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Abstract 

Background:  Gene-based association tests provide a useful alternative and comple-
ment to the usual single marker association tests, especially in genome-wide associa-
tion studies (GWAS). The way of weighting for variants in a gene plays an important 
role in boosting the power of a gene-based association test. Appropriate weights can 
boost statistical power, especially when detecting genetic variants with weak effects 
on a trait. One major limitation of existing gene-based association tests lies in using 
weights that are predetermined biologically or empirically. This limitation often attenu-
ates the power of a test. On another hand, effect sizes or directions of causal genetic 
variants in real data are usually unknown, driving a need for a flexible yet robust meth-
odology of gene based association tests. Furthermore, access to individual-level data is 
often limited, while thousands of GWAS summary data are publicly and freely available.

Results:  To resolve these limitations, we propose a combination test named as OWC 
which is based on summary statistics from GWAS data. Several traditional methods 
including burden test, weighted sum of squared score test [SSU], weighted sum statis-
tic [WSS], SNP-set Kernel Association Test [SKAT], and the score test are special cases of 
OWC. To evaluate the performance of OWC, we perform extensive simulation stud-
ies. Results of simulation studies demonstrate that OWC outperforms several existing 
popular methods. We further show that OWC outperforms comparison methods in 
real-world data analyses using schizophrenia GWAS summary data and a fasting glu-
cose GWAS meta-analysis data. The proposed method is implemented in an R package 
available at https://​github.​com/​Xuexia-​Wang/​OWC-R-​packa​ge

Conclusions:  We propose a novel gene-based association test that incorporates four 
different weighting schemes (two constant weights and two weights proportional to 
normal statistic Z) and includes several popular methods as its special cases. Results 
of the simulation studies and real data analyses illustrate that the proposed test, OWC, 
outperforms comparable methods in most scenarios. These results demonstrate that 
OWC is a useful tool that adapts to the underlying biological model for a disease by 
weighting appropriately genetic variants and combination of well-known gene-based 
tests.
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Background
To date, genome-wide association studies (GWAS) have identified more than thousands 
of genetic variants associated with complex traits or diseases. However, these identified 
genetic variants only can explain a small to modest fraction of heritability [1]. To identify 
genetic variants which can explain the missing heritability, people need to use data with 
larger sample size and/or more powerful statistical tests, especially when causal genetic 
variants have weak effects on complex traits. In reality, it is often difficult to access 
patients data directly, and thus difficult to obtain data with sufficiently large sample size. 
On the other hand, thousands of GWAS summary data are publicly and freely available. 
These GWAS data including p-values, effect sizes, directions of effects, or estimated sta-
tistics for single nucleotide polymorphisms (SNPs) motivate us to develop novel power-
ful methods for further analysis of GWAS summary data. The gene-based association 
test using GWAS summary statistics can be viewed as a complementary approach to the 
traditional single marker association test in GWAS.

When testing for genetic associations with a gene-based test, proper weights can 
boost power substantially. However, one major limitation of existing gene-based asso-
ciation tests lies in using weights predetermined biologically or empirically. This limita-
tion often attenuates the power of a test. For example, both the burden test [2, 3] and 
the weighted sum of squared score (SSU) test [4] are typical combination methods. The 
burden test sets the same weight for each genetic variant, while the SSU test uses the 
Z-score as a weight for each genetic variant. The presence of non-associated SNPs in a 
gene can diminish the power of a test dramatically if an effective SNP selection method 
or weighting method is not adopted [5]. The SSU method is robust and powerful when 
there are protective, risk, and null variants in a considered region, but it is less powerful 
than the burden test when a large number of genetic variants in the considered region 
are causal and the direction of effects are the same. A statistical challenge is that the true 
association patterns are usually unknown. A test may perform well for one real dataset, 
but it may be less powerful for another dataset. There is no uniformly most powerful test 
which is powerful in every situation [6]. In this study, we intend to develop a test which 
is more powerful than well-known existing methods in most situations.

The power of a gene-based test depends on the underlying genetic architecture of a 
complex trait. For different traits, the genetic architecture can differ in number, loca-
tion, effect size, and direction of effect for causal genetic variants in different genes. To 
circumvent the difficulties in gene-based association test, we propose the combination 
method, which is a general, flexible, and powerful method. When testing for weak asso-
ciations caused by small effect sizes or low frequency common genetic variants, the pro-
posed method performs significantly better than several popular gene based tests such 
as sum test (ST) [7], squared sum test (S2T) [7], adaptive test (AT) [7], adaptive sum of 
powered score tests (aSPU) [6], Gene-based Association Test using extended Simes pro-
cedure (GATES) [8] and sumSTAAR method which provides a framework for combin-
ing a wide range of gene-based association tests using summary statistics [9].

Testing association between a phenotype and a gene based on individual level data 
(i.e. genotypes) of genetic variants in the gene is the same as testing association between 
the phenotype and the gene based on summary statistics (i.e. Z-scores) in that gene [10, 
11]. In the Methods section, we illustrated this conclusion with a score test framework. 
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Furthermore, we proposed a new score test Ss which can reach its maximum when 
weights of genetic variants is Z ′

R−1 where Z is the Z score summary statistics and R 
is the correlation matrix of genetic variants. Six existing methods can be considered as 
its special cases and are summarized in Table 1. As indicated in Table 1, six gene-based 
association tests based on individual level data can be easily modified to gene-based 
association tests based on GWAS summary data [11]. Based on the score test and other 
three typical methods, we propose a novel and powerful gene-based association test 
using GWAS summary data, named as OWC, which can reaching its maximum through 
finding the appropriate weights for the combination of the four tests. The burden test, 
SSU, weighted sum statistic (WSS) [13], and score test are special cases of the proposed 
OWC method. Furthermore, we show that OWC is more powerful than other compar-
ison methods in most simulation studies and identifies more trait associated genes in 
three real datasets.

To evaluate the performance of the proposed method, we have conducted extensive 
simulation studies and real data analyses. We compared our method, OWC, with six 
existing comparable methods: (1) sum test (ST) [7]; (2) squared sum test (S2T) [7]; (3) 
adaptive test (AT) [7]; (4) adaptive sum of powered score tests (aSPU) [6]; (5) Gene-
based Association Test using extended Simes procedure (GATES) [8]; and (6) sum-
STAAR [9]. All of the comparison methods are designed for testing associated genes for 
a single trait. ST can be considered as a burden test statistic [12], S2T can be considered 
as a quadratic test similar as the SNP-set kernel association test (SKAT) [13], and AT is a 
combination of burden and quadratic tests, which is equivalent to the SKAT-O test [14]. 
The aSPU method chooses the most powerful test from a group of tests. GATES adopts 
an extended Simes procedure and uses GWAS summary statistics to correct for multiple 
testing issues and estimate the p-value promptly. sumSTAAR creates a frameworks to 
combine multiple gene based tests with ACAT method [15].

Our proposed method OWC is more powerful than the six comparable tests in most 
of the simulation scenarios. We further applied OWC and the other six tests to real data-
sets: (1) the GWAS summary data of schizophrenia (SCZ), which was obtained from the 
Psychiatric Genomics Consortium (PGC); (2) the GWAS meta-analysis summary data 
for fasting glucose, obtained from the European DIAMANTE study (a component of the 
UK Biobank). The results of the real data analyses demonstrate that OWC is the most 
effective test as it identified more trait-associated genes than other methods.

Results
Comparison of methods

The performance of the proposed method OWC are compared with six existing gene-
based association tests: the sum test (ST), the squared sum test (S2T), adaptive test (AT) 
proposed by Guo and Wu [7], the adaptive sum of powered score tests (aSPU) method 
proposed by Kwak and Pan [6], the Gene-based Association Test that uses Extended 
Simes procedure (GATES) proposed by Li et al. [8], and the sumSTAAR [9].

Consider a gene with M genetic variants. Assume GWAS summary statistics such as Z 
scores are available for all the genetic variants in the gene. Denote Zm,m = 1, 2, . . . ,M 
as the Z score of the mth variant. The six methods for testing genetic association are 
described briefly as follows: 
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1	 Sum test (ST), B =
∑M

m=1 Zm , which is similar as the burden test [12].
2	 Squared sum test (S2T), Q =

∑M
m=1 Z

2
m , which is a special case of the SKAT method 

[13]. The squared sum test (S2T) is equivalent to the weighted sum of squared score 
(SSU) statistic [4].

3	 Adaptive test (AT), T = minρ∈[0,1] P(Qρ) , where Qρ = (1− ρ)Q + ρB2 , P(Qρ) 
denotes the corresponding p-value.

4	 Adaptive sum of powered score tests (aSPU), aSPUs= minγ∈Ŵ PSPUs(γ ) , where 
SPUs(γ ) =

∑M
m=1 Z

γ
m,where γ is an integer.

5	 Gene-based association test that uses extended Simes procedure (GATES), 
pGATES = min

(mep(j)
me(j)

)
 , where p(j) is the jth smallest p-value, me(j) is the effective 

number of independent p-values among the top j SNPs, me is the effective number of 
independent p-values among the total M SNPs.

6	 sumSTAAR combines p  values of burden test, SKAT, SKAT-O [14], aggregated 
Cauchy association test (ACAT-V) [15], the tests using functional linear regression 
model (FLM) and principal component analysis (PCA) with ACAT method [15].

Denote Z ∼ MVN(0,R) where R is the linkage disequilibrium (LD) matrix of the gene, 
B = 1

′
MZ ∼ N (0, 1

′
MR1M) , where 1M denotes a column vector of length M with ele-

ments 1s. B2

1
′
MR1M

 follows χ1 distribution. The squared sum test Q=Z
′
Z asymptotically 

follows χ2 distribution which is equivalent to the weighted sum of independent χ1 dis-
tributed random variables where the weights are the eigenvalues of R . The p-value of the 
adaptive test T can be efficiently and simply computed by employing a one-dimensional 
numerically search over ρ ∈ (0, 0.01, 0.04, 0.09, 0.16, 0.25, 0.5, 1) following Wu et al. [16]. 
The three test ST, S2T, and AT can be obtained using the “sats” function in the “mkatr” 
package in R. Monte Carlo simulations are used to obtain the p-value of aSPU which can 
be obtained using the “aSPUs” function in the “aSPU” R package. The GATES method 
can be obtained from “gates” function in the “COMBAT” R package. sumSTAAR can be 
obtained from the sumFREGAT package (function sumSTAAR() in sumFREGAT 
v.1.2.3). When using the sumSTAAR method, we set the tests argument as the default 
tests - burden test, SKAT, and ACAT.

Simulation studies

We conducted extensive simulation studies to evaluate the performance of the proposed 
method OWC. Following the simulation settings in Guo and Wu [17], we performed the 
type I error and power comparisons between OWC and the six comparable methods. 
Estimating LD among genetic variants using any reference data from the same ancestry 
is mostly accurate with an estimated inflation factor close to 1 [6]. Because of this, we 
estimated the LD between genetic variants in a gene using the haplotypes with ances-
try from northern and western Europe (CEU) obtained from the 1000 Genomes project 
[18].

Type I error

To evaluate the type I error, we obtain similar Z scores as in GWAS summary data from 
a multivariate normal distribution MVN(0,R) , where R denotes the corresponding LD 
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matrix of gene EPB41. Gene EPB41 colocalizes with AMPA receptors which is thought 
to interact with the cytoskeleton [19]. Abnormalities of brain-region in the expression 
of subunits of the AMPA subtype of glutamate receptors in Schizophrenia patients have 
been identified [20]. As in real data analysis, we first remove rare variants on gene EPB41 
from our analysis and keep 11 SNPs with minor allele frequency (MAF) in the range 
from 0.067 to 0.453 in the simulation studies. The LD matrix R of gene EPB41 is esti-
mated by using the 1000 Genomes Project reference panel [18]. Additional file 1: Link-
age disequilibrium matrix of gene EPB41. Fig. S1 shows the LD matrix with pairwise 
correlations for the 11 SNPs in EPB41. Coefficients of five pairwise LD ( r2 ) are greater 
than 0.5, and the others’ are less than 0.5. We use [21] to simulate the effect size beta 
of a causal genetic variant and its standard error for the sumSTAAR method. To mimic 
the real schizophrenia data used in Real Data Analysis section, we use the numbers of 
cases as 13,833 and the number of controls as 18,310 as inputs to the simulated_vbeta 
function and adjust “gamma.W” based on various simulation scenarios. We evaluated 
the proposed method by using five different significance levels: α = 10−3, 10−4, 10−5 , 
2.5× 10−6 and 2.80× 10−6 . In the simulations, p-values of the proposed method and 
aSPU are estimated with 107 times replications. The type I error rates are estimated 
based on 107 replications. Table 2 shows that the type I error rates of all of the methods 
are well controlled except that there is slight type I inflation of the sumSTAAR method.

Power analysis

We further conduct extensive simulations to evaluate the power of the proposed 
method. We consider different scenarios in terms of different number of causal 
genetic variants, effect sizes and directions of causal variants, different number of 
SNPs, LD structure, and allele frequency spectrum of the considered region. Gene 
EPB41 contains 11 common SNPs. The range of the minor allele frequencies is (0.067, 
0.453). The coefficients of five pairwise LD ( r2 ) are greater than 0.5 in EPB41 (Addi-
tional file 1: Linkage disequilibrium matrix of gene EPB41. Fig. S1). We simulate 104 
summary statistics from MVN(A×△,R) where A denotes the directions of effects of 
causal variants (i.e. risk or protective effect), △ denotes different settings of the effect 
sizes of causal variants. R denotes the corresponding LD matrix of EPB41. We ran-
domly select a number of SNPs (e.g. 2, 3, 4, or 5) as causal variants from EPB41. For 

Table 2  Ratio of estimated type I error rates by the significance level for different test methods

Notes: The comparison methods sum test(ST), squared sum test (S2T) and adaptive test (AT) mentioned in the paper 
are equivalent to the methods burden test ( LB ), the sum of squared score test ( SQ ) and the combination of LB and SQ , 
respectively. Let SS denote the score test and LW denote the weighted sum statistic. The proposed combination method 
OWC is a combination of LB , LW , SS , and SQ . sumSTAAR is a fexible framework for gene-based association studies using 
GWAS summary statistics

α-level ST S2T AT GATES aSPU sumSTAAR​ OWC

1 × 10−3 1.02 1.02 1.02 1.04 1.03 0.86 1.01

1 × 10−4 1.00 1.03 1.00 1.03 1.02 1.10 1.04

1 × 10−5 1.00 1.04 0.99 1.05 1.08 2.50 1.00

2.5 × 10−6 1.04 1.14 1.00 0.92 1.04 3.00 1.08

2.8 × 10−6 1.10 1.07 0.97 1.00 1.01 3.57 1.02



Page 7 of 19Zhang et al. BMC Bioinformatics            (2023) 24:2 	

a given gene, we randomly set the effects of the causal variants by drawing the cor-
responding number of elements of A equal to 1 or −  1, and set the effects of other 
variants as 0. Table 3 shows the estimated power under three combinations of A for 
different settings of △ : a set of fixed values of △ , two randomly simulated △ where 
one is from uniform distribution, and the other from normal distribution. We use 
2.50× 10−6 as the significance level to claim a significant finding.

Table 3 shows that the proposed method OWC performs robustly well across all sce-
narios. It has the highest power in almost all of the scenarios when compared to the six 
other tests demonstrated in Table 3. The advantage of OWC may be attributed to the 
fact that it is an ultimately derived test after incorporating two kinds of burden tests and 
two kinds of quadratic tests. Among the four gene-level test statistics in OWC, the score 
test ( Ss ) that we proposed is to find the appropriate weights for genetic variants which 
allows the score statistic reaches its maximum. The power gained of OWC may be from 
two types of maximization in our proposed method: 1) to find the appropriate weights 
for the four gene-level tests in the combination to let the combination to reach its maxi-
mum; 2) to find the appropriate weights for genetic variants in the considered gene 
to let Ss to reach its maximum. Therefore, the OWC test can reach the largest power. 
When △ uses the settings of the fixed values, the power of the S2T and GATES methods 

Table 3  Power comparison between OWC and the other six tests. Data are simulated from 
N(A×△, R) . A has three or four nonzero elements with different signs which represent whether 
the causal variants are risk or protective. △ denotes the different settings of effect sizes. R is the 
corresponding LD matrix of gene EPB41. Power (%) is estimated under 2.5× 10−6 significance level

The comparison methods sum test(ST), squared sum test (S2T) and adaptive test (AT) mentioned in the paper are equivalent 
to the methods burden test ( LB ), the sum of squared score test ( SQ ) and the combination of LB and SQ , respectively. Let SS 
denote the score test and LW denote the weighted sum statistic. The proposed combination method OWC is a combination 
of LB , LW , SS , and SQ . sumSTAAR is a fexible framework for gene-based association studies using GWAS summary statistics

No. causal 
variants

nonzero △ nonzero A AT S2T ST GATES aSPU sumSTAAR​ OWC

3 U(1,5) (1,1,1) 85.0 35.0 86.0 55.2 85.5 54 96.5

3 U(2,6) (1,1,− 1) 71.0 70.5 17.0 58.0 67.0 50.5 85.5

3 U(2,6) (1,− 1,− 1) 70.0 68.5 17.0 65.5 63.5 52.3 87.5

3 N(3,4) (1,1,1) 82.5 60.0 83.0 74.0 87.0 71.8 94.0

3 N(3,4) (1,1,− 1) 68.0 69.0 32.5 72.0 69.0 68.6 82.0

3 N(3,4) (1,− 1,− 1) 65.5 60.5 32.0 76.0 73.0 67.8 86.5

3 (4,2,1) (1,1,1) 64.0 3.5 68.5 13.5 78.5 7.9 95.0

3 (4,2,1) (1,1,− 1) 18.0 3.0 18.5 12.5 31.5 16.1 79.0

3 (4,2,1) (1,− 1,− 1) 3.0 4.0 0.5 12.0 8.5 9.0 76.0

3 (8,4,2) (1,1,1) 99.0 98.0 99.5 98.5 98.5 96.5 99.5

3 (8,4,2) (1,1,− 1) 97.0 96.5 98.5 94.5 98.5 93.9 99.0

3 (8,4,2) (1,− 1,− 1) 96.0 96.0 0.5 94.0 97.0 87.5 98.0

3 (4,4,2) (1,1,− 1) 69.0 45.0 45.0 28.5 65.6 43.5 93.5

3 (2,5,4) (1,− 1,− 1) 92.5 74.5 76.0 65.5 62.0 79.3 99.5

4 (4,4,2,1) (1,1,1,1) 97.0 47.5 98.5 24.5 98.5 53.2 99.5

4 (4,4,2,1) (1,1,1,− 1) 95.5 47.0 95.5 24.5 97.5 50.9 99.0

4 (4,4,2,1) (1,1,− 1,− 1) 71.0 45.0 0.5 24.0 70.5 52.2 93.0

5 (4,4,4,2,1) (1,1,1,1,1) 100.0 84.5 99.5 35.5 99.5 87.2 100.0

5 (4,4,4,2,1) (1,1,1,1,− 1) 99.5 84.0 99.0 35.0 98.5 82.1 99.5

5 (4,4,4,2,1) (1,1,1,− 1,− 1) 98.0 84.0 99.0 34.0 98.5 81.7 99.5
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increases as the effect size increases ( △ = (4,2,1) vs.(8,4,2) when A=(1,1,1), (1,1,−  1), 
or (1,− 1,− 1)). When △ = (4,2,1), the powers of S2T and GATES are extremely low no 
matter A = (1,1,1), (1,1,− 1), or (1,− 1,− 1). This implies that their powers may suffer 
significant losses compared to the other methods when there are weak genetic effects. 
S2T and GATES are all robust to the direction of effects among causal SNPs since S2T 
is a quadratic method and GATES is a p-value combination method. When △ = (8,4,2), 
the powers of S2T and GATES are high no matter A = (1,1,1), (1,1,− 1), or (1,− 1,− 1). 
When one or two causal variants have weak protective effects and the other causal vari-
ant has medium risk effect, all of the methods are significantly less powerful except for 
OWC ( △ = (4,2,1) when A = (1,1,− 1), or (1,− 1,− 1)). This conclusion is verified by the 
results from the normal distribution settings of △ . The results of a uniform distribution 
settings of △ confirm that the power of the burden test ST is attenuated when there are 
different directions of effects of causal variants. Both AT and aSPU are adaptive methods 
by combining the burden test and quadratic test methods together, suffering a relatively 
small power loss when there are weak and different directions of effects. The power of a 
method increases as the number of risk causal variants increases. For example, when we 
keep two protective causal variants and increase the number of risk causal variants from 
1, to 2, and then 3 ( △ = (4,2,1) and A = (1,− 1,− 1), △ = (4,4,2,1) and A = (1,1,− 1,− 1), 
△ = (4,4,4,2,1) and A = (1,1,1,− 1,− 1)), the power of all of the methods increases. sum-
STAAR is less powerful than the GATES method when △ uses the settings of the uni-
form and normal distributions but sumSTAAR is more powerful than GATES in some 
of situations when △ uses the settings of the fixed values. In summary, our proposed test 
OWC is robust and powerful regardless of whether the causal genetic variants in a gene 
have the same or different directions of effects, especially when weak effect sizes exist.

Real data analysis

Schizophrenia GWAS summary data application

We further evaluated the performance of the proposed method OWC by applying it and 
the other six methods to two SCZ summary datasets [22]. The two datasets were down-
loaded from the website of the Psychiatric Genomics Consortium (PGC) (URL https://​
www.​med.​unc.​edu/​pgc/​resul​ts-​and-​downl​oads). The first dataset is a SCZ meta analy-
sis GWAS dataset (13,833 cases and 18,310 controls), denoted as SCZ1 [23]. The sec-
ond dataset is a more recent study including 36,989 cases and 113,075 controls, denoted 
as SCZ2 [24]. The MAF, estimated effect size, odds ratio, and p-value for 560,833 SNPs 
on 17,866 genes are included in SCZ1. Similar information for 557,511 SNPs on 17,824 
genes are included in SCZ2. Following Wu et al. [25], a gene was defined by including 
all of the SNPs from 20 kb upstream to 20 kb downstream of the gene. Using OWC 
and other six tests, we tested the association between the gene and the trait. The 1000 
Genomes Project reference panel [18] was used to estimated the LD of pairwise SNPs 
within each gene of the two datasets. To make fair comparisons among the seven tests, 
we removed rare variants with MAF< 0.05 and kept one of a pair of SNPs with the coef-
ficient of pairwise LD r2 > 0.5 . After SNPs pruning in quality control, 174,648 SNPs on 
17,467 genes in SCZ1 data and 174,275 SNPs on 17,420 genes in SCZ2 data are remained 
in our final analysis. We used 106 times of Monte Carlo simulation to estimate the 
p-values for the OWC and aSPU method. The Bonferroni corrected significance level 

https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads


Page 9 of 19Zhang et al. BMC Bioinformatics            (2023) 24:2 	

≈ 2.80× 10−6 was employed to claim significance in a genome-wide gene-based asso-
ciation study. We first conducted a GWAS for the SCZ1 data [20,899 individuals] with 
the OWC and the other comparable methods to identify genes associated with SCZ. We 
then detected genome-wide significant genes associated with SCZ based on the larger 
SCZ2 dataset [150,064 individuals] which can be considered as a partial validation study 
for the GWAS based on the SCZ1 data.

Figure 1 shows a Venn diagram of the number of significant genes identified in SCZ1 
by the proposed method OWC, aSPU, GATES, sumSTAAR and GW. GW represents the 

Fig. 1  Venn diagram of the number of significant genes identified by OWC, aSPU, GATES, sumSTAAR and GW 
for SCZ1

Fig. 2  Venn diagram of the number of significant genes identified by OWC, aSPU, GATES, sumSTAAR and GW 
for SCZ2
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aggregation of genes identified by S2T, ST and AT. The OWC identified the most sig-
nificant genes (130 genes). sumSTAAR identified the least significant genes (45 genes). 
Both aSPU and GW identified 92 significant genes. GATES identified 84 significant 
genes. Among the 130 genes identified by OWC, 78 (i.e. 60%) contained genome-wide 
significant SNPs (p-value 5 × 10−8) within 20 kb in the SCZ1 data and 86 (around 66.2%) 
contained genome-wide significant SNPs within 20 kb in the SCZ2 data. This offered sig-
nificant validation of the identified genes. Thus, our method identified more SCZ asso-
ciated genes than the other methods. More interestingly, OWC uniquely identified 49 
genes in the SCZ1 data and 104 genes in the SCZ2 data. These genes were missed by 
other methods. Among the 49 genes, 10 genes contained the genome-wide significant 
SNPs within 20 kb in the SCZ2 data. These identified genes containing highly significant 
SNPs gave credence to the power and validity of OWC. Overall, we identified 76 sig-
nificant and unique genes in the SCZ1 data with all these tests. Additional file 2: Signifi-
cant genes identified by OWC, aSPU, GATES, sumSTAAR, and GW in SCZ1 data, SCZ2 
data, and UKB data. Tables S1  and S2 shows information about the significant genes 
identified by OWC, aSPU, GATES, sumSTAAR and GW in SCZ1 data and SCZ2 data, 
respectively. 

Next, the seven tests were applied to the SCZ2 data. Figure 2 shows the numbers of 
significant genes identified by OWC, aSPU, GATES, sumSTAAR and GW. Similarly, the 
OWC identified the most significant genes (534 genes). Among the 534 genes, 398 genes 
(74.5%) contained genome-wide significant SNPs (p-value 5 × 10−8) within 20 kb in the 
SCZ2 data. sumSTAAR identified the least significant genes (228 genes). GATES identi-
fied 432 significant genes. GW identified 431 significant genes, similarly, aSPU identified 
445 genes. As expected, all the methords identified more significant genes in the SCZ2 
data than in the SCZ1 data since the sample size of the SCZ2 dataset is much larger than 
that of SCZ1 [22]. Again, our method OWC is more powerful than the other methods 
in terms of the total number of significant genes being identified. We further noticed 
that each of these tests identified some unique genes but missed by the others. This sug-
gests that different tests may be powerful in different scenarios. In the SCZ2 data, OWC 
identified 104 significant and unique genes (Additional file 2: Significant genes identi-
fied by OWC, aSPU, GATES, sumSTAAR, and GW in SCZ1 data, SCZ2 data and UKB 
data.  Table  S2  shows information about  significant genes identified by OWC, aSPU, 
GATES, sumSTAAR, and GW in SCZ2 data).

The computational time of OWC in a genome-wide association study is acceptable, 
though the Monte Carlo simulation method is employed to estimate the p-value of 
OWC. For example, there are 17,467 genes in the SCZ1 GWAS summary data. We used 
106 times of simulations to estimate the p-value of OWC. The computational time of 
p-value estimation of OWC for a gene based on 106 simulations is about 20 minutes 
when we use the R package of OWC with the fast algorithm [25] on a Dell PowerEdge 
C6320 server which includes two 2.4 GHz Intel Xeon E5-2680 v4 fourteen-core pro-
cessors with average memory as 600 MB. The estimated time for completing a whole 
genome-wide association study for the 17,467 genes would be less than a day if we run 
the jobs on 500 such servers concurrently.



Page 11 of 19Zhang et al. BMC Bioinformatics            (2023) 24:2 	

T2D GWAS summary data application

Furthermore, we performed a comprehensive study for fasting glucose in a type 2 diabe-
tes (T2D) GWAS summary data obtained from the UK Biobank component of the Euro-
pean DIAMANTE study (denoted as UKB). It included over 440,000 individuals [19,119 
cases and 423,698 controls] of European ancestry. This GWAS using the UK Biobank 
Resource under Application Number 9161 (McCarthy) was restricted to HRC variants. 
We downloaded the GWAS summary data from http://​www.​type2​diabe​tesge​netics.​org/​
infor​matio​nal/​data. The UKB summary data consists of information about MAF, esti-
mated effect size, odds ratio, and p-value for approximately 17,850 genes [27]. The same 
filtering and analyzing procedure used in the SCZ data was employed in the UKB data. 
The significance level 0.05/17, 850 ≈ 2.80× 10−6 was used in this study. We performed 
106 simulations to estimate p-values for the OWC and aSPU method.

The Venn diagram in Fig. 3 shows the number of significant genes identified by OWC, 
aSPU, GATES, sumSTAAR and GW, respectively. The OWC identified 236 significant 
genes which is much larger than the number of genes identified by the other methods 
(aSPU [182 genes], GATES [166 genes], sumSTAAR [82], and GW [179 genes]). Around 
41.1% [97 out of 236] of the significant genes identified by OWC contained the genome-
wide significant SNPs (p-value < 5 × 10−8) within 20 kb in the UKB data [27]. Based 
on the number of significant genes identified in the UKB data, we can further conclude 
that the proposed OWC method performed the best compared to the other tests. Addi-
tional file 2:  Significant genes identified by OWC, aSPU, GATES, sumSTAAR, and GW 
in SCZ1 data, SCZ2 data and UKB data. Table S3 shows the information about the sig-
nificant genes identified by all the methods in the UKB data.

Fig. 3  Venn diagram of the number of significant genes identified by OWC, aSPU, GATES, sumSTAAR and GW 
for UKB

http://www.type2diabetesgenetics.org/informational/data
http://www.type2diabetesgenetics.org/informational/data
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Discussion
Weighting genetic variants in a gene appropriately plays an important role to boost 
the power of a gene based association test. In this paper, we propose a novel combina-
tion test - OWC. This is a general linear combination test incorporating four different 
weighting schemes: two constant weights and two weights proportional to normal sta-
tistics Z . The burden test, WSS, SSU, and score test are four typical gene-based tests, 
which are included in the OWC as its special cases. When we focus on rare variants 
analysis summary data, the elements on the diagonal of matrix A can be estimated from 
the beta distribution with pre-specified shape parameters in its density function as 1 and 
25. In this situation, the method SSU contained in OWC is the SKAT method. Therefore, 
we can view the SKAT and SKAT-O methods as special cases of the proposed method. 
When we have data from transcriptome-wide association studies, we can set the ele-
ments of the diagonal of matrix A being the estimated cis-effects from gene expression 
as weights of variants for the WSS. Then, the WSS and SSU contained in the proposed 
OWC method become PathSPU(1) and PathSPU(2) [28]. As a general method with a 
maximized test statistic, the OWC can reach the largest power.

Furthermore, we show that the general linear combination test statistic can reach 
its maximum when the weight is estimated as a certain value. For example, the score 
test SS , as a special case of OWC, reaches its maximum when the weight is the prod-
uct of the inverse of the correlation matrix R among SNPs and Z-scores. A correct 
estimation of the correlation matrix R is critical. To alleviate the errors in estimat-
ing R , Deng and Pan (2018) proposed an estimator of the correlation matrix R . Their 
idea is similar to multiple imputation [29]. In real studies, we suggest to remove low 
frequency (e.g. MAF < 0.05 ) variants and one of a pair of SNPs with pairwise LD r2 
greater than a prespecified threshold. We tested OWC on ten genes based on a real 
SCZ1 data and the estimated ρ3 was always larger than 0.5. In this case, the score test 
may make the main contribution in the power of OWC. When the correlation among 
SNPs is ignored (i.e. R = I  ), OWC becomes the SSU test. ST, S2T, AT, aSPU, GATES, 
and sumSTAAR are the most popular existing methods using GWAS summary data. 
We compared the performance of the proposed test OWC with the six comparison 
methods in both simulation studies and real data analyses. Extensive simulation stud-
ies demonstrate that the proposed test OWC is not only valid but also powerful in 
most of the scenarios. In real data analyses, OWC identifies the largest number of 
disease associated genes compared to the other comparison methods.

True disease model is usually unknown. Disease models underlying different diseases 
may be different: some of the disease models may include causal genetic variants with 
same directions while other disease models may include causal genetic variants with dif-
ferent directions. In addition, some diseases models may include some weakly associ-
ated genetic variants, while other disease models may include some strongly associated 
genetic variants. There is no uniformly most powerful test that is powerful in every situ-
ation. An association test may perform well in one dataset, but may perform less well 
in another dataset. For example, SCZ can be considered as a representative of complex 
disease. People have identified some common genetic variants with weak effects on SCZ. 
These variants may be working in tandem to produce SCZ. A robust, flexible method 
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such as OWC can elucidate these weakly associated genetic variants better so that the 
roles of theses genetic variants in disease etiology can be understood more clearly. The 
proposed OWC method can be a useful tool as it adapts to the underlying biological dis-
ease model for a disease by selecting ρ based on the data.

In summary, the novelty of the proposed method lies in two aspects: 1) proposing a 
new score test Ss which reaches its maximum through finding the certain weights for 
genetic variants; 2) proposing a new combination method OWC which reaches its maxi-
mum through finding certain weights for the combination of the four component tests. 
Also, the score test is a component of OWC. Through using two types of optimizations, 
the OWC is more powerful than other comparison methods in most situations which is 
demonstrated in Table 3 on the manuscript.

The proposed OWC method only needs the publicly available GWAS summary statis-
tics as input, without the need to access raw genotype and phenotype data. Researchers 
will be able to identify more novel disease associated genes with OWC by utilizing pub-
licly available GWAS summary data. Novel disease associated genes can shed more light 
onto underlying mechanism of diseases. In this paper, we focus on developing a power-
ful genetic associated test using single trait GWAS summary data. The proposed OWC 
method can be easily extended to analyze GWAS summary data for multiple traits. We 
have implemented OWC in an R package which is freely available at https://​github.​com/​
Xuexia-​Wang/​OWC-R-​packa​ge.

Methods
Expressing gene based methods with a weighted combination of Z‑scores

Consider a sample including n individuals with both genotype and phenotype data avail-
able in a genomics region (gene or pathway) with M genetic variants (e.g. SNPs). For the 
ith individual, denote yi as the trait value which is either a quantitative or qualitative trait 
(1 for cases and 0 for controls), denote Xi = (xi1, . . . , xiM)

′ as the genotypic score for the 
considered region, where xim ∈ {0, 1, 2} is the number of minor alleles at the mth variant. 
xim can also be the number of minor alleles in dominant, recessive coding, or imputed 
dosage that the ith individual has at the mth variant. Although the formulas derived in 
the Methods section is based on genotypes with additive coding, the conclusions are still 
held when the genotypes are centered with mean 0.

The generalized linear model was used to model the relationship between the trait and 
the genetic variants in the considered region:

where f (·) is a monotone “link” function and the vector βc is the parameter of inter-
est which represents the fixed effects of the genetic variants. Testing the association 
between the genetic variants in the region and the trait is equivalent to test the effect of 
the weighted combination of genetic variants gi =

∑M
m=1 w

0
mxim on the trait. Under the 

generalized linear model, we propose to use the score test statistic [30] to test the null 
hypothesis H0 : βc = 0 . The score statistic can be expressed as follows:  

f (E(yi|Xi)) = β0 + βc
′
Xi

https://github.com/Xuexia-Wang/OWC-R-package
https://github.com/Xuexia-Wang/OWC-R-package
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The score test statistic S can be viewed as a function of weight W0 = (w0
1, . . . ,w

0
M)

′ . Let 
Y = (y1, . . . , yn)

′ , X = (X1, . . . ,Xn)
′ . Denote P = In − 1

n1n1
′
n , where 1n represents a col-

umn vector containing all ones. P is an idempotent matrix. That is, P = P
′
,PP = P . Con-

sidering xi = X
′
iW0 , we can rewrite the score test as:

Detailed derivation of the aforementioned score statistic can be found in the supple-
mentary materials (Additional file 1: Derivation of the score test). When real genotype 
and phenotype data are available, the score statistic can be maximized and extended to 
a General method to Test the effect of the Optimally Weighted combination of genetic 
variants in a gene (G-TOW) [30].

To test the association between a trait and a genetic variant, a Z test is usually 
employed. We can use the Z test below to test the main effect of the mth variant in the 

considered region on the trait. Zm = Y
′
PXm·

σ
√

X
′
m·PXm·

 where σ =
√

1
nY

′
PY  and 

Xm· = (xm1, . . . , xmn)
′.

Denote the linkage disequilibrium (LD) matrix for the considered region as 
R = diag(D)−1/2

Ddiag(D)−1/2 , where D = X
′
PX and diag(D) denotes the diagonal 

matrix of D . When GWAS summary statistics such as the Z-scores and the LD matrix 
for genetic variants in the considered region are available, the score statistic can be writ-
ten as:

where Z = (Z1, . . . ,ZM)
′ and W = (w1, . . . ,wM)

′ = diag(D)1/2W0 (see Additional file 1: 
Derivation of the score test). From equation (1), the score statistic S is equivalent to a 
linearly weighted test statistic based on Z-scores:

Under the null hypothesis, Z follows multivariate normal distribution with mean 0 and 
covariance matrix R [31]. This conclusion clearly demonstrates that testing the weighted 
combination of genetic variants in a considered region using the score test is the same as 
using the weighted combination of Z-scores for those variants.

In the aforementioned weight function W = (w1, . . . ,wM)
′ , the true value of each 

weight is unknown and must be determined biologically or empirically. Therefore, in real 
data analysis, we should give reasonable values of weights in advance for a gene-based 
test. If all or most of the genetic variants in the region have almost an equal effect size in 
the same direction of association, we set wm = 1 for m = 1, . . . ,M , and the test becomes 
the burden test LB = L(1, . . . , 1) , which sums up the association signals across all the 

S(w0
1, . . . ,w

0
M) = n

(∑n
i=1(yi − ȳ)(gi − ḡ)

)2

∑n
i=1(yi − ȳ)2

∑n
i=1(gi − ḡ)2

S(w0
1, . . . ,w

0
M) = n

W0

′
X

′
PYY

′
PXW0

W0

′
X

′
PXY

′
PYW0

(1)S(w1, . . . ,wM) =
W

′
ZZ

′
W

W
′
RW

(2)L(w1, . . . ,wM) =
M∑

m=1

wmZm = W
′
Z
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variants and obtains high power. If we believe that the causal genetic variants would be 
subject to “purifying selection” and thus appear less frequently in the population than 
neutral variants, we set wm = 1/

√
pm(1− pm) , where pm denotes MAF of the mth vari-

ant, and obtain LW = L(1/
√

p1(1− p1), . . . , 1/
√
pM(1− pM)) , which is the weighted 

sum statistic (WSS) [12]. If we assume that the values of the weights W  come from gene 
expression or functional annotation data, the test degenerates into the PathSPU(1) test 
[28]. We know that S(w1, . . . ,wM) follows central chi-square distribution with 1 degree 
of freedom ( χ2

1  ) and L(w1, . . . ,wM) follows multivariate normal distribution with mean 0 
and covariance matrix W

′
RW  under the null hypothesis, given the choice of the weight 

function W  is not proportional to Z.
As a function of W = (w1, . . . ,wM)

′ , either the score test S(w1, . . . ,wM) or the linear 
weighted test statistic L(w1, . . . ,wM) can reach its maximum when we choose an appro-
priate weight W  . According to conclusions in Li and Lagakos [32], we have

When Ŵ = R
−1

Z , the score test statistic S(w1, . . . ,wM) reaches its maximum value. 
Given the asymptotic null distribution of Z in Eq. (2), we define the score test

which follows central chi-square distribution with M degrees of freedom ( χ2
M ). The 

appropriate weights can be obtained when the linear weighted test statistic reaches 
its maximum value [33]. Although SS may not have high power when its degree free-
dom is large, it gives higher weights to the SNPs that have weak correlation with 
other SNPs. When the correlation matrix R of Z is a diagonal matrix denoted as 
A = diag(a1, . . . , aM) where 0 < ai ≤ 1 , that is, R = A , we have W = A

−1
Z . The score 

test in Equation (1), which is equivalent to the linear weighted test in Equation (2), will 
reach its maximum value when W = A

−1
Z.

To test the association between genetic variants in a considered region and a 
trait, Kwak and Pan [6] proposed a class of approaches called sum of powered score 
(SPU) tests along with its data-adaptive version (aSPU), SPU(γ ) =

∑M
m=1 Z

γ
m and 

γ = 1, 2, . . . , 8,∞ . The SPU method can also be viewed as a special combination test 
method with weight W = Z

γ−1 . aSPU can be viewed as a data-adaptive weighted com-
bination test method.

When the diagonal matrix A is the identity matrix A = I  , we denote the test in 
Equation (3) as SQ = Z

′
Z , which is the same as the sum of squared score test (SSU) 

[34] and the variance component test [35]. Based on the asymptotic null distribution 
of Z in Equation (2), the test SQ = Z

′
Z follows a mixture of chi square distribution 

under the null hypothesis: SQ ∼
∑M

m=1 �mχ
2
1  , where �1, . . . , �M are the eigenvalues of 

R . Particularly, if we set the diagonal element of A as the beta distribution density 
function with pre-specified shape parameters as 1 and 25, which are evaluated at the 

sup
W

{S(w1, . . . ,wM)} = sup
W

{
L(w1, . . . ,wM)2

Var(L(w1, . . . ,wM))

}

= sup
W

{
W

′
ZZ

′
W

W
′
RW

}

= Z
′
R
−1

Z

(3)SS = Ŵ

′
Z = Z

′
R
−1

Z
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corresponding sample MAF in the data, the score test degenerates into the sequence 
kernel association test (SKAT) for rare variants [13]. If the value of the diagonal ele-
ments A comes from a set of gene expression derived weights, the score test degen-
erates into PathSPU(2) test method [28]. Naturally, these two methods (SKAT and 
PathSPU(2)) both follow a mixture of chi square distribution under the null hypoth-
esis. In our paper, we only consider GWAS summary data for common variants, so 
we set A as the identity matrix for this case.

A new gene‑based method

We have proved and demonstrated that most of the gene-based associate tests can 
be expressed as a weighted combination of Z-scores. Thus, we can propose a new 
weighted combination method by utilizing the good properties of different weights. 
The statistics of LB, LW , SS , and SQ represent four typical weighted methods. To 
combine the strength of LB, LW , SS , and SQ , we consider their weighted average:

where A = ρ111
′ + ρ2WW

′ + ρ3R
−1 + ρ4I , 1 denotes a column vector containing all 

1s, ρ1 + ρ2 + ρ3 + ρ4 = 1 , and 0 ≤ ρi ≤ 1 for i = 1, 2, 3, 4 . Under the null hypothesis, for 
a given ρ , Lρ is a linear combination of independent central χ2

1  random variables:

where χ2
1  denotes a central χ2 random variable with 1 degree of freedom and �i for 

i = 1, . . . ,M are the eigenvalues of RA [4]. We propose a novel method - OWC. For a 
set of values of ρ , OWC test can be achieved by using the minimum p-value across the 
values of ρ:

where pLρ is the estimated p-value of Lρ . Naturally, T can be obtained by a simple grid 
search across a range of ρ : {ρ1, ρ2, ρ3, ρ4} . The test statistic T = min{pLρ1 , . . . , pLρ4 } . We 
search over ρi ∈ (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) for i = 1, 2, 3, 4 . Specifically, if 
ρ2 = ρ3 = 0 in ρ , Lρ can be rewritten as ρ1(LB)2 + (1− ρ1)SQ , which is equivalent to 
SKAT-O test method [14].

p‑value estimation

Monte Carlo simulations are used to obtain the p-values for T in a single layer of 
simulations. Briefly, after obtaining R , we first simulate null scores of Z(b) ∼ N (0,R) 
for b = 1, . . . ,B . Then, we use the null scores to calculate the null test statistic Tb fol-
lowing the aforementioned procedure for each b, and then the p-value of the test is 
the proportion of the number of the null test statistic Tb with Tb ≤ T  [36]. A larger B 
is needed to estimate a smaller p-value.

Lρ = ρ1(LB)
2 + ρ2(LW )2 + ρ3SS + ρ4SQ

= Z
′
AZ

Lρ ∼
M∑

i=1

�iχ
2
1

(4)T = min
ρ

pLρ
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The aforementioned vector Z(b) can be generated in the following way [37]: we first 
generate a vector L with M elements where each element is independently generated 
from a standard univariate normal distribution with mean 0 and variance 1; that is, 
L ∼ N (0, I) . We then have Z(b) = DL , where D is obtained from Cholesky decompo-
sitions of R with R = DD

′
 . Specifically, for the test statistic T (Z,R) as a function of Z 

and R , we can estimate its p-value in detail as follows: 

1	 Generate independent Z(b) ∼ N (0,R) for b = 1, . . . ,B.
2	 Using asymptotic distribution of Lρ under null hypothesis, calculate the null test sta-

tistic T by searching across a range of ρ for Z and Z(b) , respectively.
3	 Finally, the p-value for the T test, pT , is 

 where T (Z,R) is the value of T test based on the observed data, T (Z(b),R) is the 
value of T test based on the bth sampling data.

If the Z statistic in the summary data is not provided, we need to first transform the 
p-value in the summary data into a Z statistic using Z = sign(β)�−1(1− p/2) , where 
� is the cumulative distribution function of the standard univariate normal distribu-
tion. Then, a similar procedure can be used to obtain the p-value of the test T.

One limitation of the Monte Carlo simulation to estimate p-values, such as the 
above one, is the computational burden. Especially, when there are about twenty 
thousands genes in a GWAS and a small significance level is used to claim signifi-
cant findings. We adopted a fast algorithm [26] to estimate p-values, which will dra-
matically reduce the computational time. This algorithm reduces computational time 
by scarifying the precision of the p-value estimation for those tests with large true 
p-values.

We first define the following parameters for the algorithm:

Bmax = maximum number of random sampling (e.g.106)
B0 = minimum number of random sampling (e.g. 10)
p0 = a constant × significance level (e.g.5× 10−6)
M = multiplying increment for the number of random sampling (e.g. 10)
The fast algorithm works as follows:

	 Step 0 Calculate the statistic T of OWC based on the observed data
Step 1 Set initial values: p0 = 10−5 , Bmax = 106 , B0 = 10 , M = 10 , B = B0

Step 2 Use Eqs. (4) and (5) to estimate p-value, p̂ . Let B = B×M

Step 3 If p̂>p0 or B > Bmax , report p̂ and stop; otherwise go to step 2.

Conclusions
Current gene-based association tests, while providing greater interpretability and 
power over usual single variant association tests, still have many limitations such 
as weights predetermined biologically or empirically. In this paper, we propose a 

(5)pT =
[ B∑

b=1

I
(
T (Z(b),R) ≤ T (Z,R)

)
+ 1

]

/(B+ 1)
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combination test OWC to overcome these limitations. OWC is a general linear com-
bination test which uses GWAS summary statistics as its input and incorporates dif-
ferent weighting schemes, and includes traditional gene-based tests as its special cases. 
Simulation studies and real data analyses demonstrate that OWC is more powerful 
than comparable methods in many scenarios and can adapt to the (generally unknown) 
underlying genetic architecture of the trait of interest. While the focus of this paper was 
single-trait analysis, OWC can be easily extended to analyze GWAS summary data for 
multiple traits.
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