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Abstract 

Purpose:  The objective of the manuscript is to propose a hybrid algorithm combining 
the improved BM25 algorithm, k-means clustering, and BioBert model to better deter-
mine biomedical articles utilizing the PubMed database so, the number of retrieved 
biomedical articles whose content contains much similar information regarding a 
query of a specific disease could grow larger.

Design/methodology/approach:  In the paper, a two-stage information retrieval 
method is proposed to conduct an improved Text-Rank algorithm. The first stage con-
sists of employing the improved BM25 algorithm to assign scores to biomedical articles 
in the database and identify the 1000 publications with the highest scores. The second 
stage is composed of employing a method called a cluster-based abstract extraction 
to reduce the number of article abstracts to match the input constraints of the BioBert 
model, and then the BioBert-based document similarity matching method is utilized 
to obtain the most similar search outcomes between the document and the retrieved 
morphemes. To realize reproducibility, the written code is made available on https://​
github.​com/​zzc19​91/​TREC_​Preci​sion_​Medic​ine_​Track.

Findings:  The experimental study is conducted based on the data sets of TREC2017 
and TREC2018 to train the proposed model and the data of TREC2019 is used as a vali-
dation set confirming the effectiveness and practicability of the proposed algorithm 
that would be implemented for clinical decision support in precision medicine with a 
generalizability feature.

Originality/value:  This research integrates multiple machine learning and text pro-
cessing methods to devise a hybrid method applicable to domains of specific medical 
literature retrieval. The proposed algorithm provides a 3% increase of P@10 than that of 
the state-of-the-art algorithm in TREC 2019.

Keywords:  Information retrieval, BM25, BioBert, Abstract extraction, Machine learning

Introduction
Precision medicine is a new medical paradigm that integrates modern scientific and 
technological means with conventional medical methods by detailing human bod-
ily functions and the nature of diseases scientifically, thus optimizing systematically 
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the principles and practices of human disease prevention and health care to eventu-
ally maximize both individual and social health benefits with more effective, safer, and 
more economical medical services [1, 2]. In precision medicine, diagnostic methods are 
appropriately selected for each patient to realize minimal iatrogenic damage, minimum 
medical costs, and optimal patient recovery [3, 4]. Besides, utilizing both genomic pro-
files and healthcare data sources of patients to a large extent leads to personalized treat-
ments [5]. Hence, the clinical system adopting this new approach mainly pays attention 
to all types of useful information regarding genes, microbiomes, environmental condi-
tions, family history, and lifestyles of patients to pick precise diagnoses and therapeu-
tic alternatives that individually result in better treatments [6]. In other terms, precision 
medicine is considered a tool that could be used for several purposes such as predictive, 
preventive, personalized, and participatory healthcare service utilizing all available data 
sources such as genetics, omics, and patients’ history [7].

Precision medicine has been covering various areas ranging from drug discovery, 
design, and development, the analysis of drug sensitivity in pharmacology, and the 
construction of clinical decision support systems in health analytics to a better under-
standing of several diseases and their relationships with genes, family history, and other 
attributable factors in medicine [8–11].

With the advancement of medical technologies, the number of biomedical articles has 
grown exponentially. So, finding relevant articles matching the symptoms of a patient in 
massive article databases becomes increasingly difficult. For example, when just “preci-
sion medicine” is written in the search bar in the Science Direct database, the number 
of articles that are found is 229,126. Therefore, getting both useful and practical insights 
out of the immense collection requires to be implemented finely devised methods and 
approaches.

Information retrieval (IR) plays a significant role in precision medicine and refers to 
the process and technology to organize and access information according to the require-
ments of users. The main goal of information retrieval is to obtain the required infor-
mation as accurately, quickly, and comprehensively as possible. Moreover, since data 
accumulation grows sharply, big data-based crunching and modeling have been gaining 
momentum, especially after 2008 [12]. Hence, more precise, and refined outcomes could 
be potentially reached by employing finely devised methods or algorithms.

Even though the BM25 algorithm is the first and most widely used algorithm to 
improve better algorithms in text ranking tasks, most BM25 algorithms only consider 
abstracts and do not consider the possible search morphemes and their co-occurrence 
relationships that could be found in chemicals, MeSH, and keywords. Zhang [13] pro-
posed an improved BM25 algorithm that computes three scores for the vocabulary, co-
word, and expanded word that leads to a composite retrieval function whose parameters 
are optimized by the cuckoo optimization algorithm that retrieved better search out-
comes. The model was trained on the 2017 dataset. The results showed that the trained 
parameters produced improvements in the search results when both the 2018 and 2019 
datasets are used, so this research provided a reference for parameter selection for the 
BM25 algorithm. Several of the available algorithms utilize the BM25 algorithm as the 
first step of a search algorithm and then employ a deep learning model to obtain more 
accurate matchings. Besides, it should be kept in mind that the effect of deep learning 
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models is dependent on how well the models get trained. Therefore, similarity results 
could be highly affected by the results of the employed method in the first stage. Conse-
quently, the improved BM25 used at the first stage provides advantages to attaining bet-
ter search results in the proposed algorithm.

This manuscript will base on the improved BM25 approach to pick the highest scores 
of 1000 articles in PubMed and conduct a clustering algorithm to split into N differ-
ent clusters to reach the minimum input requirement of the pre-trained model on the 
data set called BioBERT to generate better text ranking results by using search terms 
of diseases, genes, and individual traits. Therefore, similarity-matching results will be 
attained based on finally running the BioBERT model that is employed also as a pre-
training model and calculates the similarity between the article abstract/title and the 
retrieval morpheme as a score. Due to the limitation of the input vector length of the 
BERT model which is restricted to using 512 tokens (words or characters) in an article 
abstract, negative samples for the training data set are generated to improve the training 
effect.

The motivation of the research is to propose a hybrid algorithm consisting of a two-
stage information retrieval method based on the improved BM25 algorithm, k-means 
clustering, and BioBert model to better determine the most relevant biomedical articles 
to specific diseases, genes, and individual traits.

The sections of the article are organized as follows: Section "Related work" presents 
the related works. Section “Method” describes the improved BM25 algorithm, and pro-
posed the algorithm whose stages are called document similarity matching, and clus-
ter-based abstract extraction. Section  "The Proposed Method and its Implementation" 
describes the proposed method with a flow chart and its execution details including 
data structure, and negative training sample generation method. Section"Experimental 
results" describes the experimental comparison results of the proposed algorithm and 
the selected algorithm presented in Track 2020, as well as the data and parameters used 
by the proposed algorithm. Section "Summary and future work" concludes the research.

Related work
Preliminary

In this subsection, we will present a brief introductory development of text retrieval. The 
Boolean model constitutes the search model of the original information, which was used 
for information retrieval as early as 1957 and is a simple retrieval model based on the 
set theory and Boolean algebra whose basic idea is to represent the query of a user and 
a document by utilizing a set of words. Then, the similarity of the two sets is determined 
by using Boolean operations. Moreover, the Boolean model is a keyword-matching type 
of information retrieval, that is, documents containing the keywords in a query will be 
retrieved. However, there exists usually a low correlation between the retrieved results 
and the target. In some research fields, weighting the index terms has been shown to 
greatly improve the retrieval results, which has led to the development of vector models 
[14, 15].

BM25 and its modified versions, which are characterized by conventional probabilis-
tic models employing the two-Poisson approximation of the term-frequency distribu-
tion, have been long effective tools in text ranking and the BM25 algorithm is generally 
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used to compare the performance of the newly introduced models [16, 17]. Besides, 
typical vector models include the term frequency-inverse document frequency (TF-
IDF) approach and the BM25 model have been widely studied based on this approach. 
As a result, the emergence of vector models has substantially increased the relevance of 
retrieved documents to the retrieval target and led to the concepts of document scoring 
and ranking [18–20].

With the advancement of machine learning algorithms in recent years, several rank-
ing algorithms have been developed by aiming at better ranking the texts in the search 
of matching the query with the most relevant articles. Besides, when machine learn-
ing algorithms are implemented, more automatic processes are expected to attain bet-
ter outcomes. Learning-to-rank methods are generally classified into three categories 
according to the training methods: pointwise, pairwise, and listwise [21–23]. In the 
pointwise method, each document in the training set is treated as a separate sample, 
which is essentially a single-document classification and regression problem. Some 
widely implemented pointwise algorithms include Prank [24], McRank [25], and Rank-
Prop [26]. In the pairwise method, document pairs with different labels for the same 
query in the training set are trained as one sample. Based on two documents with differ-
ent labels, the ranking problem is finally transformed into a binary classification prob-
lem. Some broadly utilized algorithms include the rank boost algorithm [27] and the 
frank algorithm [28]. In the listwise method, the entire document sequence is taken as 
a sample, and the evaluation of the information retrieved is optimized by defining a loss 
function. Some widely conducted research includes ListNet [29], SVMMAP [30], and 
the ADA rank algorithm [31].

When machine learning algorithms are implemented, the pre-training process con-
tributes to the success of these algorithms [32–34]. A pre-trained language representa-
tion approach, called BERT (A multilayer bidirectional transformer encoder stack), was 
proposed by [35] and the BERT’s performance was found to be better than the available 
ones in the literature. Park et al. [36] used a bidirectional encoder representation from 
transformers (BERT) classifier to train retrieved articles and word vectors to represent 
medical articles. The studies were ranked according to similarity scores between query 
semantic elements and the article. The results showed that the accuracy was greatly 
improved over existing algorithms. Pan et al. [19] combined patient health records with 
biomedical articles and used three methods to expand the phrases used in queries, and 
the experimental results showed that the proposed model yielded a promising average 
weighted accuracy, better stability, and applicability. Maciej et al. [37] investigated the 
effectiveness of a BERT-based ranking model on different platforms. The results veri-
fied the accuracy of the BERT model for precision medicine too. Bayesian networks 
into query expansion and probabilistic models to expand query semantic elements to 
increase query accuracy were introduced [9]. Two types of BERT models, BERTBASE and 
BERTLARGE, are available [38]. Some articles covering various related modifications of 
BERT can be found in [39–42].

BioBert model

With the implementation of the BioBERT model [43–46], Natural Language Process-
ing tasks extract better relations and generate more accurate outcomes. Instead of 
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pre-training on generic data sets, BioBert requires derived data sets to perform well. 
On the contrary, poor performances would be expected. The BioBERT model is used 
for various improvement purposes. For example, the identification of functional links 
between proteins has been recently conducted by fine-tuning weights from BioBERT 
[44]. Besides, several research manuscripts have reported better outcomes when the 
BioBERT model is implemented [47–50] in the literature.

Method
Baseline algorithm

Our baseline algorithm employs the improved BM25 algorithm previously proposed 
by the author. To ensure the integrity of the paper, The fundamental aspects of the 
improved BM25 algorithm are revisited [13].

First, we defined the abstract score,

where Inverse Document Frequency (IDF) is the search morpheme qi , where k1 and b1 
are the adjustment factors, which are usually set according to the experience of users, 
fi is the frequency of qi in d . IDF is defined as follows: IDF for a particular word can be 
obtained by dividing the total number of documents by the number of documents con-
taining the searched word and then taking the logarithm of the quotient. dl is the text 
length of document d , and avgdl is the average text length of all documents.

We propose a wordlist to combine the chemical words, MeSH headings, and keywords 
of a retrieved document, and the scores are defined as follows:

where tfw is the sum of the IDF values of each retrieved morpheme, and k1 and b1 are 
adjustment factors, which are usually set according to the experience of users. dwl is the 
number of words in the wordlist of document d, and avgdwl is the average number of 
words in the wordlist of all documents.

We also defined the co-word score, that is, the disease and gene in the search mor-
pheme (including expansion words) co-occur in the abstract, and the wordlist is 
recorded as the co-occurrence score as follows:

where IDFword(gi, d) represents the score based on the expression gene gi for query Q , 
the summation is used since some tasks could contain genes.

To achieve the same level as the scores of the similarity method in the manuscript, 
we standardize the sum of the three scores, and the standardization method adopts the 
max–min method, as shown in Eq. (4):

(1)AS(Q, d) =

n

i

IDF(qi)×
fi × (k1 + 1)

fi + k1 × 1− b1 + b1 ×
dl

avgdl

(2)WS(Q, d) =

n
∑

i

tfw(Q, d)× (k2 + 1)

tfw(Q, d)+ k2 ×
(

1− b2 + b2 ×
dwl

avgdwl

)

(3)CWS(Q, d) =

n
∑

i

IDFword(gi, d)
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where xnorm represents the normalized value,x represents the value before normaliza-
tion, min(X) represents the minimum value of the sequence to be standardized, and 
max(X) represents the maximum value of the sequence to be standardized. In the algo-
rithm, we also added query expansion to extend the mesh. The algorithm and its perfor-
mance evaluation in detail can be found in [13].

Document similarity matching

Similarity matching between articles and retrieval tasks is an important step in the 
information retrieval process. In [24], Bidirectional Encoder Representation from 
Transformers (BERT) model is employed to train the abstracts/titles and query tasks. 
The model structure is shown in Fig. 1. [CLS], which is a special vector, is added to 
the top of the input before transferring and sending it to the BERT and [SEP], which 
is a special tag to separate sentences, is added as a separator between the abstract/
title. Then, the output of the BERT model (the embedding of sentence pairs) is taken, 
and [CLS] is utilized to complete the similarity calculation task. The output sigmoid 
is computed to obtain the similarity between the abstract/title and the query, which is 
considered as the matching score between the input abstract/title and the query.

(4)xnorm =
x −min(X)

max(X)−min(X)

Fig. 1  The classification task of sentence pairs in the BERT
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Clustering‑based abstract extraction

Because the BERT model is limited to 512 tokens (words or characters), the abstract 
needs to be further streamlined, and the key content needs to be extracted. An extractive 
abstract generation method is employed to preserve the writing style and the meaning of 
the original abstract to the highest extent. Then, the article adopts the clustering-based 
abstract extraction method, and the specific process is described as follows:

1. The BioBert pretraining model is utilized to generate a sentence vector for each sen-
tence in the abstract to obtain a sentence-level vector representation, which is a 1 × 768 
dimensional vector.

2. Sentences are clustered by using the K-means clustering to obtain N categories, 
where the number N is preassigned by the implementer.

3. A sentence closest to the center of the cluster is selected from the category until the 
overall length reaches 512 tokens (words or characters) to form a new abstract text.

The proposed method and its implementation
The proposed algorithm

This research integrates multiple machine learning and text processing methods to 
devise a hybrid method applicable to domains of specific medical literature retrieval. The 
flow chart of the algorithm is depicted in Fig. 2. A hybrid algorithm consisting of a two-
stage information retrieval method based on the improved BM25 algorithm, k-means 
clustering, and BioBert model to better determine the most relevant biomedical articles 
to specific diseases, genes, and individual traits.

The improved BM25 algorithm computes three scores for the vocabulary, co-word, 
and expanded word that lead to a composite retrieval function whose parameters are 
optimized by the cuckoo optimization algorithm. Afterward, the BioBert pre-trained 
model is utilized to generate a sentence vector for each sentence in the abstract to obtain 
a sentence-level vector representation, which is a 1 × 768 dimensional vector. Sentences 
are then clustered by using the K-means clustering regarding the closest sentence to the 

Fig. 2  Algorithm flow chart
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center of a cluster of the category until the overall length reaches 512 tokens to form a 
new abstract text. Finally, the output of the BERT model that is employed in the BioBert-
based document similarity matching method is utilized to obtain the similarity between 
the document and the retrieved morphemes.

To exemplify what has been conducted, first, patient information and medical articles 
are input into the system, such as patient information, disease, demographics, genes, 
and other attributes. Medical article information includes title, abstract, MeSH head-
ings, chemical list, and keyword list. The patient information was input into the MeSH 
library to obtain the expanded query information, and the patient information and 
the expanded word information were input into the improved BM25 algorithm [13] to 
obtain the abstract score, word score, and co-word score, which were then standardized 
and processed according to the standardization process. Afterward, the top 1000 articles 
were sorted in descending order by using their composite retrieval scores. The abstract 
and title similarity scores of each document and the query were calculated by using the 
BioBert document similarity matching method for the top 1000 articles. The standard-
ized scores were then added to the improved BM25 scores, and the final scores were 
sorted in descending order to reflect the similarity scores.

Structured data

Table 1 summarizes the evaluation results obtained between 2017 through 2019 for 
the initial screening of the literature. It is a screening factor for human precision 
medicine (PM), and the co-occurrence of disease genes is also an important factor 
for determining the correlation. Therefore, the co-word method proposed in the 
improved BM25 algorithm [13] can increase the scores in potentially relevant articles. 
When the search elements are defined, the term “human” as one of the search ele-
ments of the baseline is utilized to distinguish between humans and animals. Because 
the PM tasks in 2020 and between 2017 through 2019 were different, and demograph-
ics were replaced by treatment, the tasks in 2020 are excluded and the tasks between 
2017 through 2019 are used as PM retrieval tasks for the research data. Table 2 shows 
the PM retrieval tasks between 2017 through 2019. Observed that disease and genes 
are fixed expressions, and age and gender need to be classified during retrieval. The 
classification criteria are shown in Table  3. The regular expression extracts the age 

Table 1  Raw judgments for Scientific Abstracts

Pm_rel Disease gene1_annotation gene1_name gene2_annotation gene2_name

Human PM Exact Missing Gene NRAS(Q61K) Exact TP53

Not PM Not Disease Exact KRAS Missing Gene KRAS

Table 2  PM tasks between 2017 through 2019

Topic Disease Gene Demographic

2017–1 Liposarcoma CDK4 Amplification 38-year-old male

2018–2 Melanoma BRAF (V600E) 64-year-old male

2019–3 Melanoma BRAF (E586K) 64-year-old female
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from the abstract, such as years-old/year-old/years old, which are all extracted to 
form the corresponding category, and the word stem of nltk is used to extract the 
words that express gender in the abstract, such as woman, man, girl, and boy. If the 
abstract does not contain demographic information, matching items from the Mesh 
for extraction are searched for.

Generation of the training sample

Through the analysis of data sets between 2017 and 2019, we divided the search tasks 
into two types: the same gene with different diseases and the same disease with differ-
ent genes. While different diseases with the same gene are shown in Table 4, different 
genes with the same disease are presented in Table 5. To eliminate the interference of 
the search task and document matching, disease, gene, and demographic information 
from the head of the abstract are extracted and negative samples for the content of 
the same disease with different genes or different diseases are generated, as shown in 
Table 6.

Table 3  Demographic classification

Demographic variables Values Categories

Age Fetus Fetus

Birth to 1 month Newborn

1 month to 24 month Infant

2 years to 6 years Preschool

6 years to 13 years Child

13 years to 19 years Adolescent

19 years to 35 years Young

35 years to 60 years Middle age

60 years to 80 years Aged

Over 80 years Aged 80

Over 18 years Adult

Gender Female, woman, girl Female

Male, man, boy Male

Table 4  Different diseases with the same gene

Topic Disease Gene

2017–12 Colon cancer BRAF (V600E)

2018–1 Melanoma BRAF (V600E)

2017–5 Melanoma BRAF(V600E), 
CDKN2A Dele-
tion

Table 5  Different genes with the same disease

Topic Disease Gene

2018–1 Melanoma BRAF (V600E)

2018–2 Melanoma BRAF (V600K)

2018–3 Melanoma BRAF (V600R)
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Experimental results
Data

The Text Retrieval Conference (TREC) has been launched for biomedical article 
retrieval tracks for seven consecutive years. TREC 2014–2016 [51–53] focused on the 
full-text retrieval of biomedical articles, while TREC 2017–2020 [54–57] focused on 
article retrieval for precision medicine (PM).

The data sources are mainly divided into baseline data and evaluation datasets. The 
baseline data set uses the PubMed literature metadata download provided by the 
organizing committee of TREC. The specific data are shown in Table 7. The metadata 
used includes PMID, titles, abstracts of articles, Chemical words, Mesh words, and 
keywords.

In the 2017–2019 TREC-PM tasks, a total of 120 patient cases and 63,387 qrels 
(document correlation judgment) were available, as shown in Table 8.

The parameter setting of the proposed algorithm

The adjustment factors of our baseline improved BM25 algorithm [13] use common 
conventional parameters presented in Table 9. In the document similarity matching 
algorithm, we performed similarity matching for the abstract and the title, and the 
query because the lengths of the abstract and the title were significantly different. 
Therefore, we used different parameters for training, and the settings for the training 
parameters of the matching degree algorithm are shown in Table 10.

Table 6  Negative samples

PMID Document Query Topic Label

10,101,594 cdk4 amplification human mid-
dle-aged adult male + sum-
mary

Liposarcoma cdk4 amplifi-
cation middle-aged male

2017–1 1

10,101,594 cdk4 amplification human mid-
dle-aged adult male + sum-
mary

Liposarcoma mdm2 ampli-
fication and a young male

2017–20 0

Table 7  Metadata details

Name Values

Abstract-number 29,137,637

Title-number 29,137,637

Chemical-number 13,670,358

Mesh-number 25,389,659

Keyword-number 5,435,471

Table 8  Evaluation datasets

Year Queries Documents (rel./irrel.)

2017 30 3,875/18,767

2018 50 5,588/16,841

2019 40 5,544/12,772
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Experimental comparison

Similar to the literature [58], we used the data in 2017 for evaluation and the data 
in 2018 for training. Besides, while 80% of the data is used for the training phase, 
20% of the data is utilized for validation. We used the BioBert model as a pre-training 
model to generate word vectors, as shown in Table 11. The precision of the proposed 
method is slightly lower than that of the method proposed in the literature [58], but 
the recall rate and F1 score of the training set, and the accuracy rate, recall rate, and 
F1 score of the validation set are found to be higher since the method of negative 
sample generation is utilized to reduce the interference between similar samples, 
thus, the official Bert-base-uncased is replaced by the Biobert model. Figure 3 depicts 
that all 3 algorithms converged at approximately 2000 iterations. When comparisons 
are conducted, the BioBert converges faster, but its improvement in accuracy is not 
very significant, which is slightly higher than Bert-base-uncased and Bert-base-cased 
algorithms.As shown in Table 12, BioBert also has a lower loss rate of 0.11 than that 
of Bert-base-uncased and Bert-base-cased, which is 0.12.

Table 9  Parameter settings of the improved baseline BM25 algorithm

Parameters Value Remarks

k1 1.2 adjustment factors

k2 1.2 adjustment factors

b1 0.75 adjustment factors

b2 0.75 adjustment factors

avgdwl 85 The average document length (after 
running word frequency processing)

avgdl 13 The average number of word lists

Table 10  Training parameters of the similarity matching algorithm

Type Parameters Value Remarks

Abstract Epoch 4 Number of training rounds

Batch_szie 32 Minimum training batch

Max_len 512 Maximum number of words in a document

Learning_rate 0.0005 Algorithm learning rate

Title Epoch 4 Number of training rounds

Batch_szie 64 Minimum training batch

Max_len 128 Maximum number of words in a document

Learning_rate 0.0005 Algorithm learning rate

Table 11  Comparison of similarity matching algorithms

Datasets P R F1

Training [19] 0.9814 0.9384 0.9594

Validation [19] 0.9266 0.9147 0.9206

Training 0.9636 0.9656 0.9641

Validation 0.9519 0.9552 0.9530
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Table 13 shows the comparison of various indicators of the proposed algorithm before 
and after the generation of negative samples. The training set with added negative sam-
ples has improved outcomes on MAP, NDCG, P@10, and R-Prec, from 0.2928, 0.603, 
0.5925, and 0.3503 to 0.3028, 0.6155, 0.6050 and 0.3524, respectively. To verify the 
improvement of the effect of the negative sample generation method, we used the accu-
racy and recall rates of 5, 10, 15, 20, 30, 100, 200, 500, and 1000 articles in the top 1000 
articles to generate the PR curve, as shown in Fig. 4.

The overall curve shows a downward trend with some slight fluctuations. When the 
PR curve is located above the other PR curves, it means that the performance would 
reach higher than the other methods. Figure  4 shows that the red curve after sample 
optimization is located above the curve of the baseline (black) and the one obtained 
before sample optimization (blue).

Table 14 shows the experimental comparison between the proposed algorithm and 
the state-of-the-art algorithm selected [59] in the 2019 TREC PM track. Even though 

Fig. 3  Accuracy comparison of the pre-trained models

Table 12  The comparison of the pre-trained models

The significance of bold means optimal values

Name P Loss

Bert-base-cased 0.9473 0.12

Bert-base-uncased 0.9508 0.12

BioBert 0.9519 0.11

Table 13  Comparison of samples before and after optimization

The significance of bold means optimal values

Methods MAP NDCG P@10 R-Prec

Baseline: The improved BM25 0.2663 0.5836 0.5450 0.3138

Baseline (before sample optimization) 0.2928 0.6034 0.5925 0.3503

Baseline (sample optimization) 0.3028 0.6155 0.6050 0.3524
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the results of the proposed algorithm are lower than those of the algorithms selected 
in the 2019 TREC meeting, the evaluations were conducted by a software called the 
trec_eval software. Seen that the proposed algorithm uses the result of the addition 
of the baseline score and the abstract similarity score, which are 0.635 (P@10) and 
0.344 (R-Prec). These two indicators are slightly inferior to the optimal results of 
the selected algorithm in that year, which is ranked second. However, we found that 
among the top 10 articles of the 40 topics, 366 documents that existed in qrels and 
34 documents that did not exist in qrels were retrieved, as shown in Fig. 5. Namely, 
all the 34 documents used to calculate P@10 that did not participate in the evalua-
tion are judged irrelevantly. However, the proposed algorithm still achieved a P@10 
of 0.635 without it. If these non-participating documents had been removed from the 
top10, the P@10 and R-Prec scores of the proposed algorithm would reach 0.68 and 
0.4823, respectively.

Figure 5 shows that topics have more relevant articles, such as topic 1, topic 4, topic 
7, and topic 16, the uninvolved articles still have the potential to be identified as rel-
evant articles. If the title similarity scores had been added, P@10 would decrease to 
0.605, but the R-Prec would increase to 0.352, which is already very close to the opti-
mal values of the selected method in that year.

Fig. 4  RP curve information system

Table 14  The comparison of TREC tasks in 2019

The significance of bold means optimal values

Methods p@10 R-Prec

BITEM PM 0.6275 0.3166

Julie-Mug [59] 0.6530 0.3572
Baseline + abstract 0.6350 0.3444

Baseline + abstract + title 0.6050 0.3524



Page 14 of 18Zhang et al. BMC Bioinformatics            (2023) 24:3 

Figure 6 shows that the addition of the abstract and title scores to the baseline score 
significantly improves the P@10 and R-Prec of the information system. When P@10 
is a concern, the stability of baseline + abstract and baseline + abstract + title is found 
to be similar. However, there are more uninvolved studies in baseline + abstract + title 
than in baseline + abstract, which leads to a decrease in P@10. Because the base-
line + abstract + title was optimized twice, it was easier to improve the ranking of the 
potentially relevant literature, but it also increased the ranking of the highly distract-
ing literature, so it looks more polarized than the baseline + abstract.

To further verify the effectiveness of the proposed algorithm, we also select 
80% of the data in the 2017–2018 qrels as the training set, 20% of the data as the 
validation set, and use the PM in 2019 as the task [58]. Just the literature that par-
ticipated in the evaluation was used as the baseline, and the top 500 retrieved docu-
ments were used to submit the evaluation. The experimental comparison results are 
shown in Table  15. The P@10 and R-Prec of the first search were relatively low at 
0.52 and 0.2307, respectively. After using the secondary sorting algorithm, the P@10 
and R-Prec were significantly improved, reaching 0.6750 and 0.3912 with Base-
line + REL, and Baseline + REL + ABS reached 0.6985 and 0.3627. In contrast, the 
baseline retrieval algorithm of the proposed algorithm achieves 0.5775 P@10 and 

Fig. 5  The schematic diagram for the proportions of the three types of P@10 in the literature

Fig. 6  The box-plot representation of P@10 and R-Prec concerning the three algorithms
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R-Prec, respectively in one retrieval. Baseline + Abstract reached 0.6725 and 0.4636, 
and Baseline + Abstract + title reached 0.6725 and 0.4716, respectively. Seen that the 
P@10 of the proposed algorithm is slightly lower than that of the algorithm proposed 
in the literature [58], while the R-Prec is much higher.

There are two main reasons: (1). The results of the algorithm used in the first round 
of the search in the literature [58] were not functioning well. (2). The Implementation 
details were mentioned as follows: [58]: “All parameter choices were made based on 
the best practices from prior efforts and experiments to optimize P@10 on validation 
subsets”. Because of the intervention of manual experience and special optimization 
of the P@10 index, it resulted in a higher P@10. However, optimizing for a certain 
indicator would reduce the universality of the implemented algorithm.

Therefore, the proposed algorithm has the advantage of not conducting an optimi-
zation to increase the P@10 index and does not carry out any manual intervention 
or specified optimization scheme to the indexes, and uses conventional parameters 
directly. Therefore, the proposed algorithm has a stronger universality than the 
selected method [58]. Table 15 shows that the optimization of P@10 will produce a 
certain decrease in R-Prec. Therefore, to comprehensively evaluate the quality of the 
proposed algorithm, we refer to the calculation method of the F1 score and add an 
evaluation index represented by P@10*R-Prec. The optimal P@10*R-Prec of the pro-
posed algorithm is found to be 0.3172, while that in the literature [58] is 0.2533, so 
the proposed algorithm has advantages in terms of universality and comprehensive 
performance.

Summary and future work
The manuscript proposes a hybrid algorithm consisting of a two-stage information 
retrieval method based on the improved BM25 algorithm, k-means clustering, and 
BioBert model to better determine the most relevant biomedical articles to specific 
diseases, genes, and individual traits.

The improved BM25 algorithm computes three scores for the vocabulary, co-word, 
and expanded word that leads to a composite retrieval function whose parameters 
are optimized by the cuckoo optimization algorithm that retrieved better search out-
comes. Afterward, the BioBert pretraining model is utilized to generate a sentence 
vector for each sentence in the abstract to obtain a sentence-level vector represen-
tation, which is a 1 × 768 dimensional vector. Sentences are then clustered by using 

Table 15  The comparison of the algorithms

The significance of bold means optimal values

Methods P@10 R-Prec P@10*R-Prec

Baseline: SolreDisMax 0.5200 0.2307 0.1200

Baseline + REL 0.6750 0.3912 0.2641

Baseline + REL + ABS 0.6985 0.3627 0.2533

Baseline: improved BM25 0.5775 0.4225 0.2440

Baseline + abstract 0.6725 0.4636 0.3118

Baseline + abstract + title 0.6725 0.4716 0.3172
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the K-means clustering regarding the closest sentence to the center of each category 
until the overall length reaches 512 tokens to form a new abstract text. Finally, the 
BioBert-based document similarity matching method is utilized to obtain the similar-
ity between the document and the retrieved morphemes. Besides, negative sampling 
for the training data is implemented to enhance the accuracy of the proposed method.

The proposed algorithm does not carry out any manual intervention or special opti-
mization schemes to increase the index scores and uses conventional parameters to 
attain better search or text-ranking outcomes, which guarantees the universality of 
the proposed algorithm.

To verify the effectiveness of the proposed algorithm, a comparison study is con-
ducted with the state-of-the-art algorithm [58], the proposed algorithm has advan-
tages in terms of universality and better measurement scores. The comprehensive 
performance analysis of the proposed algorithm shows that a 3% increase of P@10 
than that of the state-of-the-art algorithm in TREC 2019 is achieved. Moreover, to 
comprehensively evaluate the quality of the proposed algorithm, we refer to the cal-
culation method of the F1 score and add an evaluation index represented by P@10*R-
Prec. The optimal P@10*R-Prec of the proposed algorithm is found to be 0.3172, 
while that in the literature [58] is found to be 0.2533.

Consequently, the proposed algorithm has advantages in terms of universality and 
comprehensive performance.

In future work, the tasks that were negatively affected by the proposed algorithm 
are analyzed to improve its performance. Besides, different combinations of algo-
rithms dealing with different retrieval scenarios are investigated to thus improve 
retrieval accuracy.
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