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Abstract 

Background:  Identifying drug–target interactions (DTIs) plays a key role in drug devel-
opment. Traditional wet experiments to identify DTIs are expensive and time consum-
ing. Effective computational methods to predict DTIs are useful to narrow the search-
ing scope of potential drugs and speed up the process of drug discovery. There are a 
variety of non-negativity matrix factorization based methods to predict DTIs, but the 
convergence of the algorithms used in the matrix factorization are often overlooked 
and the results can be further improved.

Results:  In order to predict DTIs more accurately and quickly, we propose an alternat-
ing direction algorithm to solve graph regularized non-negative matrix factorization 
with prior knowledge consistency constraint (ADA-GRMFC). Based on known DTIs, 
drug chemical structures and target sequences, ADA-GRMFC at first constructs a DTI 
matrix, a drug similarity matrix and a target similarity matrix. Then DTI prediction is 
modeled as the non-negative factorization of the DTI matrix with graph dual regulari-
zation terms and a prior knowledge consistency constraint. The graph dual regulariza-
tion terms are used to integrate the information from the drug similarity matrix and 
the target similarity matrix, and the prior knowledge consistency constraint is used to 
ensure the matrix decomposition result should be consistent with the prior knowledge 
of known DTIs. Finally, an alternating direction algorithm is used to solve the matrix 
factorization. Furthermore, we prove that the algorithm can converge to a stationary 
point. Extensive experimental results of 10-fold cross-validation show that ADA-GRMFC 
has better performance than other state-of-the-art methods. In the case study, ADA-
GRMFC is also used to predict the targets interacting with the drug olanzapine, and all 
of the 10 highest-scoring targets have been accurately predicted. In predicting drug 
interactions with target estrogen receptors alpha, 17 of the 20 highest-scoring drugs 
have been validated.

Keywords:  Graph regularized matrix factorization, Prior knowledge consistency 
constraint, Drug–target interaction prediction

*Correspondence:   
xieminzhu@hunnu.edu.cn

1 Key Laboratory of Computing 
and Stochastic Mathematics 
(LCSM) (Ministry of Education), 
School of Mathematics 
and Statistics, Hunan Normal 
University, Changsha 410081, 
China
2 College of Information Science 
and Engineering, Hunan Normal 
University, Changsha 410081, 
China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-05119-6&domain=pdf


Page 2 of 20Zhang and Xie ﻿BMC Bioinformatics          (2022) 23:564 

Background
According to the DrugBank database, there are over 500,000 drugs for different dis-
eases. However, there are still many diseases for which we have no effective drugs, 
and there is a long way for drug discovery and drug repurposing. The process of drug 
discovery and drug repurposing takes some important steps such as finding valid tar-
get proteins and discovering proper chemical compounds to interact with the targets 
(i.e. identifying drug–target interactions or binding affinity between drugs and pro-
teins) [1]. Determining drug–target interactions (DTIs) via wet experiments is both 
time-consuming and expensive [2, 3]. To increase the probabilities of discovering new 
drugs or new applications of approved drugs, accurate computational methods to 
predict DTI are in urgent need to choose a small number of compounds for the wet 
experiments.

Based on the crystal structure of the target binding site, Cheng et al. [4] constructed 
maximal affinity model using docking simulations and calculated the maximal affinity 
values associated with the drug. Campillos et al. [5] used side-effect similarity of drugs 
to infer the probability of two drug sharing a target. The above two methods could 
not predict DTIs for targets without known crystal structure or drugs without known 
side-effects.

To effectively predict DTIs in large scale, a lot of computation models have been 
introduced. For example, Yamanishi et al. [6] computed drug chemical structure simi-
larities, amino acid sequence similarities of target proteins, and proposed a bipar-
tite graph learning method to predict DTIs by eigenvalue decomposition based on 
and known drug–target interactions. Based on the same drug structure similarities, 
sequence similarities of proteins and known drug–target interactions, Bleakley and 
Yamanishi [7] proposed bipartite local models (BLM) to predict target proteins for 
a given drug, and the drugs targeting a given protein. Laarhoven et  al. [8] proposed 
Gaussian interaction profile (GIP) kernel method to calculate the similarities between 
targets (and drugs), and regularized least squares (RLS) was used to predict unknown 
DTIs. The Kronecker RLS model [9] was proposed based on RLS. However, these meth-
ods can not predict DTIs for the drugs or targets if they have no known interactions. 
In order to compensate the lack of interaction information, based on GIP, Laarhoven 
and Marchiori [10] proposed a weighted nearest neighbor method to predict DTIs. Mei 
et  al. [11] derived training data from neighbors of new drug (target) candidates, and 
proposed BLM-NII method by integrating neighbor-based interaction-profile inferring 
into BLM for DTI predictions.

Instead of utilizing the attributes of drug chemical structure and sequence of target 
proteins separately, more and more methods integrated multiple features and then built 
classifiers to make prediction. Wang and Zeng [12] transformed the DTI prediction 
problem into a two-layer graphical model, used restricted Boltzmann machine to pre-
dict diverse types of DTIs, such as direct and indirect interactions. Based on multiple 
information, random walk with restarts (RWR) was used for DTIs feature extraction on 
positive-unlabeled learning method [13] and DTINet method [14]. In order to predict 
large scale DTIs, convolutional neural network (CNN) was applied to to extract drug 
and target features information [15–18]. FCS [19] and KGE_NFM [20] were proposed to 
obtain the low-rank representations for information of multi-omics in DTI prediction. 
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Other information fusion methods including negative sample screening framework [21], 
SITAR framework [22] and multiple kernels learning [23, 24] were successively pro-
posed. However, the computation complexity of large scale similarity matrices is high.

The known DTIs are usually represented by a drug–target interaction matrix, and 
matrix factorization method has been widely used in DTI prediction. Matrix factoriza-
tion is a embedding model that is used to decompose interaction matrix into two feature 
matrices of low ranks which represents the interactions between drugs and targets as the 
product of feature matrices. For example, Gönen [25] proposed a kernelized Bayesian 
matrix factorization with twin kernels method to predict DTIs. The twin kernel matrices 
were constructed by chemical similarity function of drug compounds and genomic simi-
larity function of target proteins. Combined logistic matrix decomposition with neigh-
borhood regularization [26] and a variational Bayesian multiple kernel logistic matrix 
factorization method [27] were proposed to infer interactions. MSCMF [28], GRMF 
[29], L2,1-GRMF [30], GRGMF [31], HCNMF [32], CHNMF [33] and SRCMF [34] were 
proposed by means of graph regularization. However, their performances are still not 
satisfying due to the lost information of these decompose strategies.

To implement matrix factorization, the above methods used either the alternating 
least squares algorithm [35] or the multiplicative update algorithm [36]. However, 
there are other efficient algorithms to implement matrix factorization. Hoyer [37] 
introduced a sparseness measure, and proposed a projected gradient descent algo-
rithm for non-negative matrix factorization with sparseness constraints. Lin [38] pro-
posed an improved projected gradient method for NMF with bound constrains. It has 
not been proved that the alternating least squares algorithm and the multiplicative 
update algorithm converge to a stationary point when convergence does occur [39]. 
Due to the use of a simple geometric rule for the step size, gradient descent meth-
ods are very sensitive to the initialization [40] and often produce a poor factorization. 
To overcome the limitations of the above methods, the alternating direction method 
(ADM) has attracted attention. To obtain a higher-quality matrix factorization with 
less computing time, Zhang [39] extended the alternating direction method (ADM) 
to solve NMF. Based on the above algorithm, Xu et al. [41] devised an improved alter-
nating direction algorithm (ADA) to solve the non-negative matrix factorization-and-
completion problem.

The high-dimensional data are in fact sampled from a nonlinear low-dimensional 
manifold embedded in the high-dimensional space, and according to [42], the model 
learning performance can be greatly improved if the intrinsic geometrical structure of 
the manifold have been taken into account. Shang et al. [43] showed that a graph dual 
regularization helps NMF improve clustering performance since the graph dual regulari-
zation considers the underlying geometric structures of both the data manifold and the 
feature manifold. In this paper, in order to predict DTIs more accurately and quickly, we 
propose an Alternating Direction Algorithm to solve Graph Regularized non-negative 
Matrix Factorization with prior knowledge consistency constraint (ADA-GRMFC). The 
prior knowledge consistency constraint aims to ensure that the decomposition result is 
consistent with the prior knowledge of known DTIs. The alternating direction algorithm 
ensures that ADA-GRMFC can converge to KKT point.
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Extensive experimental results show that ADA-GRMFC has better performance than 
other state-of-the-art methods. In case studies involving the drug olanzapine and the 
target estrogen receptor alpha, all the 10 highest-scoring targets predicted to interact 
with olanzapine, and 17 of the 20 highest-scoring drugs predicted to interact with estro-
gen receptor alpha have been validated by wet experiments. The case studies show that, 
for drugs that do not have any known target proteins and for proteins that are so far not 
approved as drug targets, ADA-GRMFC also has good prediction performance.

Materials
The experimental data include known drug–target interactions, drug chemical struc-
tures and target protein sequences. They were from public databases BRENDA [44], 
KEGG BRITE [45], SuperTarget [46] and DrugBank [47] and were downloaded from the 
website: http://​web.​kuicr.​kyoto-u.​ac.​jp/​supp/​yoshi/​drugt​arget/.

The target proteins have the following four types: nuclear receptors (NR), G protein-
coupled receptors (GPCR), ion channels (IC) and enzymes (E). Accordingly, the bench-
mark known drug–target interactions are divided into four datasets NR, GPCR, IC and 
E. The sizes of the four datasets are different. In the NR dataset, there are 90 known 
interactions between 54 drugs and 26 nuclear receptors; in the GPCR dataset, there are 
635 known interactions between 223 drugs and 95 G protein-coupled receptors; in the 
IC dataset, there are 1476 known interactions between 210 drugs and 204 ion chan-
nels; and in the E dataset, there are 2926 known interactions between 445 drugs and 664 
enzymes. The known interactions between n drugs and m proteins are recorded by an 
n×m DTI matrix Z. If the ith drug is approved to target the jth protein, Zi,j = 1 ; other-
wise Zi,j = 0 . The information of the four datasets are shown in Table 1.

The structural similarities between drugs were calculated using SIMCOMP [48] 
according to the size of the common substructures between two drugs.

An n× n matrix Sd is used to record the similarity information between n drugs. The 
sequence similarity of the target proteins used the normalized version of the Smith-
Waterman score [49]. Let p1 and p2 represent two proteins and SW(.,  .) be the original 
Smith-Waterman alignment score. The Smith-Waterman score of the normalized ver-
sion of p1 and p2 is s(p1, p2) = SW (p1,p2)√

SW (p1,p1)
√

SW (p2,p2)
 . An m×m matrix St is used to 

store the similarity information between m target proteins.

Methods
After construction of the DTI matrix Z, the drug similarity matrix Sd and a target sim-
ilarity matrix St , DTI prediction is transformed into non-negative factorization of the 
DTI matrix with graph dual regularization terms and a prior knowledge consistency 

Table 1  The information of the benchmark datasets

Datasets NR GPCR IC E

Interactions 90 635 1476 2926

Drugs 54 223 210 445

Targets 26 95 204 664

Sparseness (%) 93.59 97.00 96.55 99.01

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.
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constraint. The graph dual regularization terms are used to integrate the information 
from the drug similarity matrix and the target similarity matrix, in order to take the 
intrinsic geometrical structures of the related manifolds into account. Finally, an alter-
nating direction algorithm is used to solve the matrix factorization. Furthermore, we 
prove the convergence of the algorithm.

Non‑negative matrix factorization

In order to obtain low-dimensional feature representations of drugs and targets in the 
drug–target interaction space, factorization of the DTI matrix is widely adopted. The 
general form of the matrix factorization is as follows:

where X and Y are the latent feature matrices of drugs and targets respectively, 
X ∈ Rn×k ,Y ∈ Rm×k , and k is the rank of feature vectors of drugs and targets 
( k ≪ min(m, n)).

To improve interpretability, the non-negativity constraint of X and Y is usually added. 
The optimization model of non-negative matrix factorization (NMF) is as follows:

Graph regularized non‑negative matrix factorization

NMF aims to well approximate the DTI matrix by finding two low rank matrices, but fail 
to consider the geometric information in the original data. To integrate the geometric 
information, Cai et al. [50] proposed graph regularized non-negative matrix factoriza-
tion (GNMF) which introduces a graph regularization item. The cost function of GNMF 
is as follows:

where Tr is the trace of a matrix, � is regularization parameter, W is the weight matrix 
representing a neighbor graph of the data points, and D is a diagonal matrix such that 
Dii = l Wil . The matrix D −W  is called graph Laplacian and denoted by L in the fol-
lowing. Furthermore, considering the geometric structure of data manifold and feature 
manifold, Shang et al. [43] proposed graph dual regularization non-negative matrix fac-
torization (GDNMF), whose cost function is:

(1)Z ≈ XYT ,

(2)min
∥∥Z − XYT

∥∥2
F

s.t. X ≥ 0,Y ≥ 0.

(3)
Ogr =

1

2

∥∥∥Z − XYT
∥∥∥
2

F
+ �Tr(YT (YT (D −W ))Y )

s.t. X ≥ 0,Y ≥ 0,

(4)
Ogd = 1

2

∥∥∥Z − XYT
∥∥∥
2

F
+ �yTr(Y

T (YTLyY )

+ �xTr(X
T (XTLxX)

s.t. X ≥ 0,Y ≥ 0.
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From the similarity matrices Sd and St , we could obtain the geometric information of 
drugs and targets. First we construct two p-nearest neighbor graphs Nd and Nt of drugs 
and targets, respectively.

For two drugs di and dj , the weight of the edge between vertices i and j in the p-nearest 
neighbor graph Nd is defined as follows.

where Np(i) and Np(j) are the sets of p most similar drugs of drugs di and dj according to 
Sd , respectively. Nd is used to make the drug similarity matrix Sd sparse as follows.

Ŝd is used as the weight matrix representing the drug neighbor graph. The graph Lapla-
cian of Ŝd is Ld = Dd − Ŝd , where Dd is a diagonal degree matrix with Dd

ii =
∑
r
Ŝdir.

The same processing is performed on the target similarity matrix St and we calculated out 
Ŝt the weight matrix representing the target neighbor graph as follows.

The graph Laplacian of Ŝt is Lt = Dt − Ŝt , where Dt is diagonal degree matrix, 
Dt
jj =

∑
q
Ŝtjq.

Since the normalized graph Laplacian usually performs better in many actual applica-
tions, we adopted the following normalized graph Laplacian forms of Ld and Lt.

The graph dual regularization non-negative matrix factorization (GDNMF) for DTI pre-
diction problem is formulated as follows.

where �d and �t are regularization parameters.

Graph dual regularized non‑negative matrix factorization with prior knowledge constraint 

for DTI prediction

To ensure the matrix decomposition result is consistent with the prior knowledge of known 
DTIs, we introduce a Prior knowledge Constraint in GDNMF and formulate the DTI pre-
diction problem as the following optimization problem (abbreviated as GRMFC).

(5)Nd
ij =





1, j ∈ Np(i) and i ∈ Np(j)
0, j /∈ Np(i) and i /∈ Np(j)
0.5, otherwise,

(6)Ŝdij = Nd
ij S

d
ij ,∀i, j.

(7)Ŝtij = Nt
ijS

t
ij ,∀i, j.

(8)L̃d =
(
Dd

)−1/2
Ld

(
Dd

)−1/2
,

(9)L̃t =
(
Dt

)−1/2
Lt

(
Dt

)−1/2
.

(10)
min

(X ,Y ,Z)

1

2

∥∥∥Z − XYT
∥∥∥
2

F
+ �dTr(X

T L̃dX)

+ �tTr(Y
T L̃tY ).

s.t. X ≥ 0,Y ≥ 0,
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where � indexes the known drug–target interactions, i.e. the elements whose values are 
1 in Z. P�(S) returns a copy of S that zeros out the elements whose indices are not in � , 
which is defined as follows.

Since the elements whose values are 1 in Z represent the known validated drug–
target interactions, and we introduce the prior knowledge consistency constraint 
P�(Z − XYT ) = 0 to ensure that the matrix fraction XYT remains the known DTIs and 
does not lose the prior knowledge.

GRMFC is a non-convex optimization problem, and it is difficult to obtain its accu-
rate solution. Inspired by the iteration algorithm in [41], we used an adapted alternating 
direction algorithm to obtain a local optimal solution. The alternating direction algorithm 
(ADA) is an iteration algorithm that alternatively updates X and Y. In order to use ADA to 
solve GRMFC efficiently, we introduce auxiliary matrices M, U and V, and transform (11) 
into the following equivalent form.

where U ∈ Rn×k , V ∈ Rk×m . The auxiliary matrix M is regarded as the predicted drug–
target interaction matrix.

The augmented Lagrangian of (12) is:

where � and � are Lagrangian multipliers, � ∈ Rn×k , � ∈ Rk×m , and α,β > 0 are pen-
alty parameters.

(11)

min
(X ,Y ,Z)

1

2

∥∥∥Z − XYT
∥∥∥
2

F
+ �dTr(X

T L̃dX)

+ �tTr(Y
T L̃tY ).

s.t. X ≥ 0,Y ≥ 0,

P�(Z − XYT ) = 0,

P�(S)ij =
{
Sij , (i, j) ∈ �,
0, (i, j) /∈ �.

(12)

min
(U ,V ,X ,Y ,M)

1

2

∥∥∥M − XYT
∥∥∥
2

F
+ �dTr(X

T L̃dX)

+ �tTr(Y
T L̃tY ).

s.t. X = U ,YT = V ,

U ≥ 0,V ≥ 0,

P�(Z −M) = 0,

(13)

L (X ,Y ,M,U ,V ,�,�)

= 1

2

∥∥∥M − XYT
∥∥∥
2

F
+ �dTr(X

T L̃dX)

+ �tTr(Y
T L̃tY )+� • (X − U)

+� • (YT − V )+ α

2
�X −U�2F

+ β

2

∥∥∥YT − V
∥∥∥
2

F
,
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The alternating direction algorithm successively updates the values of matrices X, Y, M, U 
and V one at a time, such that L reaches the minimum with respect to the updated matrix 
while the other matrices take their most recent values. The updating rules are as follows.

In closed form, the updating rules are as follows.

where (P+(S))ij = max{Sij , 0} , and γ is a step length parameter which is set as 1.618 in 
the following experiments according to [41].

The iteration process will terminated when the changes of M smaller than a given 
smaller threshold. The pseudocode of the algorithm (ADA-GRMFC) is shown in 
Algorithm  1. The proof of convergence of ADA-GRMFC is shown in Additional 
file 1: Appendix.

Xi+1 = arg min
X

L (X ,Yi,Mi,Ui,Vi,�i,�i),

Yi+1 = arg min
Y

L (Xi+1,Y ,Mi,Ui,Vi,�i,�i),

Mi+1 = arg min
P�(Z−M)=0

L (Xi+1,Yi+1,M,Ui,Vi,�i,�i),

Ui+1 = arg min
U≥0

L (Xi+1,Yi+1,Mi+1,U ,Vi,�i,�i),

Vi+1 = arg min
V≥0

L (Xi+1,Yi+1,Mi+1,Ui+1,V ,�i,�i),

�i+1 = �i + γα(Xi+1 − Ui+1),

�i+1 = �i + γβ(Yi+1 − Vi+1).

(14)

Xi+1 = (MiYi − �dL̃dX + αUi −�i)

(YT
i Yi + αI)−1,

Yi+1 = (MT
i Xi+1 − �tL̃tY + βVi −�i)

(XT
i+1Xi+1 + βI)−1,

Mi+1 = Xi+1Y
T
i+1 +P�(M − Xi+1Y

T
i+1),

Ui+1 = P+(Xi+1 +�i/α),

Vi+1 = P+(Yi+1 +�i/β),

�i+1 = �i + γα(Xi+1 − Ui+1),

�i+1 = �i + γβ(Yi+1 − Vi+1),
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Experiments
The performance of ADA-GRMFC has been tested in the following three aspects. 
First, ADA-GRMFC was compared with other state-of-the-art algorithms using the 
four datasets: NR, GPCR, IC and E. Second, we analyzed the effect of graph dual reg-
ularization terms on the prediction accuracy of ADA-GRMFC using ablation experi-
ments. Third, we tested ADA-GRMFC using case studies.

To compare performances of DTI prediction algorithms, 5 repetitions of 10-fold 
cross-validation were performed. The final test results were the averages of the 5 rep-
etitions of 10-fold cross-validation. The cross-validation experiments are conducted 
under the following two scenarios [9]. 

1.	 CVd : The drugs are divided in ten subsets (folds), each fold is selected in turn as the 
test dataset and the other remained 9 folds are used as the training dataset. If the ith 
drug is in the test dataset, the elements in the ith row of Z are all set 0, which means 
the known interactions with tested drugs are removed from the input DTI matrix. It 
aims to evaluate the targeted protein prediction performance for the drugs without 
any known interactive targets.

2.	 CVt : The targets are divided in ten subsets (folds), each fold is selected in turn as the 
test dataset and the other remained 9 folds are used as the training dataset. If the 
jth target in the test dataset, the elements in the jth column of Z are all set 0, which 
means the known interactions with tested targets are removed from the input DTI 
matrix. It aims to evaluate the targeting drug prediction performance for the targets 
without any known interactive drugs.

The area under receiver operating characteristic curve (AUC) and area under the pre-
cision-recall curve (AUPR) are used as performance evaluation metrics in the follow-
ing experiments.

Comparison with state‑of‑the‑art methods

To demonstrate the effectiveness of ADA-GRMFC in predicting DTIs, we compared 
ADA-GRMFC with the following seven methods, namely BLM-NII [11], WKNKN 
[10], RLS-WNN [8], GRMF [29], WGRMF, CMF [28], SRCMF [34], where WGRMF is 
a weighted form of GRMF.

Parameter settings

For BLM-NII, the combination weight α = 0.5 . For WKNKN, the parameters K = 5 , 
η = 0.7 . According to the original literature of GRMF, WGRMF, CMF and SRCMF, 
some parameters are automated chosen using grid search [51] based on the AUPR 
value. Based on a previous research [29], rank k of the matrices X and Y was selected 
from {50, 100} . For GRMF, WGRMF, CMF and SRCMF, the regularization parameter 
�l was selected from {2−2, 2−1, 20, 21} . For GRMF, WGRMF and ADA-GRMFC, �d and 
�t were selected from {0, 10−4, 10−3, 10−2, 10−1} . For CMF and SRCMF, �d and �t were 
selected from { 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25}.
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In terms of ADA-GRMFC, the optimal parameters combination of α , β and γ are 
different under different experiment scenario, which makes the parameter settings 
more complicated. When tuning the parameter α , we set other parameters as their 
optimal values. The same settings were applied to β and γ . Figures 1, 2 and 3 in the 
appendix file showed the impact of the parameter α , β and γ on AUC and AUPR, 
respectively. When the parameters change, the performances of ADA-GRMFC varied 
more significantly on NR datasets and GPCR datasets than on IC datasets and E data-
sets. The results show that the best performance was achieved when α = 0.5 , β = 0.01 
and γ = 1.618 . Thus, in the following experiments, for ADA-GRMFC, α = 0.5 , 
β = 0.01 , γ = 1.618 . The parameters ǫ = 10−6.

Prediction results

Under the CVd scenario, ADA-GRMFC performs better than other methods in terms 
of AUC and AUPR on NR, IC, and E datasets. The AUC values of ADA-GRMFC are 
0.860748, 0.798762, and 0.834382 on NR, IC, and E datasets, respectively. The AUPR 
values of ADA-GRMFC are 0.574956, 0.374033, and 0.39878 on NR, IC, and E datasets, 
respectively. On the GPCR dataset, WGRMF achieve the highest AUC and AUPR val-
ues, which are 0.868548 and 0.410652, respectively. The AUC and AUPR values of ADA-
GRMFC are higher than those of other algorithms except WGRMF. The AUC and AUPR 
values of the different algorithms on the four datasets are shown in Tables  2 and 3, 
respectively. The AUC and AUPR histograms with error bars of different algorithms are 
shown in Figure 1a, b, respectively. The receiver operating characteristic (ROC) curves 
and the precision-recall (PR) curves of different methods on the four datasets are shown 
in Figs. 2 and 3, respectively.

Under the CVt scenario, the AUC and AUPR values of ADA-GRMFC are higher than 
the other methods on the four datasets. The AUC values of ADA-GRMFC are 0.799721, 
0.896419, 0.948086, and 0.939765 on NR, GPCR, IC, and E datasets, respectively. The 
AUPR values of ADA-GRMFC on NR, GPCR, IC, and E datasets are 0.454528, 0.598742, 
0.812833, and 0.806995, respectively. The AUC values and AUPR values of different 
algorithms on the four datasets are shown in Tables 4 and 5, respectively. The AUC and 
AUPR histograms with error bars of different algorithms are shown in Fig. 4a, b, respec-
tively. ROC and PR curves of different algorithms are shown in Figs. 5 and 6 on the four 
datasets, respectively. 

Ablation experiments

Our model includes two graph dual regularization terms: a regularization term for drugs 
and regularization term for targets. To evaluate the impact of the graph dual regulariza-
tion terms on the performance of ADA-GRMFC, we conduct ablation experiments on 
the benchmark datasets.

In Tables 6, 7, 8 and 9, parameter �d and �t of ADA-GRMFC are chosen using grid 
search. ADA-GRMFC with �d = 0 means that the graph regularization term for drugs 
is not used. ADA-GRMFC with �t = 0 means that the graph regularization terms for 
targets is not used. When we use regularization terms for drugs and targets, ADA-
GRMFC has the highest prediction performance in CVd and CVt . In CVd , when 
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�d = 0 , the values of AUC and AUPR of ADA-GRMFC are significantly decreased. 
The AUC values have decreased by 23%, 19%, 44%, 36% on NR, GPCR, IC and E 
datasets, respectively. The AUPR values have decreased by 92%, 87%, 91%, 97% on 
NR, GPCR, IC and E datasets, respectively. Similarly, in CVt , if the graph regulariza-
tion terms for targets is not used, the performances of ADA-GRMFC is significantly 

Table 2  AUC values of different algorithms under CVd scenario

The maximum AUC on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

BLM-NII 0.856292 (0.0077) 0.836102 (0.0073) 0.756714 (0.0102) 0.815547 (0.0080)

WKNKN 0.806684 (0.0289) 0.810142 (0.0048) 0.706933 (0.0079) 0.766433 (0.0050)

RLS-WNN 0.821758 (0.0273) 0.839478 (0.0116) 0.743888 (0.0113) 0.762227 (0.0066)

GRMF 0.820413 (0.0185) 0.774848 (0.0082) 0.742022 (0.0080) 0.744108 (0.0240)

WGRMF 0.856979 (0.0135) 0.868548 (0.0065) 0.785357 (0.0070) 0.824591 (0.0071)

CMF 0.802526 (0.0109) 0.801118 (0.0069) 0.758156 (0.0144) 0.794486 (0.0109)

SRCMF 0.810242 (0.0227) 0.825318 (0.0093) 0.736402 (0.0329) 0.776464 (0.0214)

ADA-GRMFC 0.864387 (0.0153) 0.826039 (0.0119) 0.798762 (0.0158)  0.834382 (0.0082)

Table 3  AUPR values of different algorithms under CVd scenario

The maximum AUPR on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

BLM-NII 0.455027 (0.0395) 0.230746 (0.0118) 0.198357 (0.0091) 0.172086 (0.0068)

WKNKN 0.496622 (0.0366) 0.349695 (0.0096) 0.268694 (0.0113) 0.312078 (0.0121)

RLS-WNN 0.528022 (0.0294) 0.324815 (0.0149) 0.235889 (0.0176) 0.310967 (0.0232)

GRMF 0.496592 (0.0252) 0.349027 (0.0129) 0.339622 (0.0124) 0.339569 (0.0227)

WGRMF 0.545559 (0.0252) 0.410652 (0.0126) 0.351595 (0.0223) 0.397949 (0.0176)

CMF 0.505449 (0.0299) 0.282205 (0.0081) 0.356396 (0.0227) 0.358833 (0.0205)

SRCMF 0.481308 (0.0273) 0.394653 (0.0049) 0.306309 (0.0116) 0.367386 (0.0054)

ADA-GRMFC 0.575141 (0.0388) 0.381322 (0.0130) 0.374033 (0.0165) 0.39878(0.0112)

(a) (b)

Fig. 1  AUC values and AUPR values of the methods on the four datasets under CVd . a Histogram with error 
bars of AUC. b Histogram with error bars of AUPR
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decreased too. When �t = 0 , the AUC values have decreased by 34%, 33%, 43%, 45% 
on NR, GPCR, IC and E datasets, respectively. The AUPR values have decreased by 
77%, 91%, 95%, 98% on NR, GPCR, IC and E datasets, respectively. These results show 
that regularization terms for drugs and targets contribute the improvement of DTI 
prediction performance of ADA-GRMFC significantly.

Case studies

To further evaluate the ability of ADA-GRMFC to find new targets for a drug and new 
drugs for a target in practice, two case studies concerning the drug olanzapine and the 
target estrogen receptor alpha were conducted.

In the first case study, we predicted targets that interact with the drug olanzapine on 
the G protein-coupled receptors (GPCR) dataset using ADA-GRMFC. Olanzapine is an 
antipsychotic drug which could target many receptors, and it was recently found that 
olanzapine could be an attractive antiemetic drug [52]. The known interactions of olan-
zapine with targets were deleted from the the training dataset, and the candidate targets 
of olanzapine predicted by ADA-GRMFC were prioritized according to the prediction 
scores. At last, the top 10 highest-scoring predicted targets were picked out to be vali-
dated using the databases KEGG [53] and DrugBank [54]. The results showed that all 

Fig. 2  ROC curves for different methods are plotted together under CVd on NR dataset, GPCR dataset, IC 
dataset, E dataset, respectively
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10 targets were correctly predicted. The detailed results of the predictions are shown in 
Table 10.

In the second case study, we predicted candidate drugs for the target estrogen 
receptor alpha (ERα ) on the NR dataset and aimed to assess the ability of ADA-
GRMFC to predict candidate drugs for targets with no known targeting drugs. ERα 

Fig. 3  PR curves for different methods are plotted together under CVd on NR dataset, GPCR dataset, IC 
dataset, E dataset, respectively

Table 4  AUC values of different algorithms under CVt scenario

The maximum AUC on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

BLM-NII 0.795604 (0.0217) 0.856269 (0.0071) 0.930531 (0.0029) 0.917814 (0.0056)

WKNKN 0.700475 (0.0430) 0.835764 (0.0217) 0.922583 (0.0079) 0.916965 (0.0042)

RLS-WNN 0.763799 (0.0208) 0.884184 (0.0128) 0.941532 (0.0031) 0.926638 (0.0053)

GRMF 0.753382 (0.0293) 0.876011 (0.0063) 0.920496 (0.0060) 0.920224 (0.0074)

WGRMF 0.749512 (0.0384) 0.883883 (0.0083) 0.945641 (0.0024) 0.933971 (0.0161)

CMF 0.75651 (0.0520) 0.855621 (0.0164) 0.924479 (0.0051) 0.924598 (0.0161)

SRCMF 0.614843 (0.0333) 0.840992 (0.0127) 0.926765 (0.0049) 0.913015 (0.0082)

ADA-GRMFC 0.799721 (0.0154) 0.896419 (0.0245) 0.948086 (0.0038) 0.939765 (0.0070)
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is mainly expressed in reproductive tissues (uterus, ovaries), breast, kidney, bone, 
white adipose tissue and liver, and is over-expressed in more than half of breast can-
cers [55]. The known interactions of ERα with drugs were removed from the training 
dataset, and the candidate drugs of ERα predicted by ADA-GRMFC were prioritized 
according to the prediction scores. The top 20 highest-scoring predicted drugs were 
selected to be validated against the databases KEGG and DrugBank. Among the pre-
dicted 20 drugs, 17 drugs had evidences to target ERα . The detailed results of the case 
study are shown in Table 11.

Conclusion
The knowledge of interactions between drugs and targets could help to find the novel 
usage of drugs. In the paper, we propose a matrix factorization based method, ADA-
GRMFC, to predict interactions between drugs and targets. ADA-GRMFC uses graph 
dual regularization terms to capture structural information from the drug similar-
ity matrix and the target similarity matrix. At the same time, the prior knowledge 

Table 5  AUPR values of different algorithms under CVt scenario

The maximum AUPR on each dataset is shown in bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

BLM-NII 0.40149 (0.0618) 0.439848 (0.0259) 0.640928 (0.0191) 0.589524 (0.0069)

WKNKN 0.421919 (0.0382) 0.536317 (0.0281) 0.741412 (0.0131) 0.720789 (0.0100)

RLS-WNN 0.437335 (0.0206) 0.537046 (0.0235) 0.760776 (0.0169) 0.674211 (0.0266)

GRMF 0.422442 (0.0486) 0.531487 (0.0175) 0.745256 (0.0091) 0.760562 (0.0100)

WGRMF 0.417925 (0.0447) 0.567606 (0.0201) 0.800896 (0.0036) 0.799641 (0.0185)

CMF 0.415443 (0.0407) 0.432831 (0.0596) 0.752132 (0.0154) 0.731174 (0.0140)

SRCMF 0.378573 (0.0318) 0.589037 (0.0183) 0.774355 (0.0117) 0.746004 (0.0198)

ADA-GRMFC 0.456657 (0.0393) 0.598742 (0.0439) 0.812833 (0.0108) 0.806995 (0.0098)

Fig.4  AUC values and AUPR values of the methods on the four datasets under CVt . a Histogram with error 
bars of AUC. b Histogram with error bars of AUPR
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consistency constraint is used to ensure the matrix decomposition result is consistent 
with the known DTIs. Finally, an alternating direction algorithm is used to solve the 
matrix factorization with constraints. Extensive experiments show that ADA-GRMFC 
outperforms the state-of-the-art methods in predicting DTIs.

The reasons for the superior performance of ADA-GRMFC are as follows. First, unlike 
traditional matrix factorization algorithms, the prior knowledge consistency constraint 
ensures that the matrix decomposition result is consistent with the prior knowledge of 
known DTIs. Second, the graph dual Laplace regular terms not only overcome overfit-
ting of model, but also obtain underlying structural information about the data. Finally, 
we use alternating direction algorithm with fast convergence to solve the constrained 
problem.

However, ADA-GRMFC also has limitations. The lack of known drug–target asso-
ciations may affect the performance of ADA-GRMFC, and including more infor-
mation related with drugs and targets would help to improve the prediction ability. 
The values of the parameters of ADA-GRMFC are set by grid search which is time 
consuming, and appropriate methods to choose optimal parameters need further 
research.

Fig. 5  ROC curves for different methods are plotted together under CVt on NR dataset, GPCR dataset, IC 
dataset, E dataset, respectively
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Fig. 6  PR curves for different methods are plotted together under CVt on NR dataset, GPCR dataset, IC 
dataset, E dataset, respectively

Table 6  AUC results for ADA-GRMFC variants under CVd

The maximum AUC result in each column is bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

ADA-GRMFC 0.864387 (0.0153) 0.826039 (0.0119) 0.798762 (0.0158) 0.834382 (0.0082)

ADA-GRMFC(�d = 0) 0.668567 (0.0040) 0.668567 (0.0040) 0.450439 (0.0055) 0.534526 (0.0039)

ADA-GRMFC(�t = 0) 0.860748 (0.0138) 0.807354(0.0090) 0.756596 (0.0028) 0.785171 (0.0139)

Table 7  AUPR results for ADA-GRMFC variants under CVd

The maximum AUPR result in each column is bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

ADA-GRMFC 0.575141 (0.0388) 0.381322 (0.0130) 0.374033 (0.0165) 0.39878 (0.0112)

ADA-GRMFC(�d = 0) 0.0487678 (0.0007) 0.0496542 (0.0007) 0.0346745 (0.0006) 0.0110594 (0.0001)

ADA-GRMFC(�t = 0) 0.574956 (0.0200) 0.370817 (0.0058) 0.35606 (0.0122) 0.379671 (0.0168)

Table 8  AUC results for ADA-GRMFC variants under CVt

The maximum AUC result in each column is bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

ADA-GRMFC 0.799721 (0.0154) 0.896419 (0.0245) 0.948086 (0.0038) 0.939765 (0.0070)

ADA-GRMFC(�d = 0) 0.71424 (0.0342) 0.849599 (0.0186) 0.94421 (0.0013) 0.926141 (0.0074251)

ADA-GRMFC(�t = 0) 0.528071(0.0033) 0.604348 (0.0584) 0.542624 (0.0209) 0.514737 (0.0112512)
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Table 9  AUPR results for ADA-GRMFC variants under CVt

The maximum AUPR result in each column is bold. Standard deviation is shown in parentheses

Method NR GPCR IC E

ADA-GRMFC 0.456657 (0.0393) 0.598742 (0.0439) 0.812833 (0.0108) 0.806995 (0.0098)

ADA-GRMFC(�d = 0) 0.454528 (0.0240) 0.558464 (0.0287) 0.799589 (0.0087) 0.780136 (0.0157)

ADA-GRMFC(�t = 0) 0.105986 (0.0102) 0.0540433 (0.0101) 0.0423862 (0.0026) 0.0114845 (0.0011)

Table 10  Top 10 predicted targets of olanzapine by ADA-GRMFC on the NR dataset

Known interactions are in bold

Rank Name of targets ID Evidence

1 5-hydroxytryptamine receptor 2A hsa3356 KEGG &DrugBank

2 adrenoceptor alpha 1A hsa148 KEGG &DrugBank

3 5-hydroxytryptamine receptor 2C hsa3358 KEGG &DrugBank

4 adrenoceptor alpha 2A hsa150 KEGG

5 adrenoceptor alpha 1D hsa146 KEGG

6 dopamine receptor D2 hsa1813 KEGG &DrugBank

7 adrenoceptor alpha 2B hsa151 KEGG

8 adrenoceptor alpha 1B hsa147 KEGG &DrugBank

9 5-hydroxytryptamine receptor 1D hsa3352 DrugBank

10 5-hydroxytryptamine receptor 1B hsa3351 DrugBank

Table 11  Top 20 predicted drugs targeting estrogen receptor alpha by ADA-GRMFC on the GPCR 
dataset

Known interactions are in bold

Rank Name of drugs ID Evidence

1 Diethylstilbestrol D00577 KEGG &DrugBank

2 Estramustine D04066 KEGG &DrugBank

3 Estradiol D00105 KEGG &DrugBank

4 Fulvestrant D01161 KEGG &DrugBank

5 Raloxifene hydrochloride D02217 KEGG &DrugBank

6 Desogestrel D02367 KEGG &DrugBank

7 Levonorgestrel D00950 KEGG &DrugBank

8 Norgestrel D00954 KEGG

9 Ethynodiol diacetate D01294 KEGG &DrugBank

10 Progesterone D00066 KEGG &DrugBank

11 Ethinyl estradiol D00554 KEGG &DrugBank

12 Estrone D00067 KEGG &DrugBank

13 Estrone sodium sulfate D00312 KEGG

14 Dienestrol D00898 KEGG &DrugBank

15 Clomiphene citrate D00962 KEGG &DrugBank

16 Fluoxymesterone D00327 KEGG &DrugBank

17 Norethindrone D00182 unknown

18 Mifepristone D00585 unknown

19 Medroxyprogesterone acetate D00951 DrugBank

20 Dydrogesterone D01217 unknown
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