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Abstract 

Background:  As a highly aggressive disease, cancer has been becoming the lead‑
ing death cause around the world. Accurate prediction of the survival expectancy for 
cancer patients is significant, which can help clinicians make appropriate therapeutic 
schemes. With the high-throughput sequencing technology becoming more and 
more cost-effective, integrating multi-type genome-wide data has been a promising 
method in cancer survival prediction. Based on these genomic data, some data-inte‑
gration methods for cancer survival prediction have been proposed. However, existing 
methods fail to simultaneously utilize feature information and structure information of 
multi-type genome-wide data.

Results:  We propose a Multi-type Data Joint Learning (MDJL) approach based on 
multi-type genome-wide data, which comprehensively exploits feature information 
and structure information. Specifically, MDJL exploits correlation representations 
between any two data types by cross-correlation calculation for learning discriminant 
features. Moreover, based on the learned multiple correlation representations, MDJL 
constructs sample similarity matrices for capturing global and local structures across 
different data types. With the learned discriminant representation matrix and fused 
similarity matrix, MDJL constructs graph convolutional network with Cox loss for sur‑
vival prediction.

Conclusions:  Experimental results demonstrate that our approach substantially 
outperforms established integrative methods and is effective for cancer survival 
prediction.

Keywords:  Cancer survival prediction, Feature information, Structure information, 
Correlation representation, Similarity matrix

Introduction
Cancer has been becoming the leading death cause all over the world, which seriously 
affects human health and living quality [1, 2]. In addition, the mortality rates increase 
year by year [3–5]. Prognosis prediction can aid physicians significantly in making deci-
sions about care and treatment of cancer patients [6, 7]. Prognosis prediction usually can 
be described as a censored survival analysis problem, which predicts whether and when 
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a death will occur within a given time period [8, 9]. In the past few decade, many survival 
prediction methods have been proposed, such as standard Cox regression and its exten-
sions [10], tree-based ensemble methods, random survival forests [11], and so on.

Historically, cancer survival prediction works mainly based on histopathologi-
cal descriptors and low-dimensional clinical data, such as sex, age at diagnosis, cancer 
grade detail, body fat rate and other clinical features [12–14]. However, clinical prac-
tice has found that genomic data tends to contain more molecular biomarkers associ-
ated with cancer and thereby can describe the cancer more comprehensively [15, 16]. 
Meanwhile, with the advance of Human Genome Project, high-throughput sequencing 
technology becomes cost-effective, which makes it progressively easier to achieve multi-
ple and diverse genome-scale data sets to address clinical and biological questions [17]. 
In general terms, the above multi-type data describing the same cancer can be regarded 
as multimodal data. Specifically, multimodal data has two basic characteristics [18–20]. 
On the one hand, they share the common information both in feature level and structure 
level. On the other hand, each modality has its own specific information both in fea-
ture level and structure level. Compared with single genetic data type, multiple genome-
scale data sets can capture more comprehensive information for cancer. Therefore, it is 
essential and feasible to develop new data-integration algorithms especially for utilizing 
multi-type high-dimensionality genomic data to capture comprehensive information for 
cancer.

Motivation

During the past several years, many researchers have been devoted to construct data-
integration methods based on binary classification models for cancer survival predic-
tion. In this technology, cancer patients are usually classified to the short or long survival 
group according to a predefined threshold (e.g., 3 years). For example, Zhang et al. [21] 
presented a multiple kernel machine learning method combined with min-redundancy 
max-relevance (mRMR) feature selection algorithm to predict 2-year survival rate of 
glioblastoma multiforme patients. Zhao et al. [22] studied various prediction methods 
including ensemble models (Gradient Boosting and Random Forest), support vector 
machine and artificial neural networks to predict 5-year survival rate of breast cancer 
by fusing gene expression data, clinical data and pathological images. Unfortunately, this 
technology reduces the survival analysis to a classification problem, which is counter-
practical and far less useful than the estimation of survival times. Another mainstream 
technology for survival prediction is survival risk regression based methods, such as 
Cox proportional hazards (Cox-PH) model [23, 24]. Different from binary classification 
methods, this technology focuses on whether a patient survives at a certain time point 
rather than when the patient dies, which can handle both uncensored and censored sam-
ples. Therefore, patients who survive at a certain time point can be used in modelling 
patient survivals [25].

Although existing works have promoted the development of data-integration meth-
ods in cancer survival prediction, there are two limitations to develop this technology: 
(i) simultaneously utilizing structure information and feature information, specifically for 
small scale dataset; (ii) fully utilizing multi-type data for learning effective discriminant 
features. Here, structure information points to the information of data distribution within 
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data types. Feature information refers to the information contained in the data (such as 
genes) within a sample. Discriminant features refer to the features learned from original 
data (such as gene sequences) by utilizing feature learning algorithms, which is useful to 
separate the samples with different survival time [26]. Existing data-integration meth-
ods for cancer survival prediction have yet to address all of these limitations together. In 
addition, with excellent feature learning ability, the neural network extension of the Cox 
model has proved its better performance than traditional Cox-PH models in survival 
prediction, especially for high-throughput sequencing data. Hence, we intend to apply it 
to our work. In addition, we introduce similarity matrix to exploit structure information, 
which can access structural information hidden in multi-type data.

Inspired by the above analysis, we intend to design a Multi-type Data Joint Learning 
(MDJL) approach to obtain a reliable similarity matrix for exploiting structure informa-
tion and an effective discriminant feature representation for exploiting feature informa-
tion. In our proposed MDJL, (a) structure information and feature information can be 
simultaneously utilized; (b) the discriminant feature representations are exploited by 
learning correlation representations between any two data types, which can ensure the 
diversity and provide complementary information; (c) the constructed similarity matri-
ces can explore useful structure information even from a small-scale samples.

Contribution

The main contributions of our approach lie in three aspects: 

1.	 Different from existing survival prediction methods, we present a Multi-type 
genome-wide Data Joint Learning (MDJL) approach for cancer survival prediction, 
which achieves both a fused similarity matrix and an integrated discriminant feature 
representation for simultaneously utilizing structure information and feature infor-
mation.

2.	 MDJL exploits correlation representations between any two data types by cross-
correlation calculation for learning discriminant features. Moreover, based on the 
learned correlation representations, MDJL constructs sample similarity matrices for 
capturing global and local structures across different data types. With the learned 
discriminant representations and similarity matrices, MDJL constructs graph convo-
lutional network with Cox loss for survival prediction.

3.	 We conduct a number of experiments on four public cancer datasets. Experimen-
tal results show that our approach can achieve higher prediction performance than 
competing methods. Further investigation not only demonstrate the effectiveness of 
each component for MDJL, i.e., correlation representations extraction component 
and similarity matrices construction component, but also indicate the robustness.

Organization

The rest of this paper is organized as follows: Sect. Motivation reviews related cancer 
survival prediction works. The proposed approach and detailed algorithm are intro-
duced in Sect. Contribution. Section Organization talks about the experimental results. 
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Section Related works conducts further experiments to investigate our approach. Sec-
tion Binary classification based survival prediction works concludes this paper.

Related works
Binary classification based survival prediction works

In the past few decades, a variety of binary classification based multimodal learn-
ing methods for survival prediction have been proposed. In general terms, a modality 
refers to a kind of data type. These methods mainly focus on learning fused representa-
tion from multiple data sources, such as clinical data, histopathological images markers 
and genomic data [27–31]. With multiple types of data, some data-integration strategies 
such as joint-based strategy [32, 33] and alignment-based strategy [34–36] have been 
presented. Joint-based methods utilize multi-type data mainly by concatenating multi-
type data into one unified feature matrix. For example, Sun et al. [37] presented a tri-
ple model DNN to respectively learn feature representations from gene expression, copy 
number alteration and clinical data, and then concatenated the learned multiple repre-
sentations into one unified matrix. To explore the inherent relation between samples and 
multi-type genomic data, Gao et al. [38] constructed bipartite graphs between patients 
and gene expression, copy number alteration. Khademi et  al. [39] integrated microar-
ray data and clinical data through the probabilistic graph model for prognosis of breast 
cancer. Methods based on alignment strategy utilize multiple types of data by maximiz-
ing the common information across different data types. For example, Wang et al. [40] 
designed a cluster-boosted multi-task learning approach to exploit the common infor-
mation across different data types for survival analysis. Although these methods have 
promoted the development of multimodal cancer survival analysis, they are limited to 
binary classification problem and are counter-practical.

Survival risk regression based survival prediction works

Different from binary classification methods, the survival risk regression methods 
aim to calculate a risk score for each patient, typically with the Cox-PH model and its 
extensions [41–43]. For example, to predict an individual survival time, Baek et al. [44] 
achieved this by integrating hazard network and a distribution function network. Wang 
et al. [45] proposed a reweighted Lasso-Cox model for cancer survival prediction, which 
improves the generalization ability of the model by weighing the topologically impor-
tant genes based on random walk. Considering there are correlations between multi-
type genomic data, Bichindaritz et  al. [46] presented an adaptive multi-task learning 
approach for breast cancer survival prediction, which add an auxiliary ordinal loss to the 
Cox model.

Recently, with the excellent data representation ability and high learning ability, a vari-
ety of deep neural networks extension of the Cox-PH model has been proposed [47–50]. 
For example, instead of learning linear relationship in the Cox-PH model, both Deep-
Surv [51] and Cox-nnet [52] introduce neural networks to learn nonlinear feature rep-
resentation. To fully utilize multi-omics data, Tong et al. [53] designed a concatenation 
autoencoder to concatenate the learned multiple hidden representations from each data 
type. In addition, to achieve the consensus representation across multi-omics data, they 
designed a cross-modality autoencoder to maximize the agreement across modalities. 
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Cheerla et  al. [54] presented an unsupervised encoder extension of the Cox model to 
integrate multi-type data into one single feature matrix, which introduces similarity loss 
to force four data sources align the common information. To eliminate the estimation 
bias in processing such datasets with a large number of censored samples, Zhang et al. 
[55] introduced Bayesian Perturbation to approximate the prior knowledge of censored 
samples to optimize the training process of model. To address the limitation that deep 
networks tend to fall into over-fitting with small sample size high feature dimension, 
Qiu et al. [56] present a meta-learning approach based on neural networks for cancer 
survival prediction. In addition, Kvamme et al. [57] imposed L1 and L2 regulation terms 
on the network parameters to reduce the over-fitting problem. However, these methods 
mainly exploit feature information but fail to exploit useful structure information.

Similarity matrices construction works

Similarity matrix construction has been widely used in multi-view clustering tasks. Usu-
ally, existing methods tend to construct similarity matrix for each data types, based on 
which they learn a shared similarity matrix of all data types. For example, Zhan et al. 
[58] learned the consensus similarity graph by minimizing disagreement between differ-
ent views with a disagreement cost function. To address the limitation that incomplete 
multi-view clustering fails to exploit hidden information of missing views and handle the 
information imbalance across different views, Wen et al. [59] designed adaptive weights 
to balance the importance of different views. Wang et al. [60] designed a multi-view sub-
space clustering approach, which adopts the Hilbert-Schmidt Independence Criterion to 
enforce the similarity of similarity matrix have maximum dependence. Chen et al. [61] 
designed a nonlinear method for multi-view clustering, which jointly learn kernel rep-
resentation matrix and similarity matrix. Zhang et  al. [62] presented an anchor-based 
approach for multi-view semi-supervised, which constructs the affinity graphs by using 
an anchor-based strategy and obtains the optimal consensus graph by using feature 
and label information. Considering that original multi-view data often contain abun-
dant noise and outliers, Xie et al. [63] learned latent feature representation based on the 
adaptively learned graph. It also introduces Laplacian embedding to maintain the local 
manifold structure. Zhang et al. [64] constructed a unified similarity matrix for multi-
ple views by utilizing a latent representation explored from the underlying complemen-
tary information. Huang et al. [65] integrated similarity learning and local embedding 
into a unified framework, which constructs a fused similarity matrix and learns a latent 
low-dimensional representation for capturing the underlying structure. For preserving 
global structures and obtaining local structures, Wan et al. [66] proposed an embedding 
method for multi-view clustering, which integrates all views into a combination weight 
matrix for maintaining global structures and imposes constraint on the learned shared 
affinity matrix for obtaining the local structure.

Proposed method
In this paper, we propose a Multi-type Data Joint Learning (MDJL) approach for can-
cer survival prediction based on multi-type genome-wide data. Specifically, instead 
of exploiting common feature information shared by all data types, we exploit 
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correlation/common feature information between any two data types for exploring 
diverse and complementary feature information across multiple data types. Secondly, 
we fully utilize the global and local structure to construct similarity matrices based 
on the learned multiple correlation representations. Here, global structure refers to 
the similar structure information across different data types, local structure refers to 
the neighborhood information within data types. The main architecture of our MDJL 
approach is illustrated in Fig.  1. MDJL consists of four components: (1) correlation 
representations extraction component, which is designed for utilizing diverse and 
complementary feature information across multiple data types by learning correlation 
representations between any two data types; (2) discriminant representations gener-
ation component, which is designed for fusing multiple correlation representations 
by concatenation; (3) similarity matrices construction component, which is designed 
for generating sample similarity matrix by fully utilizing both global and local struc-
ture across different data types; and (4) graph convolutional network construction 

Table 1  Summary of the key notations used in the paper

Notations Explanations

xv ∈ R
dv×N Sample set of v-th data type

x
v
i
∈ R

dv The i-th sample in v-th data type

fv Fully connection neural network used for feature learning

wl

fv
∈ R

ml×ml−1 The l-th layer weight matrix of neural network fv

yv ∈ R
d×N The learned feature representation from xv with fv

χ v ,u ∈ R
d×d×N Interactive map set between data type v and data type u

χ
v ,u
i

∈ R
d×d Interactive map of i-th sample between data type v and data type u

yv ,u ∈ R
d×N The correlation representation of xv and xu

y ∈ R
(V(V−1)/2)×N Fused correlation representation

Pm Normalized weight matrix

Sm K nearest similarity matrix

P Fused similarity matrix

zi The output of graph convolutional network

Fig. 1  The architecture of our proposed MDJL
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component, which is used for predicting the survival risk for patients. Key notations 
used in this paper are listed in Table 1.

Correlation representations extraction

Suppose there are N samples and V different data types. Let xv =
{

xvi ∈ R
dv
}N

i=1
 be the 

sample set of the v-th data type, and xvi  represents the i-th sample of data type v, dv is 
the feature dimensionality of xv , where v = 1, 2, . . . ,V  . For correlation representation 
extraction, we firstly define V neural networks 

{

fv
}V

v=1
 to conduct feature learning and 

project xv from space Rdv into space Rd , that is,

where yv ∈ R
d×N , and fv points to a neural network with L = 3 layers,

For the l-th layer (l = 1, 2, . . . , L) , wl
fv
∈ R

ml×ml−1 denotes the weight matrix 
(m0 = dv ,mL = d) , blfv ∈ R

ml is the bias vector, hlfv ∈ R
ml denotes the output of the l-th 

layer 
(

h0fv = xv ,hLfv = yv
)

 , and σ is the acivation function.

To further explore the correlation representations between any two data types, we 
borrow correlation computation proposed in [67]. Following work [67], for the i-th sam-
ple, the interactive map χv,u

i  of yvi  and yui  can be defined as,

where v  = u , ⊗ is outer product, χv,u =
{

χ
v,u
i ∈ R

d×d
}N

i=1
 , χv,u = χu,v.

Based on the interactive map set, we further construct a set of neural networks 
ψ =

{

ψv,u

}

v,u={1,...,V },v �=u
 to project each χv,u from space Rd×d into an embedded space 

R
d , which learns deep correlation representations between any two data types. That is,

where yv,u ∈ R
d×N is the correlation representation of xv and xu , wψv,u ∈ R

d×d2 , 
bψv,u ∈ R

d , vec(·) represents the vectorization of a matrix.

Discriminant representations generation

Based on the above subsections, we have learned multiple correlation representations 
from multiple data types. The finally fused correlation feature representation from all 
pairwise data types can be written as,

(1)yv = fv xv ,

(2)hlfv = σ

(

wl
fv
hl−1
fv

+ blfv

)

.

(3)χ
v,u
i = yvi ⊗ yui ,

(4)yv,u = ψv,u

(

χv,u
)

= σ
(

wψv,uvec
(

χv,u
)

+ bψv,u

)

.

(5)

y =[y1,2 ⊤, y1,3 ⊤, . . . , y1,V ⊤,

. . . ,

yv,v+1 ⊤, yv,v+2 ⊤, . . . , yv,V ⊤,

. . . ,

yV−1,V ⊤]⊤.
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Similarity learning of global and local structure

As mentioned above, MDJL aims to learn a fused similarity matrix based on multi-
type data. The reliability of the similarity matrices constructed from raw data may 
be polluted severely by noise and outliers. To enhance the ability to resist noise and 
outliers, we construct similarity matrices based on the learned multiple correlation 
representations. By correlation information learning, we collect M different correla-
tion feature representations 

{

om = yv,u ∈ R
d×N

}M

m=1
 , where M = V (V − 1)/2 . Based 

on the multiple correlation representations, similarity learning of global and local 
structure aims to capture a fused similarity matrix, which preserves sufficient local 
structure information of samples as well as maintains global structure across different 
data types. First, we construct the similarity matrix Wm = [Wm(i, j)]N×N  for the m-th 
correlation representation om by Gaussian kernel. Wm(i, j) represents the similarity 
between sample xmi  and xmj  in the m-th correlation representation. To integrate these 
similarity matrices constructed from multiple correlation representations, we intro-
duce a normalized weight matrix Pm as follows:

where 
∑N

j=1 P
m
(

i, j
)

= 1.
In order to measure local similarity, we design a sparse kernel based on K nearest 

neighbors (KNN), that is:

where Nm
i  is a set of neighbors for ymj  . This operation sets the similarities of samples that 

are non-neighboring to zero, which bases on pairwise samples similarity values.
To obtain fused similarity matrix, we iteratively update Pm with its correspond-

ing local similarity matrix Sm and the similarity matrix {Pu}u={1,...,M}\m of other data 
types, so that the updated Pm|Mm=1 can be more similar to each other, at the same time, 
local similarity information can also be preserved.

For m-th correlation representation, we iteratively update Pm as follows:

After T iterations, the learned Pm|Mm=1 would be enough similar to each other. Then the 
fused similarity matrix can be defined as the average of Pm|Mm=1 , that is:

(6)Pm(i, j) =

{

Wm(i,j)

2
∑N

k �=i W
m(i,k)

, j �= i

1/2, j = i

(7)Sm(i, j) =

{

Wm(i,j)
∑

k∈Nm
i

Wm(i,k)
, j ∈ Nm

i

0, otherwise

(8)Pm
t+1(i, j) =

∑

k∈Ni

∑

l∈Nj

Sm(i, k)× Sm(j, l)×

∑M
u�=m Pu

t

M − 1

(9)P =

∑M
m=1 P

m
T

M
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Graph convolutional network

According to correlation representations learning, we obtain the fused discriminant 
representation matrix y . According to similarity matrices construction, we obtain the 
fused similarity matrix P. Then the y and P were used as the input of graph convo-
lutional network for model training and prediction. In this paper, we construct the 
graph convolutional network G = f (y,P) with three layers for training and prediction, 
that is,

where P̃ = P + IN denotes the adjacency matrix of the undirected graph G with added 
self-connections. IN represents identity matrix, D̃(i,i) =

∑

j P̃(i,j) , Wl
g is trainable weight 

matrix of the l-th layer, Hl
g points to the matrix of activations in the l-th layer ( H0

g = y ), 
and σ is the activation function.

To describe the effectiveness of quantitative variables on survival time, we introduce 
Cox loss as loss function [25], that is,

where φi denotes the log hazard ratio for sample i, zi denotes the learned vector from 
graph convolutional network, β represents coefficient weight vector between zi and the 
output φi . C(i) is the censorship flag. If sample i is uncensored sample, C(i) = 1 , other-
wise, if sample i is censored sample, C(i) = 0 . ti points to the survival time for patient i, 
where patient i should be uncensored samples. tj � ti points to the survival time of j-th 
sample is longer than that of i-th sample, where patient j can comes from either uncen-
sored samples or censored samples.

Optimization

Feedforward and calculate the loss

For each of the V data types, the sample set xv are fed forward to the MDJL as in Eq. 1, 
and the output of the MDJL is denoted as {zi}Ni=1 . The loss of the whole network is calcu-
lated as in Eq. 11, denoted as L(β) = −

∑

i:C(i)=1

[

φi − log
(

∑

tj�ti
eφj

)]

.

Update neural networks
{

{

fv
}V

v=1
,
{

ψv,u

}

v,u={1,...,V },v �=u
,G

}

 . The network parameters of 
{

{

fv
}V

v=1
,
{

ψv,u

}

v,u={1,...,V },v �=u
,G

}

 can be jonintly optimized by minimizing Eq. 11. We 

perform batch gradient descent with the whole dataset in each iteration for network 
training.

(10)Hl+1
g = σ

(

D̃− 1
2 P̃D̃− 1

2Hl
gW

l
g

)

(11)L(β) = −
�

i:C(i)=1



φi − log





�

tj�ti

eφj









(12)φi = ziβ
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Algorithm 1 Algorithm for MDJL

Input: sample set 
{

xv ∈ R
dv×N

}V

v=1
 , sample survival time set, sample survival status set.

Initialize: hyperparameters K, T.

Update until convergence:

  Forward propagation:

  1. Perform fv with Eq.1 and then obtain yv.

  2. Compute interactive map χ v ,u with Eq.3.

  3. Obtain correlation representations yv ,u with Eq.4.

  4. Obtain fused correlation representations with Eq.5.

  5. Construct normalized weight matrix Pm|M
m=1 with Eq.6.

  6. Construct sparse kernel matrix Sm|M
m=1 with Eq.7.

  7. Iteratively update Pm|M
m=1 with Eq.8.

  8. Obtain fused similarity matrix P with Eq.9.

  9. Construct gaph convolutional network G with Eq.10.

  Back propagation:

      Update network parameters of {fv}
V

v=1 , 
{

ψv ,u
}

v ,u={1,2,...,V},v �=u

      and G by minimizing Eq.11.

Output: The predicted hazard ratios of testing samples.

Algorithm 1 describes the process of cancer survival prediction by using MDJL.

Experiments
Datasets

Four cancer datasets1 including glioblastoma multiforme (GBM), kidney renal clear 
cell carcinoma (KRCCC), lung squamous cell carcinoma (LSCC) and breast invasive 
carcinoma (BIC) are used to evaluate our MDJL approach. For each dataset, we col-
lect three types of genomic data, including DNA methylation, mRNA expression and 
miRNA expression data. The datasets used in this paper are obtained from http://​
compb​io.​cs.​toron​to.​edu/​SNF/, which are provided and preprocessed by work [68]. It 
downloads these data from The Cancer Genome Atlas (TCGA) website and performs 
three steps of preprocessing: sample selection, missing-data imputation and normali-
zation. Detailed preprocessing process is described as follows: (i) if one patient sample 
has more than 20% missing data in any data type, then this sample will be removed; 
(ii) if a certain gene has more than 20% missing values, then this gene will be filtered, 

Table 2  A brief statistics of all datasets

Cancer type GBM KRCCC​ LSCC BIC

Instances 215 122 106 105

Uncensored 199 79 66 83

Description of data types DNA (12042-D) DNA (17899-D) DNA (12042-D) DNA (17814-D)

mRNA (534-D) mRNA (329-D) mRNA (352-D) mRNA (354-D)

miRNA (1305-D) miRNA (24960-D) miRNA (23074-D) miRNA (23094-D)

Average survival time (months) 19.6 42.8 24.3 34.8

1  http://​compb​io.​cs.​toron​to.​edu/​SNF/

http://compbio.cs.toronto.edu/SNF/
http://compbio.cs.toronto.edu/SNF/
http://compbio.cs.toronto.edu/SNF/
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otherwise, the k-nearest interpolation is used for complementing this gene; (iii) the 
z-score transformation is used for normalizing the data samples. Table 2 summaries 
the detailed information of datasets used in experiments. Figure 2 describes the sur-
vival time distribution for each cancer, which is represented by box plot.

Experimental settings

Compared methods

To evaluate the performance of our MDJL approach, we compare it with several state-
of-the-art cancer survival prediction methods:

•	 MKL + Cox loss (MKL-Cox). MKL is a multiple kernel learning based binary 
classification method for cancer survival prediction, which fuses multi-type data 
using joint strategy [21]. For a fair comparison, we extend MKL with Cox loss.

•	 MDNNMD + Cox loss (MDNNMD-Cox). MDNNMD is a multimodal deep neu-
ral network based binary classification method for cancer survival prediction, 
which fuses multi-type data using joint strategy [37]. For a fair comparison, we 
extend MDNNMD with Cox loss.

•	 DLMR. DLMR is a multimodal deep neural network extension of the Cox model 
for cancer survival prediction, which fuses multi-type data using alignment strat-
egy [54].

•	 CrossAE. CrossAE is a cross-modality autoencoder based survival prediction 
method for utilizing the consensus representations across multi-type data [53].

•	 VAECox. VAECox is a deep transfer learning architecture for cancer survival pre-
diction based on alignment strategy [25].

•	 DeepSurv. DeepSurv is a deep learning generalization of the Cox proportional 
hazards model, which predicts survival risks based on single-type data [51]. For 
comparison, we use the unified feature matrix concatenated from DNA, mRAN 
and miRAN as the input for DeepSurv.
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Fig. 2  Survival time distribution of patients for four cancers
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The implementations of MDNNMD-Cox, DLMR, CrossAE, VAECox and DeepSurv 
are downloaded from the websites provided by their authors. With there are no public 
codes for MKL-Cox, we implement MKL-Cox by ourselves.

Implementation details

All these methods are evaluated on GBM, KRCCC, LSCC and BIC datasets. For each 
cancer dataset, we randomly select 70% data for training and utilize the rest of 30% for 
testing. The details of network architecture for MDJL are as follows: For feature learning, 
we design the networks 

{

fv
}V

v=1
 with second and third layer of size 512 and 128. For pre-

diction, we construct a three-layer graph convolutional network with hidden layer con-
taining 32 nodes. For the network architecture, we adopt Adam optimizer and set the 
learning rate as 0.0001. In addition, we set hyper-parameters K=20, and T=30 in simi-
larity matrix fusion algorithm. In this paper, the concordance index (C-index) is adopted 
to evaluate the performance of the competing survival prediction models, which mainly 
measures the proportion of all sample pairs for which the predictions and actual results 
are consistent. In order to guarantee fairness and robustness of research methods, for 
each dataset, we conduct 20 trials for each compared method, and the average perfor-
mance of 20 trials is reported. For each trial, we would re-split the training and testing 
sets with 70% data for training and 30% data for testing, and re-fit the models. The cor-
responding Python code for carrying out our method is available at https://​github.​com/​
githyr/​MDJL_​Survi​val.

Experimental results

The predictive results of all competing methods are reported in Fig. 3, from which we 
can observe that our MDJL approach outperforms other competing methods on four 
cancer types in terms of average concordance index (C-index). In general, compared with 
the second best method, our approach improves the average prediction performance by 
4.40%, 6.30%, 6.90% and 7.2% on the GBM, KRCCC, LSCC and BIC datasets, respec-
tively. The reasons are two-fold: Firstly, our approach exploits correlation information 
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Fig. 3  The performance of our approach and compared methods on all the datasets
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Fig. 4  Survival analysis of test sets for four cancers. The top plots in a–d present the survival time of test sets 
samples with the red dots pointing to dead patients and the green dots pointing to censored patients. The 
bottom plots in a–d show the KM survival curves
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between any two data types, which can learn more useful information as well as reduce 
noise more thoroughly than joint based and alignment based methods. In addition, we 
further explore structural information, which can help learn effective feature representa-
tions with small sample size.

We further investigate our MDJL approach with survival analysis which can be 
regarded as a statistical method considering both results and survival time. The patient 
samples for each cancer type would be divided into high-risk and low-risk groups based 
on their predicted hazard ratios. For example, a patient sample would be assigned to 
high-risk group if his hazard ratio is higher than the median hazard ratios of all patient 
samples, otherwise, he would be included in low-risk group. We illustrate the Kaplan-
Meier (KM) curves in Fig.  4, which can reflect the survival condition of a group. The 
survival curve is a broken line, with each step corresponding to a time point of death and 
each mark pointing to a sample censoring, and P values are computed according to the 
curves. From the figure, we can observe that the survival probability of each group grad-
ually drops with the increase of survival time, and the P-values for GBM, KRCCC, LSCC 
and BIC are 3.00× 10−5 , 0.02, 0.03 and 4.91× 10−4 , respectively, which are all smaller 
than 0.05. From the KM curves and the P-values, we can conclude that our approach can 
achieve a convinced result for predicting the high-risk or low-risk of one patient sample.

Further investigation
Effectiveness of correlation representation extraction

In this section, we verify the effectiveness of correlation representation extraction. 
In this paper, we integrate multiple data types for exploiting discriminant features by 
exploiting correlation information between any two data types, instead of exploiting 
common information shared by all data types or directly concatenating original multiple 
data types. In this paper, we call the version of exploiting common information shared by 
all data types for learning discriminant feature representations as CIAD, and the version 
of directly concatenating original multiple data types for learning discriminant feature 
representations as COMD. For CIAD, we exploit shared feature matrix by constructing 
feature learning networks for each data type and imposing Euclidean distance constraint 
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between the learned feature representations of any two data types, and construct simi-
larity matrices based on original multiple data types. For COMD, we concatenate origi-
nal multiple data types into a unified feature matrix, and construct similarity matrices 
based on original multiple data types.

We perform MDJL, CIAD and COMD on each cancer dataset respectively for 20 trials 
and record the C-index score for each performance. For each trial, we would re-split the 
training and testing sets with 70% data for training and 30% data for testing, and re-fit 
the models. Figure 5 illustrates the C-index for 20 times with box plot. From the figure, 
we can observe that our approach outperforms the other two versions on four cancer 
types. As a summary, learning discriminant feature representations by exploiting cor-
relation information between any two data types can achieve better performance than 
exploiting common information shared by all data types or directly concatenating origi-
nal multiple data types.

Effectiveness of learning structure information

In this section, we verify the effectiveness of learning structure information based on 
correlation representations. We respectively perform the model with learning structure 
information based on correlation representations, the model with learning structure 
information based on original data, and the model without learning structure informa-
tion. We call the version that utilizes original multi-type data to construct similarity 
matrices as MDJL-OS, and call the version of MDJL without learning structure informa-
tion as MDJL-SI. For MDJL-OS, we utilize original multi-type data to construct simi-
larity matrices and exploit discriminant feature representations by learning correlation 
information between any two data types. For MDJL-SI, we exploit discriminant feature 
representations by learning correlation information between any two data types and 
replace the graph convolutional network with a three-layer fully connected network.

We perform MDJL, MDJL-OS and MDJL-SI on each cancer dataset respectively for 
20 trials and record the C-index score for each performance. For each trial, we would 
re-split the training and testing sets with 70% data for training and 30% data for test-
ing, and re-fit the models. Figure 6 reports the C-index scores for 20 times with box 
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plot, from which we can see that: (1) the performance for MDJL is better than that 
for MDJL-OS and MDJL-SI; (2) the performance for MDJL-OS is better than that for 
MDJL-SI. These results in this figure confirm that: (1) compared with only utilizing 
feature information, joint learning structure information and feature information can 
achieve better performance; (2) compared with constructing similarity matrices with 
original data, constructing similarity matrices with the learned correlation features 
can achieve better performance.
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a–d present the fused similarity matrices learned from original data. The bottom plots in a–d illustrate the 
fused similarity matrices learned from correlation information
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To further investigate the effective of the fused similarity matrices respectively 
learned from multiple correlation representations, we exhibit the fused similarity 
matrices of the training sets on four cancer datasets in Fig. 7. From the figure, we can 
observe that the outline of the similarity matrices learned from multiple correlation 
representations are obvious than these learned from original multiple data types on 
all four cancer datasets. The reason is that the original data is unfavorable to the esti-
mation of similarity matrices.

Parameter analysis

In this section, we investigate the sensitivity for hyper-parameters K and T with fixing 
any one hyper-parameter and changing the value of another hyper-parameter. When K 
is evaluated, we set T as 50. When T is evaluated, we set K as 20. We repeat each execu-
tion 20 times and record the average C-index. For each trial, we would re-split the train-
ing and testing sets with 70% data for training and 30% data for testing, and re-fit the 
models. Figure 8 shows the C-index of our MDJL approach versus different values of K 
and T on GBM and KRCCC. From the figure, we can observe that the C-index of MDJL 
on GBM and KRCCC datasets have a small fluctuation range (< 0.2). In general, the pro-
posed approach is insensitive to hyper-parameters K ranging from 5 to 50 and T ranging 
from 10 to 100.
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Fig. 8  The performance of our approach with different values of K or T on GBM and KRCCC​

Table 3  Comparison of training time (Seconds)

Datasets Methods

MDJL MKL MDNNMD DLMR CrossAE VAEcox DeepSurv

GBM 81.57 59.74 72.86 63.85 86.23 52.76 41.52

KRCCC​ 118.31 90.44 103.81 96.28 130.84 79.56 64.23

LSCC 71.26 54.17 62.92 57.36 80.17 48.57 36.76

BIC 116.45 84.23 95.34 90.04 130.81 73.58 59.64
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Computing time

In this section, we use the model training time iterating over all the datasets 200 times to 
measure the computing time of MDJL and other baselines. Computing time of all com-
pared methods is collected from a computer with an Intel i7 quadcore 3.6GHz CPU, a 
NVIDIA GTX1080Ti GPU, and 16GB memory. As seen from Table  3, the computing 
time of MDJL is acceptable.

Conclusion
In this paper, we propose a novel multi-type data joint learning approach, and apply it to 
the cancer survival prediction task. MDJL integrates correlation representation learning, 
similarity learning and graph convolutional network construction into a unified frame-
work. Correlation feature representations between any two data types are effectively and 
fully exploited to learn discriminant feature representations. Global and local structure 
information among samples is fully exploited to learn the relationships among samples.

Extensive experiments on four public cancer datasets demonstrate that our approach 
can achieve better performance than other competing cancer survival prediction meth-
ods. In addition, experiments also demonstrate the effectiveness of the designed mod-
ules of our approach.
Acknowledgements
Not applicable.

Author contributions
YH: Conceptualization, Methodology, Writing—Original draft preparation. XYJ: Writing—Reviewing and Editing, Supervi‑
sion, Data curation. QS: Visualization, Investigation, Software, Validation. All authors have read and approved the final 
manuscript.

Funding
This work was supported by the  NSFC Project under Grant Nos. 62176069 and 61933013, the Innovation Group of 
Guangdong Education Department under Grant No. 2020KCXTD014, the 2019 Key Discipline project of Guangdong 
Province.

Availability of data and materials
The datasets generated and analysed during the current study are available with http://​compb​io.​cs.​toron​to.​edu/​SNF/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 August 2022   Accepted: 13 December 2022

References
	1.	 Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, Wender RC. Cancer screening in the 

united states, 2019: a review of current American cancer society guidelines and current issues in cancer screening. 
CA Cancer J Clin. 2019;69(3):184–210.

	2.	 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.
	3.	 Balacescu O, Balacescu L, Virtic O, Visan S, Gherman C, Drigla F, Pop L, Bolba-Morar G, Lisencu C, Fetica B, et al. 

Blood genome-wide transcriptional profiles of her2 negative breast cancers patients. Mediators Inflamm. 
2016;2016(2):1–12.

	4.	 Liao Z, Li D, Wang X, Li L, Zou Q. Cancer diagnosis through isomir expression with machine learning method. Curr 
Bioinform. 2018;13(1):57–63.

http://compbio.cs.toronto.edu/SNF/.


Page 19 of 20Hao et al. BMC Bioinformatics          (2022) 23:553 	

	5.	 Yu L, Huang J, Ma Z, Zhang J, Zou Y, Gao L. Inferring drug-disease associations based on known protein complexes. 
BMC Med Genomics. 2015;8(S2):1–13.

	6.	 Yu L, Ma X, Zhang L, Zhang J, Gao L. Prediction of new drug indications based on clinical data and network modu‑
larity. Sci Rep. 2016;6(32530):1–12.

	7.	 Sun Z, Dong W, Shi J, He K, Huang Z. Attention-based deep recurrent model for survival prediction. ACM Trans 
Comput Heal. 2021;2(4):35–13518.

	8.	 Kim DW, Lee S, Kwon S, Nam W, Cha I-H, Kim HJ. Deep learning-based survival prediction of oral cancer patients. Sci 
Rep. 2019;9(6994):1–10.

	9.	 Doppalapudi S, Qiu RG, Badr Y. Lung cancer survival period prediction and understanding: Deep learning 
approaches. Int J Med Inform. 2021;148: 104371.

	10.	 Zhao L. Deep neural networks for predicting restricted mean survival times. Bioinformatics. 2021;36(24):5672–7.
	11.	 Delgado R, Núñez-González JD, Yébenes JC, Lavado Á. Survival in the intensive care unit: a prognosis model based 

on Bayesian classifiers. Artif Intell Med. 2021;115: 102054.
	12.	 Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues 

P, Ellison DW. The 2016 world health organization classification of tumors of the central nervous system: a summary. 
Acta Neuropathol. 2016;131(6):803–20.

	13.	 Ding D, Lang T, Zou D, Tan J, Chen J, Zhou L, Wang D, Li R, Li Y, Liu J, Ma C, Zhou Q. Machine learning-based predic‑
tion of survival prognosis in cervical cancer. BMC Bioinform. 2021;22(1):331.

	14.	 Ksiazek W, Gandor M, Plawiak P. Comparison of various approaches to combine logistic regression with genetic 
algorithms in survival prediction of hepatocellular carcinoma. Comput Biol Med. 2021;134: 104431.

	15.	 Wang J, Chen Y. Network-adjusted Kendall’s tau measure for feature screening with application to high-dimensional 
survival genomic data. Bioinformatics. 2021;37(15):2150–6.

	16.	 Bichindaritz I, Liu G, Bartlett CL. Survival analysis of breast cancer utilizing integrated features with ordinal cox model 
and auxiliary loss. In: Perner P, editor. ICDM. Ibai Publishing; 2020. p. 105–27.

	17.	 Yu L, Zhao J, Gao L. Drug repositioning based on triangularly balanced structure for tissue-specific diseases in 
incomplete interactome. Artif Intell Med. 2017;77:53–63.

	18.	 Jia X, Jing X, Zhu X, Chen S, Du B, Cai Z, He Z, Yue D. Semi-supervised multi-view deep discriminant representation 
learning. IEEE Trans Pattern Anal Mach Intell. 2021;43(7):2496–509.

	19.	 Li Y, Yang M, Zhang Z. A survey of multi-view representation learning. IEEE Trans Knowl Data Eng. 
2019;31(10):1863–83.

	20.	 Wan Y, Sun S, Zeng C. Adaptive similarity embedding for unsupervised multi-view feature selection. IEEE Trans 
Knowl Data Eng. 2021;33(10):3338–50.

	21.	 Zhang Y, Li A, Peng C, Wang M. Improve glioblastoma multiforme prognosis prediction by using feature selection 
and multiple kernel learning. IEEE/ACM Trans Comput Biol Bioinf. 2016;13(5):825–35.

	22.	 Zhao M, Tang Y, Kim H, Hasegawa K. Machine learning with k-means dimensional reduction for predicting survival 
outcomes in patients with breast cancer. Cancer Inform. 2018;17:1–7.

	23.	 Yousefi S, Amrollahi F, Amgad M, Dong C, Lewis JE, Song C, Gutman DA, Halani SH, Vega J, Brat DJ. Predicting clinical 
outcomes from large scale cancer genomic profiles with deep survival models. Sci Rep. 2017;7:1–11.

	24.	 Mobadersany P, Wang J, Zhang M, Xu M, Zhang Z. Predicting cancer outcomes from histology and genomics using 
convolutional networks. Proc Natl Acad Sci. 2018;115:2970–9.

	25.	 Kim S, Kim K, Choe J, Lee I, Kang J. Improved survival analysis by learning shared genomic information from pan-
cancer data. Bioinformation. 2020;36(1):389–98.

	26.	 Jing X, Liu Q, Wu F, Xu B, Zhu Y, Chen S. Web page classification based on uncorrelated semi-supervised intra-view 
and inter-view manifold discriminant feature extraction. In: IJCAI. 2015:2255–2261.

	27.	 Chen W, Lv H, Nie F, Lin H. i6ma-pred: identifying dna n6-methyladenine sites in the rice genome. Bioinformatics. 
2019;35(16):2796–800.

	28.	 Chen W, Yang H, Feng P, Ding H, Lin H. idna4mc: identifying dna n4-methylcytosine sites based on nucleotide 
chemical properties. Bioinformatics. 2017;33(22):3518–23.

	29.	 Gevaert O, Smet FD, Timmerman D, Moreau Y, Moor BD. Predicting the prognosis of breast cancer by integrating 
clinical and microarray data with Bayesian networks. Bioinformatics. 2006;22(14):184–90.

	30.	 Das J, Gayvert KM, Bunea F, Wegkamp MH, Yu H. Encapp: elastic-net-based prognosis prediction and biomarker 
discovery for human cancers. BMC Genomics. 2015;16:263.

	31.	 Xiao Y, Wu J, Lin Z, Zhao X. A deep learning-based multi-model ensemble method for cancer prediction. Comput 
Methods Progr Biomed. 2018;153:1–9.

	32.	 Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning-based multi-omics integration robustly predicts survival in 
liver cancer. Clin Cancer Res. 2018;24(6):1248–59.

	33.	 Mishra S, Kaddi CD, Wang MD. Pan-cancer analysis for studying cancer stage using protein and gene expression 
data. In: Engineering in Medicine and Biology Society (EMBC). 2016:2440–2443.

	34.	 Nguyen C, Wang Y, Nguyen HN. Random forest classifier combined with feature selection for breast cancer diagno‑
sis and prognostic. J Biomed Sci Eng. 2013;6(5):551–60.

	35.	 Li Y, Wang L, Wang J, Ye J, Reddy CK. Transfer learning for survival analysis via efficient l2, 1-norm regularized cox 
regression. In: International Conference on Data Mining, 2016:231–240.

	36.	 Ching T, Zhu X, Garmire LX. Cox-nnet: an artificial neural network method for prognosis prediction of high-through‑
put omics data. PLoS Comput Biol. 2018;14(4):1–18.

	37.	 Sun D, Wang M, Li A. A multimodal deep neural network for human breast cancer prognosis prediction by integrat‑
ing multi-dimensional data. IEEE/ACM Trans Comput Biol Bioinf. 2018;16(3):841–50.

	38.	 Gao J, Lyu T, Xiong F, Wang J, Ke W, Li Z. Mgnn: a multimodal graph neural network for predicting the survival of 
cancer patients. In: ACM SIGIR Conference on Research and Development in Information Retrieval, 2020:1697–1700.

	39.	 Khademi M, Nedialkov NS. Probabilistic graphical models and deep belief networks for prognosis of breast cancer. 
In: International Conference on Machine Learning and Applications (ICMLA), 2015:727–732.



Page 20 of 20Hao et al. BMC Bioinformatics          (2022) 23:553 

	40.	 Wang L, Chignell MH, Jiang H, Charoenkitkarn N. Cluster-boosted multi-task learning framework for survival analysis. 
In: International Conference on Bioinformatics and Bioengineering. 2020:255–262.

	41.	 Dang X, Huang S, Qian X. Penalized cox’s proportional hazards model for high-dimensional survival data with 
grouped predictors. Stat Comput. 2021;31(6):77.

	42.	 Li R, Tanigawa Y, Justesen JM, Taylor J, Hastie T, Tibshirani R, Rivas MA. Survival analysis on rare events using group-
regularized multi-response cox regression. Bioinform. 2021;37(23):4437–43.

	43.	 Zhang W, Zhang Y. Integrated survival analysis of mrna and microrna signature of patients with breast cancer based 
on cox model. J Comput Biol. 2020;27(9):1486–94.

	44.	 Baek E, Yang HJ, Kim S, Lee G, Oh I, Kang S, Min J. Survival time prediction by integrating cox proportional hazards 
network and distribution function network. BMC Bioinform. 2021;22(1):192.

	45.	 Wang W, Liu W. Integration of gene interaction information into a reweighted lasso-cox model for accurate survival 
prediction. Bioinformatics. 2021;36(22–23):5405–14.

	46.	 Bichindaritz I, Liu G, Bartlett CL. Integrative survival analysis of breast cancer with gene expression and DNA meth‑
ylation data. Bioinformatics. 2021;37(17):2601–8.

	47.	 Li X, Krivtsov V, Arora K. Attention-based deep survival model for time series data. Reliab Eng Syst Saf. 2022;217: 
108033.

	48.	 Hathaway QA, Yanamala N, Budoff MJ, Sengupta PP, Zeb I. Deep neural survival networks for cardiovascular risk 
prediction: the multi-ethnic study of atherosclerosis (MESA). Comput Biol Med. 2021;139: 104983.

	49.	 Hassanzadeh HR, Wang MD. An integrated deep network for cancer survival prediction using omics data. Frontiers 
Big Data. 2021;4: 568352.

	50.	 Arya N, Saha S. Multi-modal advanced deep learning architectures for breast cancer survival prediction. Knowl 
Based Syst. 2021;221: 106965.

	51.	 Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. Deepsurv: personalized treatment recommender 
system using a cox proportional hazards deep neural network. BMC Med Res Methodol. 2018;18(1):1–12.

	52.	 Ching T, Zhu X, Garmire LX. Cox-nnet: an artificial neural network method for prognosis prediction of high-through‑
put omics data. PLoS Comput Biol. 2018;14(4): e1006076.

	53.	 Tong L, Mitchel J, Chatlin K, Wang MD. Deep learning based feature-level integration of multi-omics data for breast 
cancer patients survival analysis. BMC Med Inform Decis Mak. 2020;20(1):225.

	54.	 Cheerla A, Gevaert O. Deep learning with multimodal representation for pancancer prognosis prediction. Bioinfor‑
matics. 2019;35(14):446–54.

	55.	 Zhang Z, Chai H, Wang Y, Pan Z, Yang Y. Cancer survival prognosis with deep Bayesian perturbation cox network. 
Comput Biol Med. 2022;141:105012.

	56.	 Qiu YL, Zheng H, Devos A, Selby H, Gevaert O. A meta-learning approach for genomic survival analysis. Nat Com‑
mun. 2020;11(6350):1–11.

	57.	 Kvamme H, Borgan Ø, Scheel I. Time-to-event prediction with neural networks and cox regression. J. Mach. Learn. 
Res. 2019;20(129).

	58.	 Zhan K, Nie F, Wang J, Yang Y. Multiview consensus graph clustering. IEEE Trans Image Process. 2019;28(3):1261–70.
	59.	 Wen J, Yan K, Zhang Z, Xu Y, Wang J, Fei L, Zhang B. Adaptive graph completion based incomplete multi-view clus‑

tering. IEEE Trans Multimed. 2021;23:2493–504.
	60.	 Wang X, Lei Z, Guo X, Zhang C, Shi H, Li SZ. Multi-view subspace clustering with intactness-aware similarity. Pattern 

Recognit. 2019;88:50–63.
	61.	 Chen Y, Xiao X, Zhou Y. Jointly learning kernel representation tensor and affinity matrix for multi-view clustering. 

IEEE Trans Multimed. 2020;22(8):1985–97.
	62.	 Zhang B, Qiang Q, Wang F, Nie F. Fast multi-view semi-supervised learning with learned graph. IEEE Trans Knowl 

Data Eng. 2022;34(1):286–99.
	63.	 Xie D, Gao Q, Wang Q, Zhang X, Gao X. Adaptive latent similarity learning for multi-view clustering. Neural Netw. 

2020;121:409–18.
	64.	 Zhang C, Fu H, Hu Q, Cao X, Xie Y, Tao D, Xu D. Generalized latent multi-view subspace clustering. IEEE Trans Pattern 

Anal Mach Intell. 2020;42(1):86–99.
	65.	 Huang A, Chen W, Zhao T, Chen CW. Joint learning of latent similarity and local embedding for multi-view cluster‑

ing. IEEE Trans Image Process. 2021;30:6772–84.
	66.	 Wan Y, Sun S, Zeng C. Adaptive similarity embedding for unsupervised multi-view feature selection. IEEE Trans 

Knowl Data Eng. 2021;33(10):3338–50.
	67.	 Xu J, Li W, Liu X, Zhang D, Liu J, Han J. Deep embedded complementary and interactive information for multi-view 

classification. In: AAAI. 2020;6494–6501.
	68.	 Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A. Similarity network fusion for 

aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Joint learning sample similarity and correlation representation for cancer survival prediction
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Motivation
	Contribution
	Organization

	Related works
	Binary classification based survival prediction works
	Survival risk regression based survival prediction works
	Similarity matrices construction works

	Proposed method
	Correlation representations extraction
	Discriminant representations generation
	Similarity learning of global and local structure
	Graph convolutional network
	Optimization
	Feedforward and calculate the loss
	Update neural networks


	Experiments
	Datasets
	Experimental settings
	Compared methods
	Implementation details

	Experimental results

	Further investigation
	Effectiveness of correlation representation extraction
	Effectiveness of learning structure information
	Parameter analysis
	Computing time

	Conclusion
	Acknowledgements
	References


