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Abstract 

Background:  Compound–protein interaction site and binding affinity predictions are 
crucial for drug discovery and drug design. In recent years, many deep learning-based 
methods have been proposed for predications related to compound–protein interac-
tion. For protein inputs, how to make use of protein primary sequence and tertiary 
structure information has impact on prediction results.

Results:  In this study, we propose a deep learning model based on a multi-objective 
neural network, which involves a multi-objective neural network for compound–pro-
tein interaction site and binding affinity prediction. We used several kinds of self-super-
vised protein embeddings to enrich our protein inputs and used convolutional neural 
networks to extract features from them. Our results demonstrate that our model had 
improvements in terms of interaction site prediction and affinity prediction compared 
to previous models. In a case study, our model could better predict binding sites, 
which also showed its effectiveness.

Conclusion:  These results suggest that our model could be a helpful tool for com-
pound–protein related predictions.

Keywords:  Compound–protein interaction, Binding affinity, Deep learning, Self-
supervised protein embedding

Background
In order to advance drug design, many compound–protein interaction prediction meth-
ods have been proposed [1]. As available data and computational methods continue to 
grow, this field has attracted a significant amount of attention. To date, several deep 
learning models [2–11] have been incorporated into compound–protein-related tasks. 
In terms of compound–protein interaction prediction, DeepConV-DTI [6] uses com-
pound fingerprints and protein sequences as inputs, which are then processed by fully 
connected neural networks and convolutional neural networks, respectively. DeepConV-
DTI yielded improved prediction accuracy compared with previous models such as 
MFDR [2] or DeepDTI [3]. DrugVQA [11] uses compound simplified molecular input 
line entry system (SMILES) [12] strings and protein distance matrices as inputs, which 
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are then processed by bidirectional long short-term memory networks and convolu-
tional neural networks, respectively. This model outperforms some previous methods [9, 
13] on the area under receiver operator characteristic curve (AUC) scores and provides 
a way to show important sites on compounds and proteins by attention visualization. In 
terms of binding affinity prediction, DeepDTA [4] and GraphDTA [5] are representa-
tive models. DeepDTA uses compound SMILES strings and protein sequences to predict 
affinity. These compound SMILES strings and protein sequences are both processed by 
convolutional neural networks. Compared with DeepDTA, GraphDTA uses compound 
graphs and graph neural networks instead of SMILES strings and convolutional neural 
networks, which causes lower prediction errors. Recently, a multi-objective neural net-
work (MONN) [7] was proposed, which combines interaction site prediction and bind-
ing affinity prediction. Compound graphs and protein sequences are used in this model, 
which are processed by graph convolutional networks and convolutional neural net-
works, respectively. Compared with previous models [8–10], the classification AUC of 
interaction site prediction was significantly improved. These interaction site prediction 
results were further utilized to benefit the prediction of binding affinities.

However, for most of the previously mentioned models [2–9], protein representa-
tions are simply encoded by protein primary sequences. Several self-supervised learn-
ing approaches have become available, such as UniRep [14] and TAPE-BERT [15], which 
learn from millions of protein sequences. These protein embeddings have shown good 
performance for protein stability prediction and green fluorescence protein (GFP) activ-
ity prediction [15]. Recently, we introduced PtsRep [16], a self-supervised learning 
method trained on 35,568 protein tertiary structures. PtsRep was shown to have compa-
rable or better performance than UniRep and TAPE-BERT in terms of protein stability 
prediction and GFP activity prediction [15]. We reasoned that these protein embeddings 
would be useful for improving predictions related to compound–protein interaction. 
To this end, we used MONN [7] as a backbone, but incorporated the aforementioned 
self-supervised protein embeddings to better improve the protein process module (we 
have termed this model as SPE-MONN, Fig. 1). Our results indeed showed that these 

Fig. 1  The model architecture of SPE-MONN.This algorithm consists of three parts. (1) A protein convolution 
module. (2) A compound graph convolution module. (3) A prediction module for two tasks. This architecture 
was partially adapted from MONN [7]
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modifications were beneficial for predictions. Compared with previous advanced models 
[5, 7], SPE-MONN performed better for compound–protein interaction site and binding 
affinity prediction.

Methods
Prediction objective

Two prediction objective definitions for SPE-MONN were as described in MONN [7]. 
Briefly, one was the interaction site prediction between compound atoms and protein 
residues. The representation of interaction sites between a compound with Nm  atoms 
and a protein with Np residues was a pairwise interaction matrix PIM ∈ RNm×Np . Bind-
ing affinity predication was the second objective, which was a regression task.

Feature representation

The proposed model SPE-MONN utilized three types of embedding, PtsRep [16], 
UniRep [14], and TAPE-BERT [15]. In order to obtain the PtsRep embedding of a tar-
get protein, each residue of the protein sequence was represented by 10 properties (i.e., 
bulkiness, hydrophobicity, and relative spatial distance, among others) of its K  nearest 
residues ( KNR ) in Euclidean space [17]. A bidirectional language model [18] taking KNR 
as an input was used to predict the two contiguous residues beside any given residues 
in both directions. This pre-trained model was used as a protein encoder. The PtsRep 
embedding of each protein had a shape like Np × 768 . PtsRep was used by default for 
SPE-MONN below. UniRep [14], utilizing an mLSTM model pretrained on 24 million 
protein sequences, is one of the most effective self-supervised learning representations. 
TAPE-BERT [15] is another effective representation that was pre-trained on approxi-
mately 32  million protein sequences using the BERT [19] format. For simplicity, we 
will refer to TAPE-BERT as TAPE below. In this work, the 1900-dimensional UniRep 
embedding and the 768-dimensional TAPE embedding were used as a comparison. A 
compound graph used here was the same as in MONN [7]. Briefly, a compound can 
be described as a graph Gm(Vm,Em), where Vm consists of Nm atom nodes with a fixed 
dimension atom feature. Em consists of edge information in a graph and the edge corre-
sponds to those chemical bonds between the atoms in a given compound.

Model architecture of SPE‑MONN

The architecture of SPE-MONN was a modification of that for MONN [7] in that the 
protein convolution module was expanded to contain two parts. The first one was a con-
volutional neural network (CNN) to extract intrinsic information from self-supervised 
protein embedding, while the second one was a CNN module for protein sequence evo-
lutionary information extraction, similar to what was used in MONN [7].

For protein embedding extraction, a convolutional layer with Conv1D and Leaky Rec-
tified Linear Unit (Leaky ReLU) were applied to reduce self-supervised embedding to 
d1-dimensions. In particular, a self-supervised embedding P0 ∈ RNp×d0  was computed 
and represented by P1 ∈ RNp×d1 . P1 further passed through multiple convolutional lay-
ers to obtain Pembed . The dimension of Pembed was consistent with P1 . The convolutional 
layer number N  was 4 and the output dimension was 128.
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For evolutionary information extraction,  each protein sequence was first encoded 
through the BLOSUM62 [20] matrix, and then processed via CNN to obtain the final 
sequence evolutionary representation Pevo . The outputs of the two CNN modules were 
combined for a combined protein representation, Pcombine as defined below.

The compound graph convolution module and the downstream task prediction mod-
ule were described in MONN [7]. Briefly, a graph convolution network was used here. A 
message passing unit [21] was used to aggregate information from neighbouring atoms 
and bonds and a graph warp unit [22] was used to aggregate information from super 
nodes, which represented compound global features.

For interaction site prediction, fully connected layers and a sigmoid function were 
applied to process compound representation and protein representation. A matrix with 
the shape Nm × Np was the final interaction site prediction result. Based on a dual atten-
tion network [7, 23] and fully connected layers, the final affinity prediction results were 
obtained.

For compound–protein pairs, the loss function is defined as follows:

Lp and La represent the loss function on interaction site prediction and affinity predic-
tion, respectively. Lp can be defined as follows:

PIM
(n)
ij  is the label for interaction between the i-th compound atom and the j-th 

protein residue of the n-th pair. y(n)ij  is the prediction probability. La can be defined as 
follows:

y
(n)
a  is the binding affinity label of the n-th pair, y(n)a  is the prediction score and � is set 

to 0.1.
The SPE-MONN model was implemented using PyTorch and run on a Nvidia GeForce 

2080 Ti. The Adam optimizer was used, and the learning rate was set to 0.0005 at first, 
followed by a change to a step size of 20.

Datasets

PDBbind [24, 25] provides binding affinity data for biomolecular complexes stored in 
the Protein Data Bank (PDB) [26]. The interaction sites in each complex were extracted 
using PLIP [27]. In order to compare performance with MONN, we used the same PDB-
bind version, PDBbind v2018, and processed the data using the same processing meth-
ods as described for MONN [7]. The difference was that we used the PDB sequence 
instead of the UniProt sequence because the PtsRep construction required PDB data. 
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After processing, 23,985 pairs were obtained for interaction site prediction and 14,402 of 
them with Ki or Kd affinity labels were used for binding affinity prediction. Referring to 
MONN [7], a clustering based cross-validation was used here. Single-linkage clustering 
[28] was used to gather similar data for drug compounds and proteins by distance meas-
urements. According to the number of clusters and the number of elements in the clus-
ter (Additional file 1: Tables S1, S2), the range of distance threshold was set from 0.3 to 
0.6. For the new-compound setting and the new-protein setting, data splitting was based 
on compound clusters and protein clusters, respectively. Five-fold cross-validation was 
performed for these two settings. For the both-new setting, the protein and compound 
clusters were both considered and nine-fold cross-validation was performed. We used 
AUC to evaluate the performance of interaction site prediction, while we used the Pear-
son correlation coefficient and root mean square error (RMSE) to assess binding affinity 
prediction [7].

Results
Performance on the PDBbind v2018 dataset

The results from interaction site predications are shown in Fig.  2A. SPE-MONN-
PtsRep (0.811, 0.849) outperformed MONN (0.729, 0.811) with an increase of 11.2%, 

A

B

C

Fig. 2  The performances on the PDBbind dataset.The AUC results of interaction site prediction (A). The 
Pearson correlation coefficient results (B) and RMSE results (C) of binding affinity prediction



Page 6 of 12Wu et al. BMC Bioinformatics          (2022) 23:543 

4.7% for the AUC in the new-protein and the both-new settings, respectively, when 
the clustering threshold was set to 0.3. In addition, the model using TAPE or UniRep 
showed the same trend as the model using PtsRep in these two settings. The AUC 
of the TAPE model in the new-protein setting was 0.797 and the UniRep model was 
0.786. In the both-new setting, their AUCs were 0.847 and 0.843, respectively. In the 
new-compound setting, the AUC of SPE-MONN-UniRep was 0.835, which was bet-
ter than MONN (0.832). The AUCs of SPE-MONN-PtsRep (0.829) and SPE-MONN-
TAPE (0.828) were slightly lower than MONN. The performance rankings of the four 
models in the clustering thresholds 0.4, 0.5, and 0.6 were similar to that in 0.3. We 
also ran DrugVQA under the new-protein setting, and the AUCs were found to be 
lower than those of both SPE-MONN and MONN in all the four clustering thresh-
olds. Taken together, using self-supervised protein embeddings and a modification of 
the protein module in MONN made the site predictions on the protein and the over-
all site predictions more accurate, and SPE-MONN-PtsRep had the best performance 
using this data set.

The results in terms of binding affinity prediction are shown in Fig. 2B, C. We added 
DeepDTA and GraphDTA for comparison. They are representative models on bind-
ing affinity predicitions. GraphDTA had four variants of graph neural networks, we 
tested on all of them, and the data presented here was from the GCN-GAT variant, 
which had the best performance. As shown in Fig. 2B, C, in the new-compound set-
ting SPE-MONN-PtsRep generally outperformed MONN in terms of both Pearson 
correlation coefficient and the RMSE. The Pearson correlation coefficient for SPE-
MONN-PtsRep in this setting when the clustering threshold set to 0.3 was 0.687, 
and it was 0.675 for MONN, 0.656 for DeepDTA, and 0.598 for GraphDTA, while 
the RMSE of SPE-MONN-PtsRep, MONN, DeepDTA and GraphDTA were 1.491, 
1.516, 1.677 and 1.673, respectively. SPE-MONN-PtsRep returned the lowest RMSE 
among all of these models. In the new-protein and the both-new settings, the average 
increases of the Pearson correlation coefficient of SPE-MONN-PtsRep compared to 
MONN at 4 clustering thresholds were both 0.006, when compared to DeepDTA, the 
average increases were 0.024 and 0.035, and when compared to GraphDTA, the corre-
sponding increases were 0.118 and 0.139. The average decreases of the RMSE of SPE-
MONN-PtsRep compared to MONN at 4 clustering thresholds were 0.007 and 0.006, 
when compared to DeepDTA, the average decreases were 0.167 and 0.163, and when 
compared to GraphDTA, the average decreases were 0.174 and 0.164. Thus, compared 
to DeepDTA and GraphDTA, SPE-MONN showed significant improvement both in 
the new-protein and the both-new settings. The results of SPE-MONN and MONN 
were close, but the former still performed slightly better overall.

In addition, we have been compared our models with the HPC/HWPC models [29], 
which were also trained and tested on PDBbind dataset. We followed HPC/HWPC 
models, and conducted experiments on PDB-2016, PDB-2013 and PDB-2007. As 
shown on Table 1, on PDB-2016, our models were comparable or slightly better than 
the HPC model on both Pearson correlation coefficient and RMSE; while the HPC-
HWPCs model performed better or slightly better than our models overall, except for 
partial results on RMSE, for which our SPE-MONN-TAPE/UniRep model performed 
better. According to this literature, we also conducted experiments to compare these 
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models on PDB-2013 and PDB-2007. Our three models performed slightly better 
on both Pearson correlation coefficient and RMSE compared with HPC and HPC-
HWPCs models.

While our models do not comprehensively outperform the HPC-HWPCs model, but 
our models can also perform interaction site prediction in addition to affinity prediction. 
Moreover, compared with the machine learning method (hypergraph-based persistent 
cohomology) used in the HPC-HWPCs model, our models require less time. We sur-
mise that it may be possible to improve the overall performance of the HPC-HWPCs 
model using the protein embeddings from TAPE/UniRep/PtsRep.

In general, SPE-MONN produced improved results both in terms of interaction site 
prediction and binding affinity prediction tasks, and SPE-MONN-PtsRep had the best 
performance. The above results were obtained when the α for protein representation 
combination was 0.5.

Identifying how to make better use of protein representations

By processing protein inputs through the protein convolution module, three different 
kinds of protein representations Pembed , Pevo and Pcombine were obtained. In order to 
explore which protein representation was more suitable for interaction site prediction 
and binding affinity prediction, we applied the three types of protein representations 
mentioned above to two prediction tasks, respectively.

The results in terms of interaction site prediction are shown in Fig. 3A. In the new-
compound setting, the three models using Pembed , Pevo and Pcombine performed closely. 
In the new-protein setting, the results of the Pevo model were the worst. Compared with 
the Pevo model, the Pembed model improved significantly, while the Pcombine model had 
the best performance. In the both-new setting, the performance rankings of the three 
models was consistent with that in the new-protein setting. The results on binding 
affinity prediction are shown in Fig. 3B and C. In the new-compound setting, the Pevo 
model had the lowest Pearson correlation coefficient and the highest RMSE. The other 
two models had better performance than the Pevo model. In contrast, in the new-protein 
and the both-new settings, the results were different from the new-compound setting. 
The Pevo model had the best performance, while the Pembed model had the worst perfor-
mance. The Pcombine model had improved results compared with the Pembed model, but 
this was still inferior to the Pevo model.

On interaction site prediction, the protein embedding representation was beneficial 
for the improvement of model performance. Compared with the protein evolutionary 
representation, the protein embedding representation had been pre-trained on a large 
number of protein sequences or structures, so it contained more diversified biological 

Table 1  The Pearson correlation coefficient results and RMSE results (in parentheses) for our models 
and HPC/HWPC models in PDBbind-v2016, PDBbind-v2013 and PDBbind v2007

Dataset SPE-MONN-PtsRep SPE-MONN-TAPE SPE-MONN-UniRep HPC HPC-HWPCs (η1 
& η2 )

PDB-2016 0.810 (1.321) 0.816 (1.301) 0.823 (1.272) 0.810 (1.359) 0.831 (1.307)

PDB-2013 0.791 (1.431) 0.796 (1.420) 0.797 (1.412) 0.770 (1.508) 0.784 (1.483)

PDB-2007 0.835 (1.389) 0.831 (1.399) 0.822 (1.429) 0.813 (1.423) 0.829 (1.403)
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semantics. For binding affinity prediction, the Pevo model relative to the Pembed model 
showed better performance. These results suggested that, although the protein embed-
ding already contained abundant information, in terms of sequence evolutionary infor-
mation, it was still lacking, and this term was an important factor that affected affinity 
prediction. To some extent, the results of the Pcombine model showed the benefit of Pevo . 
Compared with the Pembed model, the Pcombine model’s performance on interaction site 
prediction was further improved. In terms of binding affinity prediction, its performance 
was also improved but lower than the Pevo model.

In order to achieve the optimal performance for both predictions, Pcombine was used 
for interaction site prediction and Pevo was used for binding affinity prediction. The 
results are shown in Fig.  3. In both tasks, this model achieved the best performance. 
Therefore, this usage of protein representation was adopted.

We then compared the performance of five different combination ratios, namely, 0, 
0.2, 0.5, 0.8, and 1, when the clustering threshold was 0.3. The results on interaction 
site prediction are shown in Additional file 1: Table S3. In the new-compound setting, 
the results of the five combination ratios were equivalent. In both the new-protein and 
the both-new settings, the model’s performance increased gradually when α  increased 
from 0 to 0.5, and decreased gradually when α exceeded 0.5. When α = 0.5 , the model 

A

B

C

Fig. 3  Impacts on different types of protein representations.The AUC results of interaction site prediction (A). 
The Pearson correlation coefficient results (B) and RMSE results (C) of binding affinity prediction
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obtained the highest AUC value. The results on binding affinity prediction are shown in 
Additional file 1: Table S3. Among these three settings, when α = 0.5 , the model’s Pear-
son correlation coefficient was the highest and its RMSE value was the lowest. Combin-
ing the results from two predictions, it could be concluded that α = 0.5 was the best 
combination hyperparameter, and decreasing or increasing this value led to the degrada-
tion of model performance.

Case study

The SARS-CoV-2 main protease is considered as a drug promising target [30]. Some inhibi-
tors interacting with it had been selected that are thought to function against this virus. 
There was a study [31] that reported 8 inhibitors interacting with the SARS-CoV-2 main 
protease. Of these inhibitors, 4 of them interacting with the protease (PDB id: 6W63) were 
identified from FDA-approved drugs, including Dobutamine, Apicidin, Nelfinavir, and 
Teniposide. The others interacting with the protease (PDB id: 6Y2F) were collated from 
CHEMBL, namely, CHEMBL206650 (C1), CHEMBL303543 (C2), CHEMBL127888 (C3), 
and CHEMBL573507 (C4). We applied our trained models to predict the interaction sites. 
A total of 25 sites were identified [31] and Table  2 lists the rankings of interaction sites 

Table 2  Results of interaction site prediction ranking on SARS-CoV-2 related proteins and 
compounds

Items in bold were predicted to be the top 10 sites

Compound Site Ranking

SPE-MONN-
PtsRep

SPE-MONN-TAPE SPE-MONN-
UniRep

MONN

Dobutamine 41 1 1 1 1
49 106 41 4 50

166 4 2 8 3
Apicidin 166 2 2 11 2

189 7 4 40 16

Nelfinavir 141 39 26 44 17

143 5 6 58 4
166 3 2 11 2
189 8 4 32 15

Teniposide 141 4 6 46 4
166 7 3 24 12

C1 140 6 16 17 2
143 3 5 25 3
144 9 8 16 16

167 26 57 135 116

189 10 4 15 12

C2 166 1 1 2 1
167 26 52 131 119

189 8 4 14 12

C3 25 12 12 6 20

142 5 9 29 7
189 9 4 15 10

C4 141 13 29 36 14

142 5 9 26 6
166 1 1 2 1
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predicted by SPE-MONN and MONN. Items in bold were predicted to be the top 10 sites. 
We counted the top 10 sites on the protein side of each compound–protein pair. Among 
these 25 sites, SPE-MONN-PtsRep revealed 19 of the top 10 sites, while MONN returned 
13. The results from SPE-MONN-TAPE and SPE-MONN-UniRep were 18 and 6, respec-
tively. Of the average results from site prediction ranking, SPE-MONN-PtsRep suggests a 
real site on the 13th out of all sites and MONN suggests a site on the 19th. The ranking 
results of SPE-MONN-TAPE and SPE-MONN-UniRep were 13th and 25th, respectively. 
SPE-MONN-PtsRep and SPE-MONN-TAPE thus could more accurately find possible 
compound binding sites on proteins. These results suggested that the SPE-MONN model 
was a helpful tool for analyzing the interaction between compounds and proteins.

Discussion
Accurate prediction of compound–protein interaction-related tasks could facilitate 
improved drug discovery and drug design. In this work, we present SPE-MONN, a com-
pound–protein interaction site and binding affinity predicting method based on MONN, 
and this model utilizes self-supervised protein embedding. Compared with previous mod-
els [4, 5, 7, 11], the results demonstrated that our model outperformed them in both predic-
tion tasks. PtsRep protein embedding likely enriches potential protein information due to 
the use of protein structure and protein properties. TAPE and UniRep protein embeddings 
learn the intrinsic information from proteins from a large number of protein sequences. 
They are thus helpful for predictions because more useful information is included in pro-
tein embeddings. Evolutionary information from protein sequences was also shown to be a 
factor influencing prediction [7], so we used both protein embedding and protein sequence 
evolutionary information together to improve the overall performance of our model. The 
results from our case study showed that our model could also make predictions that were 
closer to the correct results. Thus, our model is a useful tool for compound–protein-related 
predictions.

We also attempted to explore a graph neural network more suitable for two prediction 
tasks, including three graph neural network modules [5], GAT [32], GIN [33] and GCN-
GAT [5], which were used to replace the compound convolution module in SPE-MONN. 
The results (Additional file 1: Fig. S1) showed that the current graph convolution module 
[7] was the best choice.

The advent of AlphaFold2 [34] greatly reduces the difficulty of obtaining protein struc-
tures. We expect more advanced protein embedding methods will emerge along with the 
increasing entries for protein structures. Recently, there was a method demonstrated in the 
literature [35] that uses 3D-CNN to process protein tertiary structures and it has shown 
the ability to sense interactions within proteins and succeed in mutation guidance. This and 
others protein processing methods [36–38] will have implications for predictive accuracy 
on compound–protein interaction, and accelerate the process of drug discovery and design.

Conclusion
In this paper, a model called SPE-MONN is proposed to predict the compound–pro-
tein interactions. It is based on the published model MONN and we utilize the protein 
embedding gained from self–supervised learning and modify the related protein convo-
lution module for improvement. The experimental results show that the performance of 



Page 11 of 12Wu et al. BMC Bioinformatics          (2022) 23:543 	

SPE-MONN is improved both in interaction site prediction and binding affinity predic-
tion. The case study also show that our model can better predict the interaction sites. In 
general, SPE-MONN could be a helpful tool for compound–protein interaction study.
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