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Abstract 

Background: The differential network (DN) analysis identifies changes in measures of 
association among genes under two or more experimental conditions. In this article, 
we introduce a pseudo-value regression approach for network analysis (PRANA). This is 
a novel method of differential network analysis that also adjusts for additional clinical 
covariates. We start from mutual information criteria, followed by pseudo-value calcula-
tions, which are then entered into a robust regression model.

Results: This article assesses the model performances of PRANA in a multivariable 
setting, followed by a comparison to dnapath and DINGO in both univariable and 
multivariable settings through variety of simulations. Performance in terms of precision, 
recall, and F1 score of differentially connected (DC) genes is assessed. By and large, 
PRANA outperformed dnapath and DINGO, neither of which is equipped to adjust 
for available covariates such as patient-age. Lastly, we employ PRANA in a real data 
application from the Gene Expression Omnibus database to identify DC genes that are 
associated with chronic obstructive pulmonary disease to demonstrate its utility.

Conclusion: To the best of our knowledge, this is the first attempt of utilizing a regres-
sion modeling for DN analysis by collective gene expression levels between two or 
more groups with the inclusion of additional clinical covariates. By and large, adjusting 
for available covariates improves accuracy of a DN analysis.

Keywords: Pseudo-value, Differential network analysis, Regression method, Gene 
regulatory network, RNA-seq data

Background
The rapid advancement of RNA-sequencing (RNA-seq) data from high-throughput 
sequencing technologies has provided clear advantages in gene expression studies. It 
has broadened our understanding of genetics and pathogenesis of human diseases [1, 
2]. Compared to microarrays, RNA-seq has a wider dynamic range, the ability to detect 
novel transcripts, and often results in higher sensitivity and specificity of detection of 
differential gene expression [3, 4]. With the increase of gene expression studies, the sta-
tistical methods to analyze these gene expression data have also accordingly adapted and 
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progressed. The regression modelling for RNA-seq differential expression (DE) analysis 
has been established to compare the number of DE genes under different biological or 
clinical states, including linear model based limma [5], negative binomial model based 
edgeR [6], or Poisson log-linear model approach [7]. The analysis of DE has a major limi-
tation in that it looks at one gene at a time, even though a set of genes are often involved 
in the same biological process [8, 9]. In contrast, the differential network (DN) analysis 
complements the DE analysis [10] by looking at genes collectively.

The DN analysis identifies changes in measures of association (i.e. network proper-
ties or topologies) of the networks across biological conditions, which makes it distinct 
from a single network analysis. Several groups have proposed statistical methods for DN 
analysis [11–14]. In particular, DINGO [11] and dnapath [14] have developed methods 
for RNA-seq data, to find differentially connected (DC) genes in subnetworks corre-
sponding to different pathways, between two groups of patients; e.g. ‘high-risk’ versus 
‘low-risk’ or ‘long-term survivors’ vs. ‘short-term survivors.’ While these methods are 
convenient to use and applicable, they do not consider other observed covariates that 
may be associated with gene expression.

For instance, a previous study has shown that the expression levels of oxidative stress-
associated genes were differentially expressed with smokers with chronic obstructive 
pulmonary disease (COPD) through gene set enrichment analysis using microarray data 
[15]. Let us suppose we want to carry out DN analysis on expression data that includes 
oxidative stress-associated genes and smoking status, which would be used as a group-
ing variable. In practice, clinicians would also want to include additional covariates such 
as patient history of cardiac arrhythmia [16] and lung carcinoma [17] to garner more 
information for better prognosis. However, there is no available direct regression mod-
eling for DN analysis regressing gene expression level between the smoking statuses with 
the inclusion of additional clinical covariates described above.

The pseudo-value approach was first developed from the leave-one-out jackknife sub-
sampling procedure, applied to a marginal quantity representing some aspect of a mar-
ginal distribution of the response variable. It was originally introduced by Andersen and 
his colleagues [18, 19] for multi-state survival models. Several studies [20, 21] purported 
that the pseudo-value regression has advantages that the pseudo-values derived from 
an asymptotically linear and unbiased estimator are approximately independent and 
identically distributed with the same conditional expectation. Ahn and Logan [22] and 
Ahn and Mendolia [23] showed that their pseudo-value approaches controlled the type I 
error while maintaining high power with clustered survival data. With these benefits, we 
propose a regression modeling method that regresses the jackknife pseudo-values [24] 
derived from a measure of connectivity of genes in a network to estimate the effects of 
predictors. Note that the grouping variable itself could also be included in the regression 
model along with additional clinical covariates while regressing the pseudo-values. We 
loosely refer to this as a “multivariate setting”, whereas in “univariate settings” only the 
group variable is utilized in a DN analysis.

Thus, in this paper, we introduce a Pseudo-value Regression Approach for Network 
Analysis (PRANA). This is a novel method of DN analysis that can adjust for additional 
covariates. We start from mutual information (MI) criteria, followed by pseudo-value 
calculations, which are then entered into a robust regression model. This article assesses 
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the model performances of our pseudo-value approach in a multivariable setting, fol-
lowed by a comparison to dnapath and DINGO in the univariable setting through sim-
ulations. Lastly, we employ our method in a real data application [25] from the Gene 
Expression Omnibus (GEO) database [26] to identify DC genes that are associated with 
COPD. All statistical analyses are performed in R version 4.0.2 (R Foundation for Statis-
tical Computing, Vienna, Austria).

Results
Simulation study

More details of the simulation setup are available in the “Materials” section below. We 
select p = 20, 50, 100 genes to test our pseudo-value approach in smaller to larger gene 
networks. For each gene network, five different sample sizes n = 40, 100, 200, 500, 1000 
are considered and in each setting, 1000 Monte Carlo replicates. We draw 1000 random 
samples first, then take the subsamples from this pool for a simulation with a smaller 
sample size to reduce computational burden. A random network is generated at each 
simulation replicate in which a layer of randomness is imposed to account for biological 
variability of the network structure. For additional details on the generation of simulated 
RNA-seq data, see the “Materials” section. Simulations are repeated to show the per-
formance of our method by altering the effect size from 5%, 10%, to 20% for simulation 
scenarios I and II.

Results are compared with the true parent network in order to compute the perfor-
mance measures described in the “Performance Measures” section. In the true network 
setting, a gene is considered truly DC between groups if it has at least one DC edge con-
nected to other genes. Tables 1 and 2 summarize simulation results in the multivariable 

Table 1 Scenario I simulation results of binary group variable in the multivariable robust regression 
model (continuous age and binary group) using pseudo-value approach with 1000 replicates

Random network is generated at each simulation replicate

p n Effect size

5% 10% 20%

Precision Recall F1 Precision Recall F1 Precision Recall F1

20 40 0.76 0.81 0.77 0.90 0.79 0.83 0.98 0.79 0.87

100 0.75 0.91 0.82 0.90 0.91 0.90 0.98 0.91 0.94

200 0.74 0.94 0.82 0.89 0.94 0.91 0.97 0.94 0.96

500 0.73 0.97 0.83 0.88 0.97 0.92 0.97 0.97 0.97

1000 0.73 0.98 0.83 0.88 0.98 0.92 0.97 0.98 0.97

50 40 0.95 0.65 0.77 0.98 0.65 0.78 1.00 0.64 0.77

100 0.95 0.77 0.85 0.98 0.77 0.86 1.00 0.77 0.86

200 0.96 0.85 0.90 0.99 0.85 0.91 1.00 0.85 0.91

500 0.95 0.93 0.94 0.99 0.92 0.95 1.00 0.92 0.96

1000 0.95 0.96 0.95 0.98 0.96 0.97 1.00 0.96 0.98

100 40 0.96 0.57 0.71 0.98 0.57 0.72 1.00 0.57 0.72

100 0.96 0.67 0.79 0.99 0.68 0.80 1.00 0.67 0.80

200 0.96 0.74 0.83 0.99 0.74 0.84 1.00 0.74 0.85

500 0.97 0.82 0.89 0.99 0.81 0.89 1.00 0.81 0.89

1000 0.97 0.90 0.93 0.99 0.89 0.94 1.00 0.89 0.94
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setting for scenarios I and II, respectively, when the continuous variable is added as a 
covariate with the binary group variable in the regression. Table 2 incorporates the effect 
of covariate when generating random networks, whereas Table 1 does not. For both sce-
narios, results show that the pseudo-value regression method generally yields a high 
precision and recall across all specifications of network size, sample size, and effect size. 
The pseudo-value regression method maintains a high precision while having an accept-
able recall, especially, when a smaller sample size is considered.

Tables 3 and 4 summarize simulation results for scenarios I and II, respectively, when 
only the binary group variable is included in the model for pseudo-value calculation. 
Thus, age dependent networks are simulated for Table 4 but not for Table 3. Two com-
peting univariable methods, dnapath and DINGO are included for these simulations.

Overall, a similar pattern is observed in the univariable setting; i.e., PRANA consist-
ently reaches a high precision and recall. The performance improves as n increases, as to 
be expected. It is noteworthy that PRANA outperforms dnapath in simulation when the 
sample size is relatively small regardless of the network size. Our method also shows a 
better recall value and F1-score than dnapath with small sample sizes ( n = 40, 100 ). As 
DINGO requires substantially large computational time, it was considered for the gene 
network with smaller sample sizes only. To be more specific, simulations with larger 
sample sizes ( n = 500, 1000 ) are stopped after 20 days for DINGO from the University 
of Florida Research Computing Linux server, HiPerGator 3.0 with 10  CPU cores and 
10 GB of RAM per node. See Table S1 in Additional file 1 for more details.

Table  5 presents results of scenario III, where age acts as a confounder. That is, an 
observed difference in connectivity may be due to a difference in the distribution of 
age in the two groups. Higher precision values from the multivariable pseudo-value 

Table 2 Scenario II simulation results of binary group variable in the multivariable robust regression 
model (continuous age and binary group) using pseudo-value approach with 1000 replicates

Random network is generated at each simulation replicate

p n Effect size

5% 10% 20%

Precision Recall F1 Precision Recall F1 Precision Recall F1

20 40 0.75 0.59 0.64 0.90 0.69 0.70 0.98 0.61 0.73

100 0.78 0.70 0.71 0.91 0.72 0.79 0.98 0.74 0.83

200 0.78 0.81 0.78 0.91 0.83 0.86 0.98 0.85 0.91

500 0.76 0.90 0.82 0.90 0.92 0.91 0.98 0.94 0.95

1000 0.75 0.94 0.83 0.89 0.95 0.92 0.97 0.96 0.97

50 40 0.95 0.56 0.70 0.98 0.56 0.71 1.00 0.57 0.72

100 0.95 0.65 0.77 0.98 0.66 0.78 1.00 0.68 0.80

200 0.96 0.75 0.84 0.99 0.75 0.85 1.00 0.77 0.87

500 0.96 0.88 0.92 0.99 0.87 0.92 1.00 0.89 0.94

1000 0.96 0.93 0.94 0.99 0.93 0.96 1.00 0.94 0.97

100 40 0.96 0.55 0.69 0.99 0.55 0.70 0.99 0.55 0.70

100 0.95 0.63 0.75 0.98 0.63 0.76 0.98 0.63 0.76

200 0.96 0.68 0.79 0.99 0.68 0.81 0.99 0.68 0.80

500 0.97 0.77 0.86 0.99 0.77 0.86 0.99 0.77 0.86

1000 0.97 0.87 0.92 0.99 0.86 0.92 0.99 0.86 0.92
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regression indicate that PRANA correctly identifies the DC genes, compared with dna-
path and DINGO, neither of which accounts for the effects of age. By and large, PRANA 
has higher precision than DINGO and higher recall than dnapath.

Table 3 Scenario I simulation results of binary group variable in the univariable robust regression 
model using pseudo-value approach with 1000 replicates

The network structure does not depend on age covariate. Random network is generated at each simulation replicate. 
Sample size n = (500, 1000) for gene size p = 100 were not included for DINGO due to heavy computational time. The 
best results are highlighted in boldface

p n Precision Recall F1

PRANA dnapath DINGO PRANA dnapath DINGO PRANA dnapath DINGO

20 40 0.90 0.95 0.87 0.81 0.64 0.78 0.84 0.76 0.82

100 0.90 0.93 0.87 0.90 0.88 0.79 0.84 0.90 0.82

200 0.89 0.91 0.87 0.94 0.94 0.76 0.91 0.92 0.81

500 0.88 0.89 – 0.97 0.98 – 0.92 0.93 –

1000 0.88 0.89 – 0.98 0.99 – 0.92 0.93 –

50 40 0.98 1.00 0.99 0.65 0.39 0.70 0.78 0.56 0.81
100 0.98 1.00 0.98 0.77 0.61 0.84 0.86 0.75 0.90
200 0.99 1.00 0.98 0.85 0.85 0.85 0.91 0.91 0.91
500 0.99 0.99 – 0.92 0.95 – 0.95 0.97 –

1000 0.98 0.99 – 0.96 0.98 – 0.97 0.98 –

100 40 0.98 1.00 0.98 0.57 0.27 0.69 0.72 0.42 0.85
100 0.98 1.00 0.99 0.68 0.32 0.75 0.80 0.48 0.85
200 0.99 1.00 0.98 0.74 0.62 0.82 0.84 0.77 0.89
500 0.99 1.00 – 0.81 0.88 – 0.89 0.93 –

1000 0.99 0.99 – 0.89 0.94 – 0.94 0.97 –

Table 4 Scenario II simulation results of binary group variable in the univariable robust regression 
model using pseudo-value approach with 1000 replicates

The network structure depends on age covariate. Random network is generated at each simulation replicate. Sample size 
n = (500, 1000) or gene size p = 100 were not included for DINGO due to heavy computational time. The best results are 
highlighted in boldface

p n Precision Recall F1

PRANA dnapath DINGO PRANA dnapath DINGO PRANA dnapath DINGO

20 40 0.90 0.97 0.89 0.59 0.38 0.63 0.69 0.53 0.72
100 0.91 0.97 0.88 0.72 0.66 0.75 0.79 0.77 0.80
200 0.91 0.96 0.89 0.83 0.83 0.73 0.86 0.88 0.79

500 0.90 0.93 – 0.93 0.94 – 0.91 0.93 –

1000 0.89 0.91 – 0.95 0.97 – 0.92 0.94 –

50 40 0.98 1.00 0.99 0.56 0.28 0.67 0.71 0.43 0.80
100 0.98 1.00 0.98 0.65 0.45 0.71 0.78 0.61 0.82
200 0.99 1.00 0.98 0.75 0.68 0.80 0.85 0.80 0.88
500 0.99 0.99 – 0.87 0.91 – 0.93 0.95 –

1000 0.99 0.99 – 0.94 0.97 – 0.96 0.98 –

100 40 0.99 1.00 0.55 0.55 0.21 0.77 0.70 0.34 0.63

100 0.98 1.00 0.55 0.63 0.27 0.75 0.76 0.42 0.63

200 0.99 1.00 0.55 0.68 0.46 0.77 0.80 0.62 0.63

500 0.99 1.00 – 0.77 0.82 – 0.86 0.90 –

1000 0.99 1.00 – 0.86 0.92 –ara> 0.92 0.96 –
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Application study

Analysis of COPDGene data

23 out of 28 COPD-related genes are predicted to be DC between current and non-
current smokers with PRANA while accounting for smoking pack years, age, gender, 
race, and FEV1. A complete list of DC genes found from the pseudo-value approach are 
CITED2, TESK2, AMZ1, DDX1, DMWD, MED13L, ZBTB38, EML4, HSPA4, ITGB8, 
TEPP, TNPO1, ARNTL, DTWD1, ADAMTSL3, THRA, SLMAP, DENND2D, STN1, 
SYN3, ASAP2, IER3, and MFHAS1.

We compared results of PRANA with dnapath [14] and DINGO [11]. With DINGO, 
a total of 19 out of 28 COPD-related genes were selected as DC genes between current 
and non-current smokers. A complete list of DC genes found in DINGO are the follow-
ing: ARNTL, DDX1, HSPA4, ITGB8, SLMAP, SYN3, ASAP2, IER3, MFHAS1, VGLL4, 
CITED2, TESK2, CCDC69, EML4, ADAMTSL3, DENND2D, AMZ1, RASEF, and 
ZBTB38. Lastly, 3 genes were found DC between current smoking groups with dnapath, 
namely DTWD1, EML4, and TEPP.

Of the 23 DC genes from PRANA, 5 genes are found exclusive to PRANA (DMWD, 
MED13L, TNPO1, THRA, and STN1). Notably, DMWD is linked to myotonic dystro-
phy, a rare genetic muscular disorder [27]. Thyroid hormone receptor alpha (THRA) is 
related to congenital hypothyroidism [28]. These findings about additional genes will 
facilitate harnessing of the possible mechanisms at work in COPD exacerbation.

Heat shock protein family A (Hsp70) member 4 (HSPA4) is associated with gastric 
ulcer [29]. Multifunctional ROCO family signaling regulator 1 (MFHAS1) is linked to 
soft tissue tumor and cell cycle [30]. HSPA4 and MFHAS1 are DC genes identified in 
both PRANA and DINGO. Echinoderm microtubule-associated protein-like 4 (EML4) 
is found in all three methods. It has been studied for its association with lung cancer [30, 
31]. A Venn diagram is provided to show the overlap between and among three methods 
(Fig. 4). In addition, a diagram is included to summarize the findings of this application 
study (Fig. 5).

Discussion
Simulations and real-data analysis have elucidated that PRANA is superior to existing 
alternatives and a practical tool, which includes covariates in the model. To the best of 
our knowledge, this is the first attempt to develop a regression modeling in DN analy-
sis. Our working objective is to propose a statistical method that determines whether 
a gene is significantly DC between groups with the covariate included in the model. In 
this paper, we have shown through simulations that PRANA reaches a consistently high 
degree of precision and recall to identify DC genes with varying simulation parameters 
such as network size, sample size, and effect size. We also analyzed a COPD-related gene 
expression data from the GEO database. When comparing results from our method to 
dnapath and DINGO, five COPD-related genes are additionally found DC between cur-
rent versus non-current smokers: DMWD, MED13L, TNPO1, THRA, and STN1.

There are a number of limitations to be highlighted in this study. We have used the 
absolute value of the differences between the two adjacency matrices as a proxy to 
determine the true DC genes. Certainly, this is a practical way to detect differences in 
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the number of edges for each genes in a network. The comparison of maximum values 
between adjacency matrices was also considered. However, we concluded that they 
are more useful describing the global characteristic of a network, which deviates from 
our objective, namely, a gene-specific characteristic of a network.

Another limitation is the inability to perturb simulated networks in a continu-
ous way. Right now, we have discretized the effect of a covariate into three groups. 
Perhaps, there are other models where a truly continuous covariate could be 
incorporated.

Lastly, the Pearson correlation, partial correlation, and degree-weighted LASSO were 
also examined as alternatives to the ARACNE as a measure of association or connect-
edness, albeit not reported in the paper, due to relatively poor performance and heavy 
computational costs. It remains an interesting task for future studies to extend our 
work to other measures of association of a network which better assess different struc-
tural changes in the network. We conclude by foregrounding the future direction of the 
pseudo-value regression approach for the DN analysis, which are potentially extensible 
to other data types, such as the microbiome data.

Conclusion
The adjustment of covariate is an important step in differential network analysis. In this 
paper, we presented PRANA, a novel pseudo-value regression approach for the DN anal-
ysis, which can incorporate additional clinical covariates in the model. This is a direct 
regression modeling, and it is therefore computationally amenable for the most users.

Methods
Mutual information and ARACNE

Mutual information (MI) determines whether and how two genes interact. That is, it is 
a measure of their relatedness and calculated from their joint expression profiles. MI 
is zero if and only if the joint distribution between the expression level of gene j and 
gene k satisfies P(gj , gk) = P(gj)P(gk) for j  = k , or if j = k ; in other words, they are 
statistically independent. Algorithm for the Reconstruction of Accurate Cellular Net-
works (ARACNE) which are proposed by [32, 33] estimates MI using a computation-
ally efficient Gaussian kernel estimator. The estimate of MI is used to quantify the 
connectivity of each pair of genes in a network. Given a set of two genes measure-
ments, −→ui ≡ (gij , gik) , i = 1, . . . , n , the joint probability distribution is approximated as 
f (−→u ) = 1/n i h

−2�(h−1(
−→u −−→ui )) , where � is the bivariate standard normal density 

and h is the position-dependent kernel width. Then the MI can be expressed as [32]:

where f (gj) and f (gk) are the marginals of f (−→u ) . The matrix containing entries Îjk is 
defined as the association matrix. The ARACNE algorithm copula-transforms the pro-
files for MI estimation because MI is reparameterization invariant; thus, the range of 
these transformed variables is between 0 and 1 [34].

Îjk =
1

n

∑

i

log
f (gij , gik)

f (gij)f (gik)
,



Page 9 of 17Ahn et al. BMC Bioinformatics            (2023) 24:8  

Pseudo‑value approach

Let Îjk be the MI estimate for a pair of genes j, k ∈ {1, . . . , p} of an estimated network 
from n individuals. For each gene k, we sum the edges (MI estimates) around the gene by 
taking the column sum of the association matrix to obtain the total connectivity (which 
can be deemed as a continuous version of degree centrality) of gene k:

where k = 1, . . . , p.
The jackknife pseudo-values [24] for the ith individual and kth gene are defined by:

where θ̂k(i) is the column sum of a gene calculated from the re-estimated association 
matrix using the RNA-seq data without the ith subject. For each gene k, the re-estima-
tion process requires n such calculations with the data size of n− 1.

Let Z a binary group indicator. Let G1 = {i : Zi = 1} , G2 = {i : Zi = 2} , and nz = |Gz| is 
the sample size for the two groups z = 1, 2 and n =

∑

nz . The jackknife pseudo-values 
are separately obtained within groups. Following the general formula above, for gene k 
and group z, we similarly define θ̂ zk  and θ̂ zk(i) , where i = 1, . . . , nz . Then for each i ∈ Gz , the 
kth gene jackknife pseudo-values are calculated by θ̃ik = nz θ̂

z
k − (nz − 1)θ̂ zk(i).

Next, a robust regression is applied to regress the pseudo-values on a set of covariates, 
including Z and X , where Z is the group indicator and X = (X1, . . . ,Xq ) are the potential 
confounders, such as age and gender. For the ith individual and kth gene, we posit the 
model

where αk is the intercept, βk is the regression coefficient for Z, and γk1, . . . , γkq is the set 
of regression coefficients to be estimated for X. The main parameter of interest is βk to 
test for the change in total connectivity (or degree centrality) of the kth gene between 
groups. Least trimmed squares (LTS), also known as least trimmed sum of squares [35], 
is then implemented to perform a robust regression. The LTS estimator is defined by

where r(i) is the set of ordered absolute values of the residuals (in increasing order of 
absolute value) and h may depend on some pre-defined trimming proportion c, for 
instance by means of h = [n(1− c)] + 1 . In general, c is chosen between 0.5 and 1 [36].

Hypothesis testing

To test whether the true difference in total connectivity of kth gene differs between 
groups, we test the null hypothesis of H0 : βk = 0 against the research hypothesis 
H1 : βk �= 0 . The t-statistic is computed by β̂k/SE(β̂k) , where SE(β̂k) standard error of 

θ̂k =

p
∑

j=1

Îjk ,

(1)θ̃ik = nθ̂k − (n− 1)θ̂k(i),

(2)E[θ̃ik |Zi,Xi] = αk + βkZi + γk1Xi1 + · · · + γkqXiq ,

min
αk ,βk ,γk1,...,γkq

h
∑

i=1

r(i)(αk ,βk , γk1, . . . , γkq)
2,
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β̂k , obtained using large sample theory, and which is the least-squares estimator of βk 
for k = 1, . . . , p from the robust regression described in equation (2). P-values are calcu-
lated using a t-distribution as in robustbase R package [37, 38].

It is important to control the false discovery rate (FDR), since multiple hypothesis tests 
are conducted in the DN analysis. The FDR measures the proportion of false discov-
eries among a set of genes which are significantly DC between groups. The empirical 
Bayes screening (EBS) approach [39] has been applied to control the FDR, which is an 
extension of Westfall and Young step-down adjusted p-values [40]. The EBS procedure is 
robust against model mis-specification, as it utilizes nonparametric function estimation 
techniques for the estimation of the marginal density of the transformed p-values.

Materials
This section details step-by-step procedures how the simulation is performed. The per-
formance of our proposed method is assessed by an extensive simulation study. Data 
are simulated with different number of genes p and sample size n. In this simulation, 
the regression model includes two covariates Z and X, where Z is the group indicator 
and X ∼ N (55, 10) is a continuous covariate such as the age of a patient. Three different 
simulation scenarios are considered.

Data generation

Simulate weighted networks and RNA-seq data with a dependence structure that 
depends on Z and/or X using the SeqNet R package [41]. In this setting, there are total 
of six networks for the combination of two groups and three age categories (younger 
than 50, 50-60, and older than 60). We consider three different scenarios incorporating 
group information only (scenario I), age and group information (scenario II), and age 
and group information with unequal sampling proportions with different distributions 
of the age in the two groups (scenario III) (see Figures 1–3 for visual demonstrations).

Scenarios I (a–b) and II (a–c)

a. Generate the first random network with p nodes for z = 1 . The p× p adjacency 
matrix, where the diagonal elements are 0 and non-diagonal elements are in {0, 1} , is 
extracted from this first graph. It is a symmetric matrix indicating whether a pair of 
nodes are connected by an edge. Take the column sum of the adjacency matrix to see 
the total number of connected edges to the node. Record the indices of this vector 
with column sum for the use of effect size adjustment in later step.

b. Perturb the first network to generate the second network for z = 2 by removing the 
edges around nodes using the indices obtained in previous step. To assess the effect 
size of group, the top 5% , 10% , and 20% of total nodes with the most number of edges 
in a network lose their edges (e.g. 2 nodes with the most number of edges for a net-
work with p = 20 for the effect size of 10% , Fig. 1). This is the end of scenario I.

c. For scenario II, further perturb remaining networks by removing edges of one addi-
tional node with the next most number of edges, coming after Step (b) above. This is 
to simulate networks with a covariate dependence structure on both age and group 
(see Fig. 2).
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Fig. 1 Network plots visualizing the gene network ( p = 20 ) without a covariate dependence structure that 
depends on binary group only (scenario I). The row represents group whereas the column represents age 
categories. The three networks in each row are identical, since there is no effect of age on the structure of 
network. The edges of the hub nodes are removed based on the effect size of the binary group

Fig. 2 Network plots visualizing the gene network ( p = 20 ) with a covariate dependence structure that 
depends on age and group information (scenario II). The row represents group whereas the column 
represents age categories. All six networks have unique structure of the network. The edges of the hub 
nodes are firstly removed based on the effect size of the group, as shown in Fig. 1 above. For this scenario II, 
additional edges of nodes with greater number of connected edges are removed for each age category
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Scenario III

We created a scenario where age is acting like a confounder. In other words, for a given 
each category that two networks are the same, but the distributions of the age of the 
patients are different in the two groups. Therefore, there will be an observed difference 
in network connectivity, which is explained through age. 

Fig. 3 Network plots visualizing the gene network ( p = 20 ) with a covariate dependence structure that 
depends on age and group information with unequal sampling proportions with respect to different 
distribution of the age in the two groups (scenario III). The row represents group whereas the column 
represents age categories. All six networks have unique structure of the network. The edges of the two hub 
nodes are removed for each age category. To employ the effect of group, 10%/10%/80% of the subjects in 
z = 1 will have a network structure to each of the first, second, and third networks in the first row. In contrast, 
80%/10%/10% of the subjects in z = 2 will have a network structure to each of the first, second, and third 
networks in the second row

Fig. 4 A Venn diagram displaying the number of overlapping DC genes between and among univariable 
analysis such as DINGO and dnapath versus multivariable robust regression with pseudo-value approach 
using COPDGene study data from GEO database
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a. Generate the first random network with p nodes for younger than 50 category. The 
p× p adjacency matrix, where the diagonal elements are 0 and non-diagonal ele-
ments are either {0, 1} , is extracted from this first graph. Record the indices of con-
nected edges for the perturbation of network in later steps below.

b. Perturb the first network to generate the second network for age 50–60 category by 
removing the edges of the two nodes with the most number of edges in a network 
lose all of their edges. In other words, we refer to the indices, recorded in the adja-
cency matrix from the earlier step, and remove all the connected edges around the 
two nodes.

c. Next, we repeat the same to perturb the second network to obtain the third network 
for older than 60 category (see Fig. 3).

For all three scenarios, we assign a partial correlation to edges to obtain weighted net-
works [41]. Note that adjacency matrices of these weighted networks are used for the the 
true connection per gene. Generate RNA-seq samples based on weighted networks with 
equal sampling proportions for scenarios I and II. However, specifically for scenario III, a 
sampling proportion differs across age categories and groups. That is, 10%/10%/80% for 
z = 1 and 80%/10%/10% for z = 2 . The data generation involves with two major steps. 
Firstly, we generate gene expressions (Gaussian values) from a group-specific weighted 
network for each gene, denoted as x̃i ∼ N (0, 1) . These Gaussian values are then mapped 
into RNA-seq data column-wise by using the inverse CDF of empirical distribution of 
the reference data using expression data with accession number GSE158699 [25] from 
the Gene Expression Omnibus (GEO) database [26]. We will have nz × p matrices for 
each group z = 1, 2.

Algorithm

1 Obtain an association matrix with ARACNE from the data generated in steps from 
the “Data Generation” section to fit an estimated network using minet [32, 42] for 
each group.

Exclusive to PRANA (5 DCGs)

DMWD, MED13L, TNPO1,
THRA, STN1

Exclusive to DINGO (3 DCGs)

VGLL4, CCDC69, RASEF

dnapath (3 DCGs)

PRANA and dnapath (2 DCGs)

DTWD1, TEPP

PRANA and DINGO and
dnapath (1 DCG)

EML4

PRANA and DINGO but not in dnapath (15 DCGs)

CITED2, TESK2, AMZ1, DDX1, ZBTB38, HSPA4,
ITGB8, ARNTL, ADAMTSL3, SLMAP, DENND2D,

SYN3, ASAP2, IER3, MFHAS1

Fig. 5 A diagram summarizing results using each methods analyzing the COPDGene study data from GEO 
database. A full list of DCGs (differentially connected genes) are provided in each box
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2 For each gene k, calculate the column sums of association matrix for each group z 
separately, denoted by θ̂ zk .

3 For each gene k and individual i ∈ Gz , compute θ̂ zk(i) from the association matrix that 
is re-estimated based on RNA-seq data without the ith subject of nz × p data from 
the “Data Generation” section for each group z separately, where i = 1, . . . , nz.

4 Calculate θ̃ik using Eq. (1) based on Step 2 and 3.
5 For each gene k, fit a multivariable robust regression with binary group variable and 

continuous age variable to obtain the p values of the group variable, computed from 
the t test. These p values are used to compute the performance measures of simula-
tion study. More details on the performance measures are stated next.

Performance measures

To evaluate the performance of our proposed method, precision, recall, and the F1 
score are calculated. Let �z ∈ R

p×p be the adjacency matrix for group z, where

for z = 1, 2 . Then, for each gene k, we calculate

where I(·) is an indicator function to determine whether gene k has differential connec-
tivity. The gene k is truly DC if ηk = 1 , and is not DC if ηk = 0 for the true gene network. 
Similarly, for the covariate dependence structure, the following quantities are obtained

where �z,c ∈ R
p×p be the adjacency matrix for group z and age category c = 1, 2, 3 . 

Denote that S is the total number of Monte Carlo simulation replicates. Let qks be 
adjusted p value as in following procedure [39] of kth gene at the sth simulation rep-
licate. α represents the magnitude of error control, and 0.05 was used throughout the 
simulation.

• Precision is the proportion of genes that are inferred to be significantly DC from 
the test which have true connection between two comparing groups: 

• Recall is the proportion of genes that have true connection which are correctly 
inferred to be significantly DC between two comparing groups from the test: 

�z
jk =

{

1 if jth gene and kth gene are connected
0 otherwise,

ηk = I

( p
∑

j=1

|�1
jk −�2

jk | ≥ 1

)

,

ηk = I

(

1

c

∑

c

p
∑

j=1

|�1,c
jk −�

2,c
jk | ≥ 1

)

,

Precision =

∑p
k=1 ηk I(qks < α)
∑p

k=1 I(qks < α)
.
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• F1 is calculated based on the harmonic mean of precision and recall obtained from 
the simulation. A higher F1 score suggests lower false negative and false positive rate: 

COPDGene data

A recent genome-wide association study [43] identified 35 new COPD-related genes 
from the UK Biobank and International COPD Genetics Consortium data. Among these 
35 COPD-related genes, 28 genes are available in the data from the COPDGene study 
for the analysis using PRANA and other DN analysis methods including dnapath and 
DINGO. The 28 COPD-related genes are the following: CITED2, TESK2, COL15A1, 
AMZ1, RASEF, DDX1, DMWD, MED13L, ZBTB38, CCDC69, EML4, HSPA4, ITGB8, 
TEPP, TNPO1, ARNTL, DTWD1, ADAMTSL3, RREB1, THRA, SLMAP, DENND2D, 
STN1, SYN3, ASAP2, IER3, MFHAS1, and VGLL4.

Among 2561 samples from the initial phenotype data, we have used 406 samples that 
were provided as the validation set in the analysis of the original study. For the analysis 
with PRANA, binary current smoking status variable is used as the grouping variable, 
and smoking pack years, age, gender, race, and FEV1 are included as additional covari-
ates in a multivariable model. The binary current smoking status variable is used as the 
grouping variable for dnapath and DINGO.
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