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Abstract 

Background:  CircRNAs are essential for the regulation of post-transcriptional gene 
expression, including as miRNA sponges, and play an important role in disease devel-
opment. Some computational tools have been proposed recently to predict circRNA, 
since only one classifier is used, there is still much that can be done to improve the 
performance.

Results:  StackCirRNAPred was proposed, the computational classification of long 
circRNA from other lncRNA based on stacking strategy. In order to cope with the 
potential problem that a single feature might not be able to distinguish circRNA well 
from other lncRNA, we first extracted features from different sources, including nucleic 
acid composition, sequence spatial features and physicochemical properties, Alu and 
tandem repeats. We innovatively apply the stacking strategy to integrate the more 
advantageous classifiers of RF, LightGBM, XGBoost. This allows the model to incorpo-
rate these features more flexibly. StackCirRNAPred was found to be significantly better 
than other tools, with precision, accuracy, F1, recall and MCC of 0.843, 0.833, 0.831, 
0.819 and 0.666 respectively. We tested it directly on the mouse dataset. StackCirRNAP-
red was still significantly better than other methods, with precision, accuracy, F1, recall 
and MCC of 0.837, 0.839, 0.839, 0.841, 0.677.

Conclusions:  We proposed StackCirRNAPred based on stacking strategy to distinguish 
long circRNAs from other lncRNAs. With the test results demonstrating the validity and 
robustness of StackCirRNAPred, we hope StackCirRNAPred will complement existing 
circRNA prediction methods and is helpful in down-stream research.

Keywords:  Stacking strategy, circRNAs classification, Feature selection, Alu, Tandem 
repeats

Background
Noncoding RNAs [1] (ncRNAs) are functional RNAs that are transcribed from DNA 
but cannot be translated into proteins. According to the length, ncRNA can be divided 
into short ncRNA (shorter than 200nt) and long non-coding RNA (lncRNA, more than 
200nt). LncRNAs [2] are essential for the development and pathogenesis of disease as 
well as the control of genes. CircRNAs are closed-loop RNA molecules that participate 
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in a variety of molecular functions of the transcriptional regulation [3] and translation 
into protein products [4].

CircRNAs were first discovered in plant viruses in the 1990s [5]. The early develop-
ment in this subject may be rather gradual because linear RNAs predominate and cir-
cRNAs were previously thought to be a by-product of RNA splicing [6, 7]. With the 
development of biotechnology, circRNA detection tools have been developed one after 
another. According to the form of implementation, circRNA detection methods can be 
divided into three categories, including machine learning-based, back-splicing junction 
(BSJ)-based and integration-based.

BSJ-based circRNA detection method that identify circRNAs by identifying BSJ reads. 
Gao et al. [8] proposed CIRI2, a multithreaded recognition method using adaptive maxi-
mum likelihood. Smid et al. [9] proposed a splicing data-independent circRNA identi-
fication method to analyze the function of circRNAs in breast cancer. However, these 
methods have the disadvantage of high false positives, different algorithm implemen-
tations between different tools, and large differences in prediction results. The above 
problems are alleviated by the prediction methods based on multi-tool integration. 
CirComPara [10] is an automated pipeline for detection and annotation of circRNAs in 
RNA-Seq data. It integrates testrealign [11], CIRCexplorer [12], CIRI [13] and find_circ 
[14] four different back-splicing identification methods. CircRNAwrap [15] is a more 
comprehensive pipeline tool for detection and abundance quantification of circRNAs, 
using many techniques (find_circ, KNIFE [16], MapSplice [17], CIRI, CIRCexplorer, 
DCC [18], ACFS [19] and circRNA_finder [20]) in parallel for back splicing identifi-
cation and construction of whole transcripts. But these tools have certain limitations, 
and most require RNA-Seq datasets as input. The development of machine learning 
techniques addresses this deficiency, and machine learning algorithms allow models to 
learn features directly from sequences. In 2015, Pan et  al. [21] proposed the Predcir-
cRNA calculation method, which uses a multicore learning algorithm to extract features 
from transcript sequences to predict circRNAs. WebCircRNA is a tool for predicting 
specific circRNAs in stem cells by using sequence features as input by a random forest 
model [22]. Niu et al. [23] at 2020 developed a new classifier, CirRNAPL, which uses the 
particle swarm optimization algorithm to adjust the extreme learning machine (ELM), 
extracts the computational composition of sequences, and predicts circRNAs by struc-
tural features. The extreme learning machine (ELM) [24] is an artificial neural network 
model with good generalization performance and learning ability. ELM only needs to set 
the structure of the network and no other parameters, so it has the features of simplicity 
and ease of use. The algorithm does not require additional adjustments during execution 
because the weights from the input layer to the hidden layer are chosen randomly all 
at once. Strong generalization ability and fast learning speed are its outstanding advan-
tages. However, these tools use a single classifier, and there is still much that can be done 
to improve the performance.

Other sequences have been predicted using ensemble learning [25]. In this study, 
we focused on classifying long circRNAs from other lncRNAs and proposed Stack-
CirRNAPred based on the stacking strategy. In order to cope with the potential prob-
lem that a single feature might not be able to distinguish circRNA well from other 
lncRNA, we first extracted features from different sources, including sequence k-mer 
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composition, dinucleotide-based auto-cross covariance (DACC), open reading frame 
(ORF), series correlation pseudo dinucleotide composition (SCPseDNC), Alu, tan-
dem repeats. To remove redundant features, the mRMR algorithm was used to select 
the best feature dataset. In the selection of classifiers, considering the heterogene-
ity of these features, combining different features and selecting a suitable classifier 
is a means to improve the recognition sensitivity and specificity. We innovatively 
apply the stacking strategy to integrate multiple more advantageous classifiers, which 
can predict circRNAs from multiple aspects, fuse these features more flexibly and 
improve model accuracy. To confirm the validity of our model, it was directly tested 
on mouse datasets and achieved good performance, indicating that the method has 
good generalization.

Fig. 1  The overall workflow of StackCirRNAPred
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Materials and methods
StackCirRNAPred primarily consists of four parts (Fig. 1): (i) datasets collection, (ii) 
feature extraction: including nucleic acid composition, sequence spatial features and 
physicochemical properties, Alu and tandem repeats, (iii) feature selection and (iv) 
classifier.

Dataset construction

In this study, Human (GRCh37) and mouse (NCBI37) reference genome files were 
downloaded from UCSC Genome Browser. Xing et  al. [26] proposed isoCirc, the 
long-read sequencing method to reliably detect full-length circRNA isoforms using 
the experimental methods of negative enrichment (line RNA removal) and rolling 
circle amplification followed by Oxford nanopore long-read sequencing. Through the 
analysis of twelve human tissues and one human cell line, the investigators provided 
circRNA data, which not only included the circRNA data characterized by isoCirc, 
but also included in the circBase database. circBase [27] is a database of a large col-
lection of other published experimentally validated circRNA transcripts. It organized 
and annotated circRNAs based on information from 9 published large-scale circRNA 
identification studies. We downloaded the circRNA annotation data from the paper 
of Xing et al. [28] We collected lncRNAs from GENCODE (GRCh37).

For circRNAs, we removed transcripts shorter than 200nt. For lncRNAs, we con-
structed a negative dataset consisting of other lncRNAs defined in GENCODE, such 
as sense overlapping, antisense, sense intronic, processed transcripts and lincRNAs 
[29]. To get rid of the redundancy and avoid bias, the CH-HIT software [30] was uti-
lized by setting its cutoff threshold to 0.8. Finally, we obtained 39,260 circRNAs and 
19,006 lncRNAs as the benchmark dataset.

To further expand the independent dataset to validate the model, we downloaded 
the mouse circRNA annotation bed file from circBase [27] and the lncRNAs sequence 
from GENCODE (Release M1). Through the same processing method as human, 1903 
circRNA sequences and 5627 lncRNA sequences were used as another independent 
test set. All the above datasets can be obtained from an additional file (see Additional 
file 1).

Feature extraction

We extracted 170 features, which are briefly described in Table 1.

Table 1  Extracted features list

Feature group Feature names

Based on k-mer 64 trinucleotide frequencies

Based on open reading frame ORF length, ORF coverage, ORF average coverage, ORF difference

Based on structural features Dinucleotide-based Auto-Cross Covariance (DACC)

Based on physicochemical properties Series correlation pseudo dinucleotide composition (SCPseDNC)

Based on repeats Alu, tandem repeat
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K‑mer

The DNA or RNA sequences can be represented by the frequency of occurrence of k 
adjacent nucleotides. Trinucleotide frequency has been used for circRNAs prediction. 
The Kmer ( k = 3 ) descriptor can be defined as:

N  represents the length of a nucleotide sequence and N (t) represents the count of 3-mer 
type t.

ORF

Four features of ORF were extracted, including ORF length, ORF average coverage, ORF 
coverage and ORF difference. The putative ORF for each transcript sequence is the long-
est feasible open reading frame among the three reading frames.

1.	 ORF length has been reported useful for circRNA classification [21].
2.	 ORF coverage is the putative open reading frame divided by the length of the tran-

script.
3.	 ORF average coverage is the average length of the three open reading frames divided 

by the length of transcript.
4.	 ORF difference indicates the characteristic differences of the three ORFs. It is defined 

as:

where x0 , x1 and x2 are the corresponding eigenvalues of the ORF sequences in the three 
reading frames.

Dinucleotide‑based auto‑cross covariance (DACC)

One of the six different kinds of autocorrelation encodings is DACC. By calculating the 
correlation between two properties, autocorrelation encoding [31] can convert nucleo-
tide sequences of different lengths into a fixed-length vector. The DACC is a fusion of 
dinucleotide-based cross covariance (DCC) encoding and dinucleotide-based auto 
covariance (DAC). Six properties were used to calculate the DACC. Tilt, roll and twist 
reflect the changes in the up-and-down, front-to-back, and left–right angles of adjacent 
base space plane, respectively; rise, slide and shift reflect the changes in the distance 
between the up-and-down, front-to-back, and left–right relative positions of adjacent 
bases [32, 33]. These six properties allow us to deeply study the local conformational 
differences in sequences by quantitatively describing the changes in sequence spatial 
structure.

DAC calculates the correlation of identical physicochemical indices between two dinu-
cleotides that are separated along the sequence along the lagging distance. The formula 
for DAC is:

(1)f (t) =
N (t)

N
, t ∈ {AAA,AAC ,AAG, . . . ,TTT }

(2)d =
(x0 − x1)

2 + (x0 − x2)
2 + (x1 − x2)

2

2
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where u is a physicochemical index, lag is a distance that separate two dinucleotide, L 
represents the length of the nucleotide sequence, Pu(RiRi+1) is a numerical representa-
tion of the physicochemical property u for the dinucleotide RiRi+1 at position i , Pu is the 
average value for the physicochemical property u throughout the entire sequence:

The DAC vector has a dimension of N × LAG , where N  represents the total of physic-
ochemical properties and LAG denotes the greatest amount of lag lag = 1, 2, . . . , LAG .

The DCC encoding is calculated as:

Pua(RiRi+1) is a numerical representation of the physicochemical property ua for 
the dinucleotide RiRi+1 at position i , and where u1 and u2 are separate physicochemi-
cal properties. The average value for the physicochemical property ua along the whole 
sequence is Pua:

The DCC vector has a dimension of N × (N − 1)× LAG , where N  represents the total 
of physicochemical properties and LAG is the highest value of lag

(

lag = 1, 2, . . . , LAG
)

.
Thus, the dimension of the DACC encoding is N × N × LAG , where N  is the 

total number of physicochemical indices and LAG is the maximum of the lag 
( lag = 1, 2, . . . , LAG).

Series correlation pseudo dinucleotide composition (SCPseDNC)

The Series Correlation Pseudo Dinucleotide Composition encoding [34] defines as:

where:

where w represents the weight parameter in the range of 0 to 1, fk (k = 1, 2, …, 16) rep-
resents the frequency of dinucleotides in the sequence, � represents the correlation tier 

(3)

DAC
(

u, lag
)

=
L−lag−1
∑

i=1

((

Pu(RiRi+1)− Pu
)(

Pu
(

Ri+lagRi+lag+1

)

− Pu
)

/
(

L− lag − 1
))

(4)Pu =
L−1
∑

j=1

Pu
(

RJRj+1

)

/(L− 1)

(5)

DCC
(

u1,u2, lag
)

=
L−lag−1
∑

i=1

((

Pu1(RiRi+1)− Pu1

)(

Pu2
(

Ri+lagRi+lag+1

)

− Pu2

)

/
(

L− lag − 1
))

(6)Pua =
L−1
∑

j=1

Pua
(

RJRj+1

)

/(L− 1)

(7)D = [d1, d2, . . . , d16, d16+1, . . . , d16+�, d16+�+1, . . . , d16+��]
T

(8)dk =







fk
�16

i=1 fi+w
�

�

j=1 θj
, (1 ≤ k ≤ 16)

wθk−16
�16

i=1 fi+w
�

��
j=1 θj

, (17 ≤ k ≤ 16+ ��)
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of the nucleotide sequence, θj
(

j = 1, 2, . . . , �
)

 represents the j-tier correlation factor is 
calculated:

where the correlation function is calculated as:

where � represents the count of physicochemical properties. Six DNA physicochemi-
cal metrics were utilized, including three distance variables (Shift, Slide, Rise) and three 
angle variables (Twist, Tilt, Roll).

Alu and tandem repeat

Studies have shown that the flanking introns of circRNA have Alu repeat enrichment, 
which is related to the biogenesis of some circRNAs [12]. We used the Table Browser 
tool in the UCSC Genome Browser to download the Alu bed annotation file from the 
RepeatMasker track. Therefore, we examined the two windows (1000nt and 2000nt) 
of the genome sequence that flank the reverse splicing site for each circRNA [26]. We 
count the number of Alu repeats for each window. CircRNAs are formed by exon head-
to-tail splicing, and tandem repeats can significantly promote reverse splicing within 
genes. Thus, this study used Tandem Repeats Finder to extract the tandem repeat fre-
quency in the sequences.

Feature selection

Generally, as the feature dimension increases, it will lead to the following three prob-
lems, first, the disadvantage of overfitting is that the predictor has severe bias and 
extremely low generalization ability; second, information redundancy or noise will lead 
to misstatements error, resulting in poor prediction accuracy; in the end, unnecessary 
computation time will be added. Therefore, selecting the most helpful subset of fea-
tures from a high-dimensional feature dataset is an important process to reduce noise, 
improve identification accuracy, avoid overfitting, and build robust models [35]. In this 
study, we used feature selection techniques to optimize the included features. Doing so 
not only provides a deeper understanding of intrinsic properties of circRNA sequences, 
but also provides the comprehensibility, scalability and accuracy of prediction models. 
Max-relevance and min-redundancy (mRMR) is a filtered feature selection method [36]. 
Its main goal is to minimizing the relevance between features while maximizing the rel-
evance between features and categorical variables.

(9)
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There is a key in mRMR called mutual information. In this study, the mutual informa-
tion of two random variables X and Y is calculated as:

The goal of the mRMR algorithm is to find a feature subset S that contains m{xi } fea-
tures. First find the maximum relevance of m features and category c, which is defined 
as:

where xi is the ith feature, c is a categorical variable, S is a feature subset.
The next step is to eliminate the redundancy between m features:

Then integrate maximum relevance and minimum redundancy:

Finally, the feature set S with the maximum relevance and the minimum redundancy 
is obtained.

Stacking strategy

Ensemble learning is to combine multiple single classifiers together to form a classifier 
with better generalization ability. Stacking is a hierarchical model integration strategy, 
that is, integrating multiple classifiers through one classifier [37]. The basic idea is to use 
the original dataset to train the first-layer classifiers, then use the classifiers to make pre-
dictions on the test dataset, and use the output values as the input values for training the 
second-layer classifier, and the original labels are used as the labels for the training data 
of the second layer, and the output values of the second layer are used as the final predic-
tion results (see Fig. 1). Among them, the first-layer classifiers are called base learners, 
and the second-layer classifier for combination is called a meta-learner.

Base learners

Extreme gradient boosting (XGBoost) [38, 39] is a decision tree-based integrated 
machine learning algorithm that excels at performing predictions, processing missing 
values, and parallel computing. LightGBM is a boosting ensemble model developed by 
Microsoft, which supports parallel learning, can handle large-scale data, low memory 
usage, and has better accuracy [40]. Without feature selection, random forest can ana-
lyze any type of data with high accuracy and strong resistance to overfitting [41]. There-
fore, in this study, we use XGBoost, LightGBM and RF as the base learner for the first 
layer.

(11)I(X;Y ) =
∑
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∑
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p
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log
p
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)
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In the training process, if LR is trained directly using the training set of the first layer 
learner, it will lead to the risk of overfitting. We performed five-fold cross-validation on 
each classifier for the first layer to prevent overfitting. See in Fig. 2, for each base learner, 
the training data set is divided into 5 equal-sized subsets, one is set aside as the valida-
tion dataset each time, while the other four are utilized to train the model. The trained 
model is used for predictions on the test dataset. It is performed five times so that each 
training sequence can get a prediction score. The prediction score of the base learn-
ing model on the test dataset is calculated by averaging the prediction scores of the five 
models. This will be the input to the second layer meta classifier.

Meta learner‑logistic regression model

The logistic regression (LR) is a learning model commonly used to solve dichotomous 
classification problems [42]. LR classification has the benefits of small computational 
complexity, fast speed, little storage resources, and parallelism. It has been frequently 
utilized to address issues in the field of bioinformatics [43–45]. Using LR as a meta-clas-
sifier, the base learners from the first layer are integrated into the second layer in this 
study. The input data of the logistic regression classifier are the output probabilities of 
the first-layer primary learner, the labels of the raw data set are still the labels of the LR 
training dataset.

Performance evaluation metrics

We employed standard performance metrics including accuracy (ACC), precision, 
recall, F1 value, specificity (Sp), and MCC. These metrics are defined as follows:

(15)ACC =
TP + TN

TP + FN + FP + TN

(16)Precision =
TP

TP + FP

Fig. 2  Five-fold cross-validation for each classifier in the first layer
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where TP (true positive), TN (true negative), FP (false positive) and FN (false negative).

Results
Feature optimization

From the description in the feature extraction section above, we can see that we have 
extracted a total of 170-dimensional features. When performing feature selection, we set 
8 feature selection dimensions of 30, 50, 70, 90, 110,130, 150,170. Models are trained on 
different feature datasets and then evaluated in a test data sets. See Fig. 3 for the results. 
When the feature dimension is 110, the five performance evaluation metrics of accuracy, 
precision, recall, F1 and MCC are all better than other feature dimensions. Therefore, in 
this study we used 110-dimensional features as the final feature dataset (see Additional 
file 2: Table S1).

Comparison with base learners

We compared StackCirRNAPred with three base learners, XGBoost, LightGBM and RF, 
and see Table 2 for the results, with the optimal performance for each metric shown in 
bold. StackCirRNAPred outperformed all three base learners in all five metrics: ACC, 
precision, recall, F1 and MCC. This shows that StackCirRNAPred, constructed by fus-
ing the three base learners XGBoost, LightGBM, and RF together through the stacking 

(17)Recall =
TP

TP + FN

(18)F1 = 2×
TP

2TP + FP + FN

(19)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Fig. 3  Comparison results of model performance metrics under different feature dimensions. When the 
feature dimension is 110, the performance evaluation metrics are all better than other feature dimensions
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strategy, achieved better performance than each individual model and better integration 
of features from different sources.

Comparison with other tools on human dataset

We compared our method with other tools available to us. PredcircRNA uses a multi-
core learning algorithm [21], and extract sequence features such as graph features and 
conservation scores to classify circRNAs and lncRNAs. PredicircRNATool [46] distin-
guishes circRNAs based on the SVM model by extracting flanking introns and thermo-
dynamic dinucleotide properties as features. WebCircRNA is based on random forests 
and uses sequence-derived features to predict circRNA in stem cells [22]. CirRNAPL is 
a recently proposed circRNA prediction tool, which uses the particle swarm optimiza-
tion algorithm to adjust the extreme learner [23]. It extracts the computational com-
position and structural features of the sequence. We cannot compare our method with 
theirs because they do not provide a web server or they are no longer available. So here 
we compare our method with WebCircRNA, CirRNAPL two tools. As shown in Fig. 4, 
WebCircRNA got the ACC, precision, recall, F1 and MCC with 0.765, 0.717, 0.875, 0.788 
and 0.544. And it can be clearly found that the ACC, precision, F1 and MCC of Stack-
CirRNAPred are significantly better than the other two tools, reaching 0.833, 0.843, 
0.819, 0.831 and 0.666, respectively. In terms of recall, StackCirRNAPred is lower than 
the other two tools, but the web server provided by CirRNAPL has an excellent capac-
ity to predict positive samples, it is found that the ability to identify negative samples is 

Table 2  Comparison of the performance of StackCirRNAPred with each individual model

Bold indicates the best performance for each metric

Model ACC (%) Precision (%) Recall (%) F1 (%) MCC (%)

XGBoost 81.62 83.20 79.24 81.17 63.31

LightGBM 81.01 82.08 79.34 80.68 62.05

RF 80.54 81.33 79.27 80.29 61.51

StackCirRNAPred 83.31 84.27 81.91 83.07 66.63

Fig. 4  Comparison results with other tools on human dataset
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extremely weak and false positives are extremely high, so this is unstable. It is found that 
the overall effectiveness of StackCirRNAPred is the best.

Comparison with other tools on mouse dataset

To confirm the validity of our model, StackCirRNAPred and other two tools were directly 
tested and compared on mouse datasets. The results are shown in Fig.  5. For ACC, 
StackCirRNAPred better than WebCircRNA and CirRNAPL with 0.839, 0.748, 0.5. For 
precision and F1, StackCirRNAPred, WebCircRNA and CirRNAPL were 0.837/0.839, 
0.671/0.771 and 0.5/0.667, respectively. CirRNAPL was also unstable that the ability to 
identify negative samples is extremely weak and false positives are extremely high. So, 
the recall of CirRNAPL cannot be calculated. The recall difference between StackCir-
RNAPred and WebCircRNA was very small with 0.841, 0.856. Therefore, even on mouse 
dataset, the identification performance is still better than other methods, which also 
shows the effectiveness and robustness of StackCirRNAPred.

Discussion
CircRNAs belong to a subcategory of lncRNAs. With the development of sequencing 
technology, more and more circRNAs are annotated in the transcriptome. Unfortu-
nately, distinguishing circRNAs from traditionally labeled lncRNAs remains a challeng-
ing problem due to the low expression of lncRNAs and the computational complexity of 
experimental data analysis. Although some computational tools have been proposed to 
predict circRNAs, their performance still needs to be improved.

In this study, we proposed StackCirRNAPred for classifying circRNAs from other 
lncRNAs using ensemble learning ideas based on the stacking strategy to fuse multiple 
single classifiers. StackCirRNAPred outperforms other methods on human and mouse 
datasets. The performance of StackCirRNAPred is also the best when compared to a sin-
gle classifier. This shows that the fusion of multiple classifiers can better integrate fea-
tures from different sources, and is a means to improve the sensitivity and specificity of 
the model.

Fig. 5  Comparison results with other tools on mouse dataset
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Even though StackCirRNAPred still achieved better performance on the mouse 
dataset, this does not prove the applicability of our method to other species, as a large 
number of experiments or new modifications to the method are needed, which will 
be the focus of our future work. To our knowledge, there is currently no method for 
cross-species circRNA prediction. With the development of biotechnology and cir-
cRNA research becoming more advanced, it is believed that high-quality circRNAs 
of more and more species will be discovered and annotated, and that a large enough 
set of high-quality data will be available to support future research on cross-species 
circRNA prediction methods.

Conclusion
Since there is still much room for improvement in the computational classification of 
circRNAs from other lncRNAs, we proposed StackCirRNAPred based on the stack-
ing strategy to distinguish circRNAs from other lncRNAs. Our method showed good 
predictive performance on both human and mouse datasets, and the prediction per-
formance was significantly better than other methods. It demonstrated the effective-
ness and robustness of our method. We hope that StackCirRNAPred can complement 
existing circRNA identification methods and contribute to down-stream research.
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