID.

Before applying the approach of “Outlier detection” section, we calibrate the outlier 
detection on the omicron data as outlined in section “Calibration”. Figure 2 shows the 
two dimensional elbow plot of the number of flagged outliers as a function of both the 
radius of the local environment eps and the parameter f. We indeed observe a distinct 
shape of the decrease in the number of outliers as the parameter f increases, with a sharp 
decrease at around f = 1.2, after which the plot levels off. Interestingly, the algorithm is 
rather insensitive to the choice of the local environment eps, apart from the case eps = 0. 
We repeated the calibration for the other variants as well. Interestingly, the parameters 
f = 1.2 and eps = 1e-1 emerge as consistent choices for all variants. Therefore, we use 
f = 1.2 and eps = 1e-1 in the remainder of the section.

After calibration, we aim to identify outliers using the local detection approach of 
“Outlier detection” section. Figure 3 shows the same principal components as Fig. 1 for 
the omicron variant, though this time without any coloring by timestamp. Instead, all 
points in yellow have the property that they pass the local outlier criterion of “Outlier 

Fig. 5  Beta variant. First two principal components of the Jaccard matrix for the beta variant before (top left, 
see Table 2) and after (top right, see Table 4) the emergence of the beta variant, where sequences of the beta 
variant (see Table 3) are highlighted as triangles. Color scheme as in Fig. 1. Local outlier detection applied 
before (bottom left) and after (bottom right) the emergence of the beta variant, with outliers depicted as 
yellow triangles
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detection” section, meaning that they are outliers in a local epsilon environment cen-
tered around them, subject to the calibration of “Calibration” section.

Interestingly, using the same calibration, a number of other sequences not belonging 
to the omicron strain are flagged in Fig. 3. These belong to the delta variant of the SARS-
CoV-2 virus. In what way these samples differ from the other delta variant samples in 
Fig. 3 remains an important question of future work.

Next, we investigate the behavior of the outlier detection upon the emergence of a 
new variant. We are especially interested if an increase in outliers can be detected upon 
the emergence of a new variant. To this end, for each variant under investigation (alpha, 
beta, delta, gamma, GH, lambda, mu, omicron), we apply the same calibrated outlier 
detected to first the reference dataset before the emergence of each variant, and after 
the emergence of each variant. Figures 4, 5, 6, 7, 8, 9, 10 and 11 show results for all eight 
variants (alpha, beta, delta, gamma, GH, lambda, mu, omicron). The left column always 
corresponds to the time period before the emergence of each variant, and the right col-
umn corresponds to the time period after the emergence of each variant. The top plots 
show the first two principal components with highlighted sequences for each variant 

Fig. 6  Delta variant. First two principal components of the Jaccard matrix for the delta variant before (top 
left, see Table 2) and after (top right, see Table 4) the emergence of the delta variant, where sequences of 
the delta variant (see Table 3) are highlighted as triangles. Color scheme as in Fig. 1. Local outlier detection 
applied before (bottom left) and after (bottom right) the emergence of the delta variant, with outliers 
depicted as yellow triangles
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under consideration, the bottom plots show the local outliers as yellow triangles. We 
observe that for the beta, delta, GH, and omicron variants the number of detected outli-
ers considerably increases after the emergence of the variant. For the other variants, the 
change in the number of outliers is less pronounced. For the gamma variant, the number 
of detected outliers considerably decreases after the emergence of the variant.

To concretize results, Table 1 summarizes the total number of detected outliers, the 
number of detected genomes per variant, and the number of genomes for each variant 
that is included in the dataset (and that can possibly be detected). We observe that for 
the common variants beta, delta, GH, and omicron, the detection of the emergence of 
a new strain is possible. Clearly the biological importance of a new variant cannot be 
assessed via outlier detection, but the proposed method would have been able to flag 
these strains as variants of interest.

Interestingly, Table 1 shows that the number of outliers before emergence of a vari-
ant varies widely among variants. This is due to the fact that the reference datasets are 

Fig. 7  Gamma variant. First two principal components of the Jaccard matrix for the gamma variant before 
(top left, see Table 2) and after (top right, see Table 4) the emergence of the gamma variant, where sequences 
of the gamma variant (see Table 3) are highlighted as triangles. Color scheme as in Fig. 1. Local outlier 
detection applied before (bottom left) and after (bottom right) the emergence of the gamma variant, with 
outliers depicted as yellow triangles



Page 12 of 18Hahn et al. BMC Bioinformatics          (2022) 23:547 

independently subsampled from GISAID in order to match the timepoint T1 at which 
each variant occurs first. With our results we aim to demonstrate that a surge in outliers 
can happen upon emergence of a variant, meaning that the (relative) difference in the 
number of outliers is of interest and could be indicative of a change in the dynamics of 
the pandemic.

It is noteworthy to point out that in the case of Fig. 10, the plot of the first two prin-
cipal components changes before and after the emergence of a variant. This is attrib-
uted to how eigenvectors (principal components) change when perturbing a matrix (for 
instance, [17] provides a bound on the angle of the perturbed eigenvector). Therefore, 
adding more data from GISAID to the computation of the Hamming matrix and the 
subsequent computation of the Jaccard matrix can change the Jaccard matrix and its 
eigenvectors.

Finally, we also consider a control case in which no new variant occurs. Figure  12 
shows an example of this scenario using the alpha variant. To prepare Fig.  12, we 

Fig. 8  GH variant. First two principal components of the Jaccard matrix for the GH variant before (top left, 
see Table 2) and after (top right, see Table 4) the emergence of the GH variant, where sequences of the GH 
variant (see Table 3) are highlighted as triangles. Color scheme as in Fig. 1. Local outlier detection applied 
before (bottom left) and after (bottom right) the emergence of the GH variant, with outliers depicted as 
yellow triangles



Page 13 of 18Hahn et al. BMC Bioinformatics          (2022) 23:547 	

divided the reference dataset for the alpha variant (see Table  2) into two parts. The 
first contains the first 5000 sequences in sorted order of their timestamps, while the 
second part contains the later 5000 sequences. As before, we observe a certain number 
of outliers in the first dataset (Fig.  12, bottom left). In contrast to the other figures, 
sequences highlighted in Fig. 12 (bottom left) are not highlighted again in Fig. 12 (bot-
tom right), confirming in this example that a surge would not be detected at this point 
in time.

Discussion
In this work, we demonstrate that nucleotide sequences of common virus strains/vari-
ants can be identified solely based on a statistical outlier criterion in real time. To this 
end, we prepare two reference datasets, one before and one after the emergence of eight 

Fig. 9  Lambda variant. First two principal components of the Jaccard matrix for the lambda variant before 
(top left, see Table 2) and after (top right, see Table 4) the emergence of the lambda variant, where sequences 
of the lambda variant (see Table 3) are highlighted as triangles. Color scheme as in Fig. 1. Local outlier 
detection applied before (bottom left) and after (bottom right) the emergence of the lambda variant, with 
outliers depicted as yellow triangles
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common SARS-CoV-2 variants (alpha, beta, delta, gamma, GH, lambda, mu, omicron) 
available on the GISAID database, and apply an outlier detection method to those 
datasets.

Using the proposed local outlier detection approach, we can identify genomes belong-
ing to the beta, delta, GH, and omicron strain upon emergence of these variants. How-
ever, this detection comes at the cost of a larger number of false positives. The nature 
of those other nucleotide sequences that pass our outlier criteria, and in what way they 
differ from other sequences of the most common SARS-CoV-2 variants, is an important 
direction of ongoing research.

The large number of false positives we observe when applying outlier detection to 
nucleotide sequences can pose a problem for the task of accurately highlighting newly 
emerging sequences. The primary aim of this proposed methodology is for use as an 
online screening tool, or warning system, to detect the emergence of a new variant 
through an increase in outliers. Additional work would be required to confirm which 
outliers are newly emerging variants of concern.

Fig. 10  Mu variant. First two principal components of the Jaccard matrix for the mu variant before (top left, 
see Table 2) and after (top right, see Table 4) the emergence of the mu variant, where sequences of the mu 
variant (see Table 3) are highlighted as triangles. Color scheme as in Fig. 1. Local outlier detection applied 
before (bottom left) and after (bottom right) the emergence of the mu variant, with outliers depicted as 
yellow triangles
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In our study we aim to demonstrate the usefulness of the proposed methodology for 
prediction. However, not all mathematical models are useful prediction tools. Various 
prediction models have been proposed since the start of the pandemic, with various 
success. For instance, some models forecasted that SARS-CoV-2 would not develop any 
variants with distinct pathologies [18], while others concluded based on hidden Markov 
models that certain variants with deleterious mutations go extinct [19]. A comprehen-
sive and retrospect assessment of the accuracy of (non-pharmacological intervention) 
models for the case of Sweden can be found in [20], where the authors conclude that 
some models significantly overestimated the virus spread.

Importantly, this research shows that outlier detection might be a useful tool to iden-
tify emerging variants in real time as the pandemic progresses, using machine learning 
techniques and purely statistical methods only.

Fig. 11  Omicron variant. First two principal components of the Jaccard matrix for the omicron variant 
before (top left, see Table 2) and after (top right, see Table 4) the emergence of the omicron variant, where 
sequences of the omicron variant (see Table 3) are highlighted as triangles. Color scheme as in Fig. 1. Local 
outlier detection applied before (bottom left) and after (bottom right) the emergence of the omicron variant, 
with outliers depicted as yellow triangles
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An important direction of further work addresses the question of whether certain 
sites/loci on the SARS-CoV-2 genome are more predictive for a certain outcome 
than others. For instance, certain high frequency (hot spot) mutation sites are known 
for the coronavirus family which result in different pathologies, such as seen in the 
MERS-CoV nsp3 protein [21]. Similarly, future work could look into the more sta-
ble low frequency (cold spot) mutation sites, since those potentially allow for a more 
robust characterization of strains or new variants.
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