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Abstract 

Background:  Single-cell omics technology is rapidly developing to measure the epig-
enome, genome, and transcriptome across a range of cell types. However, it is still chal-
lenging to integrate omics data from different modalities. Here, we propose a variation 
of the Siamese neural network framework called MinNet, which is trained to integrate 
multi-omics data on the single-cell resolution by using graph-based contrastive loss.

Results:  By training the model and testing it on several benchmark datasets, we 
showed its accuracy and generalizability in integrating scRNA-seq with scATAC-seq, 
and scRNA-seq with epitope data. Further evaluation demonstrated our model’s 
unique ability to remove the batch effect, a common problem in actual practice. To 
show how the integration impacts downstream analysis, we established model-based 
smoothing and cis-regulatory element-inferring method and validated it with external 
pcHi-C evidence. Finally, we applied the framework to a COVID-19 dataset to bolster 
the original work with integration-based analysis, showing its necessity in single-cell 
multi-omics research.

Conclusions:  MinNet is a novel deep-learning framework for single-cell multi-omics 
sequencing data integration. It ranked top among other methods in benchmarking 
and is especially suitable for integrating datasets with batch and biological variances. 
With the single-cell resolution integration results, analysis of the interplay between 
genome and transcriptome can be done to help researchers understand their data and 
question.
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Background
Diseases like cancer, heart disease, and Alzheimer’s are highly complex [1]. Unlike simple 
Mendelian single-gene disorders, their progression is dictated by multiple genetic and envi-
ronmental factors from various molecular layers, creating etiological and clinical heteroge-
neity that complicates diagnosis, treatment, and drug development [2]. High-throughput 
technologies that measure multiple omics data at the single-cell level, such as scRNA-
seq [3, 4] and scATAC-seq [5, 6] have explained part of this heterogeneity from cell-type 
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differences. However, due to unpaired cells in different omics datasets, we still lack a com-
prehensive and integrated view of all omics data. We therefore need to integrate different 
omics information to elucidate potential causative changes that lead to disease, or treat-
ment targets, which can then be tested in further molecular studies [7].

Two main strategies have been proposed to integrate different omics data modalities: the 
experimental approach [8–11], which profiles multiple omics data simultaneously on the 
same cells, and computational approaches, which fuse independent omics datasets. With 
the low throughput and high cost of experimental approaches [12], the continued develop-
ment of computational methods is critically important. Yet integrating multi-omics data-
sets remains challenging due to the unpaired cells and modality/batch effects.

The unpaired cell effect refers to the problem created when different omics data are 
sequenced from different batches of cells so there is no correspondence available to link 
modalities. To solve this problem, researchers typically project all the cells into a shared 
latent space, from which unpaired cells can be aligned to share all omics data. Seurat [13] 
applies canonical correlation analysis [14] (CCA) to project datasets into this space and 
aligns cells by mutual nearest neighbors (MNN) for data fusion and label transfer. But 
the use of a linear dimension reduction algorithm has been criticized as it will distort the 
actual interrelationships between datasets [15]. This linearity assumption was also adopted 
by Liger [16], which uses integrated non-negative matrix factorization [17]. Deep learning 
offers an alternative method for nonlinear projection using an autoencoder [18]’s encoder 
module, which projects high-dimensional data into a low-dimensional representation with 
one or several layers of neurons. This method has been applied successfully in GLUE [19] 
using a variational autoencoder.

The second challenge arises from both modality and batch effects during integration. 
Most algorithms remove modality effect when projecting and aligning cells but to our 
knowledge, batch effect is not especially considered in these integration models. The Sia-
mese neural network [20] has been shown to integrate multiple scRNA-seq datasets and 
remove batch effects [21], and we believe this framework can also be used to integrate 
multi-omics data while eliminating both modality and batch effects. However, it was 
trained to integrate single-modality RNA-sequencing data at a cell type level rather than 
perform the multi-omics integration task.

Therefore, we introduce here a new Siamese neural network design with a graph-based 
loss to integrate multi-omics datasets at single-cell resolution. Trained to integrate cells 
from different modalities while removing the potential batch effect, our model outperforms 
other algorithms in multiple benchmarking datasets. Furthermore, to show the integration’s 
impact on downstream analysis, we developed a model-based smoothing and cis-regula-
tory element-inferring approach and demonstrated its efficacy by validating in 10X Mul-
tiome datasets. Finally, we applied the framework and analysis to a published COVID-19 
dataset, improving the original work by adding integrated, multi-modal analysis.

Results
Integrating single‑cell multi‑omics data through the MinNet framework

As with other state-of-the-art integration methods, the MinNet framework follows the 
statistical concept of integrating omics data: Cells from different modalities are pro-
jected into the same latent space that captures the shared variance in all omics data. To 
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generate this co-embedding space, the Siamese neural network simultaneously receives 
as inputs one cell from modality 1 (e.g., scRNA-seq) and another from modality 2 (e.g., 
scATAC-seq) and projects them into the same n-dimensional vectors using the encoder. 
To ensure this n-dimensional vector space is a good representation of the shared main 
biological variance, two losses are applied following the encoder.

The first and most important is the contrastive loss [22]. Here, we convert the con-
cept of shared main variance to a more computationally feasible metric for the neural 
network – similarity and differences among cells. An ideal co-embedding space should 
be consistent with the original data on this metric: similar cells are close and very dif-
ferent cells are far away. Thus, our contrastive loss aims to reduce the distance between 
similar cells and separate different cells in the n-dimensional space. To achieve this 
goal, randomly chosen cell pairs are prepared before each training epoch for calculating 
either positive or negative contrastive loss. Positive pairs are the identical cells in the two 
modalities, and the loss is the Euclidian distance between each pair in the co-embedding 
spaces. Negative pairs are different cells sampled from the data, and the loss is calculated 
as a margin constant m minus the Euclidian distance. By training the model to mini-
mize the loss, the distances between corresponding cells get smaller while the distances 
between negative pairs get larger. In this way, main biological variance is kept in the co-
embedding space.

Usually, the margin value m is a constant for all negative pairs during Siamese neural 
network training. However, cells from different cell types are more diverse than those 
from the same cell type. Thus, to maintain these differences in the co-embedding space, 
we designed mas a flexible value depending on how much the cell pairs differ. (See 
Methods for technical details). Intuitively, cells that differ more pose higher variance, so 
a larger margin is assigned to separate them in the space. In contrast, similar cells pose 
little variance, so a small margin value is assigned (Fig. 1B). With the flexible margin, the 
datasets main variance will be better kept in the final integration space.

The second loss is cell-type classification loss. It is also designed to capture the main 
variance because it separates different cell types from each other. The output of the first 
encoder layer is sent to the label classification layer for cross-entropy loss calculation. 
Also, previous studies observed improved performance with this loss due to its ability to 
accelerate the optimization process [21].

This supervised model needs to be trained with paired multi-omics datasets from 
techniques like 10X Multiome, SHARE-seq [9], and SNARE-seq [8], which profile the 
transcriptome and chromatin accessibility simultaneously, or Cite-seq [23], which pro-
files transcriptome and epitopes in the same cells. The weighted sum of classification 
and contrastive loss is minimized during training to ensure optimized modality mixing 
and clustering. After training, the model can be easily applied in user’s target datasets.

We applied the framework to two tasks: transcriptome and chromatin accessibility 
data integration, which takes gene expression and gene activity score as its input; and 
transcriptome and epitope data integration taking gene expression and protein abun-
dance. With the trained models, users can provide two simply normalized datasets and 
obtain the co-embedding space for downstream analysis, including aligning/pairing cells 
between modalities, unsupervised clustering, and cis-regulatory element inferring via 
pseudo-bulk generated from the embedding space (Fig. 1C).
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Benchmarking shows that MinNet is robust and generalizable in alignment and clustering

To test the performance and generalizability of our two models trained on 10X Mul-
tiome bone marrow mononuclear cells (BMMC) data and Cite-seq BMMC data, we 
evaluated our method and compared it with existing ones, including GLUE [19], bindSC 
[24], Seurat v3 [13], Liger [16], and Liger’s online version [25], on two untouched test 
sets from the NeurIPS 2021 Competition [26] in which the cell-to-cell correspondence is 
known. This large dataset has 10X Multiome and Cite-seq sequencing results from four 
sequencing sites and ten donors. Our models were trained on samples from some of the 
donors and three sequencing sites, leaving other donors untouched (test set 1) and the 
fourth sequencing site untouched (test set 2) (See Additional file 1: Table S1 for details).

After applying all algorithms to the benchmarking datasets, we evaluated all final 
integration results (see Additional file 1: Figs. S1–4 for the UMAP visualization) based 
on several metrics. First, we used the silhouette coefficient score [27] to measure the 
integration performance of the co-embedding space generated by the algorithms, focus-
ing on how well modalities are mixing while cell types are separating from each other. 
Compared with other methods, MinNet attained a higher score in both modality mix-
ing and clustering (Fig. 2A). The cell type silhouette coefficient indicates how well cell 
types are separated in the co-embedding space. In the real-world setting, when research-
ers have no labels for their dataset, they will use unsupervised clustering to annotate 
the cell types; a better separation will ensure more precise annotations. We tested this 
proposition by performing unsupervised clustering on the algorithms’ embeddings and 
testing the consistency between unsupervised clusters and cell type annotations using 
the adjusted rand index [28] (Fig. 2B). Results show that MinNet-based clustering is the 
most concordant with the ground truth at the primary cell type level. Moreover, when 

Fig. 1  Overview of MinNet. A Model receives two modalities’ data as input. High-throughput omics data 
will go through an independent fully connected layer to be projected into a lower dimensional space. This 
representation space should be able to mix different modalities and separate cell types well. To achieve this, 
cell type classification loss and Siamese contrastive loss are used during the training process. B To make the 
mixing resolution at single-cell level rather than cell-type level, we applied a KNN graph-based Siamese loss 
with flexible margin value depending on cell pair graph distance. C In application, multiple omics data will be 
projected into this low-dimensional embedding space in which downstream analysis will be done, including 
cell alignment, label transfer, unsupervised clustering, and the designed cis-regulatory element-inferring 
pipeline
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subtypes were identified, our model was still competitive with the top models in 10X 
Multiome data and outperformed all models in Cite-seq data. We also evaluated cell 
type integration performance based on label transferring accuracy, another common 
task in actual practice when researchers want to transfer the annotated labels from one 
modality to the other. MinNet can accurately transfer most of the labels, even if the cell 
numbers are small, while methods like Seurat are biased toward the major cell types 
(Fig. 2C, E). With Silhouette score and label transfer accuracy, our model’s performance 
is validated at the cell type level.

Beyond the cell type resolution integration, single-cell level cell alignment is also 
essential in some cases, like cell type sub-typing and mini-bulk generation for down-
stream analysis. To evaluate this higher resolution performance, the FOSCTTM (Frac-
tion of samples closer than the true match) score [29] was measured for all generated 

Fig. 2  Performance benchmarks on gold-standard datasets. To test our model and compare it to existing 
algorithms, we benchmarked the transcriptome and chromatin accessibility data integration model and 
the transcriptome and cell-surface protein data integration model on datasets from the NeurIPS 2021 
competition data. A Silhouette scores on the embedding space generated by all algorithms. Cell type 
silhouette score indicates how well cell types separate from each other, and 1– modality silhouette score 
indicates how well modalities mix with each other. B Adjusted Rand index along with the number of clusters 
comparing all algorithms. C Average label transfer accuracy bar plot. D FOSCTTM (Fraction of samples closer 
than the true match) score indicates the single-cell level alignment error of all algorithms. E Label transfer 
accuracy heatmap from transcriptome data to chromatin accessibility data (top); or from epitope data to 
transcriptome data (bottom)
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co-embeddings. MinNet ranked in first or second place in all four datasets, and per-
formed especially well in Cite-seq data where it demonstrated a significant competitive 
advantage at single-cell resolution (Fig. 2D).

For broad usability, a supervised model must be generalizable. Our model’s success in 
integrating untouched donor datasets and untouched sequencing site datasets already 
demonstrated its generalizability, but we also wanted to test it with other tissues. First, 
we undertook the same evaluation using the 10X Multiome peripheral blood mononu-
clear cell (PBMC) dataset [30]. Based on silhouette scores, FOSCTTM scores, and label 
transfer accuracies (Additional file 1: Fig. S5A, C, D), our model still performed compet-
itively and generated adequate co-embedding space (Additional file 1: Fig. S6). Though 
the model had never seen many of the cell types in the PBMC dataset, it still separated 
most cell types well, demonstrating its generalizability. This result is due to the model’s 
contrastive loss design, which learned the common sense of similar tasks rather than a 
specific task [31].

However, this generalizability was limited to similar tissues, such as BMMC and 
PBMC. We also applied the trained model to the 10X Multiome human brain dataset 
[32], an entirely different tissue. The resulting co-embedding space showed little biologi-
cal information and failed to cluster well (Additional file 1: Fig. S5B). Therefore, we con-
cluded that the generalizability of our algorithm could be expanded to similar tissues 
but not distinct ones. Nevertheless, this supervised approach can easily be trained on 
target tissues and has a higher specificity than other models. For example, the traditional 
machine learning models, including bindSC, Liger, and Seurat, have better label transfer 
accuracies on the PBMC dataset than on the BMMC dataset, which we believe is due to 
cell type balance. That is, when the numbers of cells in each cell type are relatively even, 
these methods perform well. But in cases like the BMMC datasets, which consist mostly 
of monocytes, label transfer of minor cell types is inaccurate. In contrast, our approach 
is not significantly influenced by unevenly distributed cell type sizes because of its supe-
rior specificity.

MinNet is superior in removing batch effect while maintaining biological variance

To distinguish between batch variance and biological variance, we trained our model 
with multiple batches from different donors and sequencing sites. While the training 
input was normalized data without batch correction, the contrastive loss was based 
on the graph after batch correction by ComBat implemented in Scanpy [33]. With this 
design, the model is required to produce the joint embedding that eliminates batch 
effects while retaining biological differences.

To test the performance of batch effect removal, we generated three more testing 
scenarios with the available benchmark datasets that represent real case practice prob-
lems. The first scenario tested all algorithms’ performance when both scRNA-seq and 
scATAC-seq experiments are performed independently on identical batches. The second 
and third scenarios tested the integration performance of scRNA-seq and scATAC-seq 
datasets profiled from different batches. In all three cases, we compared our model with 
those mentioned above.

The silhouette score and label transfer accuracy were chosen for evaluation since 
cells were different in the second and third cases and FOSCTTM score is not feasible. 
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Figure  3A shows the co-embedding space of the first case. While mixing the omics 
data, MinNet successfully separated cell types and mixed the batches. Its performance 
is quantified and compared with other algorithms in Fig. 3B using cell type and batch 
silhouette scores. BindSC was better at mixing batches, but MinNet distinguished the 
cell type variance from batch variance to provide better cell type separation. In the last 
two tests, most algorithms generated a co-embedding space that mixed the batch well, 
meaning all the manifold alignments worked between two single-batch omics data 
(Additional file 1: Figs. S7, S8). However, when it came to the mixed batches, some algo-
rithms failed due to their inability to remove the batch effect, resulting in small cell type 
silhouette scores (Fig.  3B). MinNet thus outperformed the other models in clustering 
and label transferring (Fig. 3C).

This evaluation is especially important as it mimics real-world practice in which 
researchers use independent profiling from different batches or even from independent, 
publicly available datasets. We also conducted testing on Cite-seq data in a similar case 
setting (Additional file 1: Fig. S3) and observed that none of the algorithms succeeded in 
mixing batches from different donors and sequencing sites, but they could mix batches 
from other donors and the same sequencing sites (Additional file 1: Fig. S4). We hypoth-
esize that this result is due to the significant sequencing platform differences of Cite-seq 
technology and believe further investigation is warranted.

Model‑based smoothing helps correlation‑based cis‑regulatory element inferring

After benchmarking our model, we demonstrated how integration can impact the down-
stream analysis and help discover the interplays among genetic layers.

Fig. 3  MinNet batch effect removal outperforms other algorithms. While separating cell types and mixing 
modalities, our model showed the best performance in removing batch effect, the most common challenge 
in integrating different omics data from distinct sources. A UMAP visualization of the embedding space 
generated by all algorithms. B Silhouette score indicates that while separating cell types, our model mixes 
batches well. C Label transfer accuracy from one donor’s transcriptome data to another donor’s chromatin 
accessibility data



Page 8 of 22Liu et al. BMC Bioinformatics  2023, 24(1):5

Cis-regulatory elements, such as enhancers and promoters, are genomic regions that 
control development and physiology by regulating gene expression [34]. Inferring the 
regulation between open chromatin regions and gene expression is of great importance 
in understanding biological and disease processes. Usually, cis-regulatory element infer-
ring is done by calculating the correlation between chromatin regions, e.g., Cicero [35]. 
With multi-omics data and integration methods available, we can calculate the correla-
tion between regions and gene expression using the aligned cells, which is a more direct 
way of linking genome with transcriptome. Here, we implemented smoothing, mini-bulk 
generating, and cis-regulatory element inferring and validated the method using the 10X 
Multiome peripheral blood mononuclear cells (PBMC) dataset [30].

First, to account for the high dropout rate and noise [36] in single-cell data, we built 
functions to smooth [37] the data. Specifically, we complemented the missing values 
in cells based on their K nearest neighbors in our single-cell resolution co-embedding 
space to decrease the sparsity (Fig. 4A). After smoothing, we generated mini-bulk data 
before undertaking any downstream analysis.

To test how this smoothing and mini-bulk generating improve downstream analysis, 
we calculated the Spearman’s correlations between genes and their 2 kb nearby peaks 
in mini-bulk data, which are believed to be positively correlated. Results show that non-
smoothed raw mini-bulk data has a lower correlation level than true pair mini-bulk data 
correlation, meaning the dropout rate compromises downstream analysis when no cell 
correspondence is available between modalities (Fig. 4A middle). But when smoothing 
was applied to the five nearest neighbors, the correlation levels reached that of the true 
pair mini-bulk. The correlation was even higher than the true pair when the number 
of neighbors was increased. To demonstrate the importance of smoothing, we offer an 
example in Fig. 4B. Chr3:102402234–102402739 is in the TSS region of the gene FGF14, 
which means the pair should be positively correlated. But because of the high dropout 
rate, non-smoothed mini-bulk data showed a negative Spearman correlation coefficient. 
When we applied nearest neighbor complementation, their association became positive.

We further validated the model-based, cis-regulatory element-inferring approach with 
external Promoter Capture Hi-C (pcHi-C) evidence of the interaction between genome 
regions [38]. We applied non-smoothed, true pair, and smoothed mini-bulk data to cal-
culate Spearman’s correlation between genes and their 150 kb nearby peaks. While the 
mean correlations of pcHi-C unsupported peak-gene pairs were not greatly increased 
by smoothing, the mean correlation level of pcHi-C supported pairs did increase. The 
difference in correlation between supported and unsupported pairs is clearly shown in 
the heatmap (Fig. 4C). Again, with only five nearest neighbors smoothing, the correla-
tion reached the same level as true pair mini-bulk (Figure S9A), but the 0-25 k peak-gene 
pairs are non-distinguishable. We think the proximity of genes increased the co-open-
ness even though they don’t have a regulatory relationship.

The extremely high correlation peak-gene pairs yielded by this approach are worth fur-
ther investigation because they indicate potential regulatory relationships. For example, 
LEF1 encodes the protein that can bind to a functionally important site in the T-cell 
receptor-alpha enhancer [39] and therefore shows a variant expression level in sub-
types of T cells. Three peaks are within the 150 kb upstream of the LEF1 TSS region. 
In 5NN smoothing mini-bulk correlation, two peaks have high correlations with LEF1 
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expression (chr4-108170508–108173850: rs = 0.930; chr4-108315129–108315649: rs 
= 0.877) and are supported by pcHi-C evidence. The other has a low correlation and 
is not supported by pcHi-C (chr4-108301923–108302013: rs = 0.371). These results 
showed consistency with Hi-C and are validated by the data visualized in Fig. 4D. On the 
other hand, some unsupported correlations also showed potential regulatory relation-
ships. CCR2 encoded protein is a receptor for monocyte chemoattractant protein-1, a 
chemokine that specifically mediates monocyte chemotaxis [40, 41]. It is a monocyte 
marker; thus, the expression varies in many PBMC cell types. Six peaks showed high cor-
relation with CCR2, three were supported by Hi-C evidence (chr3-46206526–46210451: 
rs = 0.647; chr3-46297386–46301922: rs = 0.612; chr3-46212,074–46213996: rs = 0.612) 
and three were not (chr3-46317953–46318717:rs = 0.634; chr3-46312405–46313554: 
rs = 0.607; chr3-46228191–46229079: rs = 0.605). But when validated in the original 
data, we saw a correlation of all six peaks with the gene, indicating potential genomic 
links (Additional file 1: Additional file 1: Fig. S9B). Furthermore, the unsupported chr3-
46312405–46313554, together with Hi-C supported chr3-46,206,526–46,210,451 and 
chr3-46297386–46301922, were enriched in the motif for STAT3 + IL-21 binding, pro-
viding further evidence supporting this finding. IL-21 is a known cytokine with diverse 

Fig. 4  Model-based smoothing and cis-regulatory element inferring. By smoothing and generating 
mini-bulk omics profiles summing up neighborhood cells, we can infer the gene regulatory regions by 
calculating the correlation between transcriptome and chromatin openness. A higher correlation indicates 
a likely regulatory relationship between genes and peaks. A (Left) Smoothing decreased the sparsity of 
scRNA-seq and scATAC-seq data. (Middle) Smoothing increased the correlation between gene expression 
and its TSS regions openness compared with non-smoothed and true pair derived mini-bulk data. (Right) This 
trend is emphasized when showing the Spearman correlation coefficient differences between smoothed 
and non-smoothed mini-bulk data. B Example showing FGF14 and its TSS region peaks correlation in 
non-smoothed and smoothed data. C Heatmap showing the mean of correlation level between gene-peak 
pairs with different distances in all smoothed and non-smoothed datasets. D Genome track of LEF1 and its 
highly correlated peaks. Left shows the genome tracks of ATAC-seq data, right violin plots show the gene 
expression level
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effects on immune cells, including CD4 + and CD8 + T cells, B cells, macrophages, 
monocytes, and dendritic cells [42]. Thus, CCR2 might be involved in IL-21-induced cell 
adhesion through these binding sites, which has been considered by other researchers 
[43].

MinNet provides missing analysis of COVID‑19 multi‑modal data

To demonstrate how our model can help study diseases, we applied it to a publicly avail-
able COVID-19 dataset [44] where healthy controls and patients with various World-
wide Health Organization (WHO) severity score-rated PBMC samples were profiled 
with independent scRNA-seq and scATAC-seq. We followed their scRNA-seq Differ-
ential Expressed Genes (DEGs) analysis using the PBMC trained- and BMMC trained-
models and provided the missing part of the integration analysis to allow for more 
potential discoveries.

Preprocessed and normalized data were provided to either the PBMC or BMMC 
trained model to create the final co-embedding space (Fig.  5A). The final integration 
space separated cell types and mixed modalities well. The batch effect from differ-
ent samples was removed, while the difference in severity was still clearly apparent, as 
shown in the UMAP colored by WHO severity score. We next evaluated the consist-
ency between the cell type annotation and our clustering by calculating label transfer 
accuracy from scATAC-seq to scRNA-seq or the reverse direction (Fig. 5B). Except for 
cell types with only a few cells, the consistency was high between the two independent 
annotations and our embedding space. Both the PBMC and BMMC models were able to 
integrate the dataset because of their generalizability.

Using the model’s co-embedding space, we generated the mini-bulk data per cell type 
and then inferred the potential regulatory relationships between genes and peaks within 
a 150 k bp distance from the transcription starting point. Two cell types, Natural Killer 
(NK) cells and monocytes, were chosen for the integration analysis because they were 
the most dysfunctional cell types identified in the original study. Only DEGs by sever-
ity group were included in this analysis as compensation for their primary scRNA-seq 
DEG analysis. For example, in NK cells, the DEG HLA-DPB1 is correlated with chr6-
32940846–32941346 ( rs = 0.333, Fig. 5C, Additional file 1: Fig. S10A) and showed differ-
ences among WHO severity groups. In monocytes, the DEG FPR2 is associated with the 
peak chr19-51735953–51736453 ( rs = 0.434, Fig. 5C, Additional file 1: Fig. S10B). These 
results were further validated with the raw data and could be potential regulatory sites 
for the DEGs.

Besides inferring the causal relationships between COVID-19 influenced peaks and 
genes, we can also compare the correlations among severity groups to discover dysfunc-
tion in severely infected groups. Thus, we generated the pseudo-bulk data per cell type 
for each severity group separately and calculated Spearman’s correlation between genes 
and peaks within a 150 k bp distance. The inconsistency in correlation level might indi-
cate the dysfunction in regulation between genes and peaks. For example, in monocytes, 
EIF4B and its remote peaks chr12-52884739–52885239 are positively correlated in 
healthy control and moderately infected patients but are negatively correlated in severely 
infected patients (Fig. 5D). Such findings indicate that the peak’s positive regulation is 
destroyed in severely infected patients. One potential rationale is that the enhancing 
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Fig. 5  Application to COVID-19 dataset discovered cell type specific changes. Two trained models (BMMC 
and PBMC) were applied to this COVID-19 dataset. Healthy volunteers’ and patients’ PBMC transcriptome 
and chromatin accessibility were profiled independently to study immune system changes based on the 
severity of COVID-19 infection. A UMAP visualization of the COVID-19 dataset labeled by cell type, modality, 
sample ID, and severity. B Label transfer accuracy indicates that our embedding is consistent with the original 
cell type annotation on the majority cell types. Cell types with bad accuracy are due to only a few cells. C 
Example of regulatory element inferring from NK cells (upper) and monocytes (lower). D Dysfunction of EIF4B 
may be due to the change in the regulatory role of correlated open regions
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protein was competitively replaced by another inhibitory protein during the enhancer 
and promoter interaction, leading to the negative correlation between openness and 
expression.

Discussion
We constructed this single-cell resolution multi-omics data integration model by 
designing the flexible margin contrastive loss based on the graph’s shortest distance. 
We successfully applied it to human BMMC scRNA-seq, scATAC-seq, and epitope 
data integration. In benchmarking its performance, our model ranked among the top 
existing algorithms based on silhouette score, FOSCTTM score, and label transfer 
accuracy. Since it can be trained in multiple batches and in loss design, the model can 
distinguish batch variation from actual biological variation and generate a better co-
embedding space while mixing batches well. With the single-cell resolution and batch 
effect-removed embedding, better pseudo-bulk data can be generated for correlation-
based cis-regulatory element inferring in integrating scRNA-seq and scATAC-seq. 
Using a real COVID-19 dataset, this model showed how it can fill the gap in current 
multi-omics data analysis.

In designing the model, we also tried using more complicated architecture, including 
convolutional layers and multi-head attention layers [45]. A previous transcriptome pre-
diction model demonstrated the success of the attention mechanism [46], so we tried 
using peaks as scATAC-seq input and multi-head attention to extract the low-dimen-
sional representation. After training, the attention model performed quite well, but its 
generality and performance were not as good as our final fully-connected neural net-
work which is also light and fast. Theoretically, complex models with more parameters 
are prone to overfit the training data, especially when the cell numbers are limited in our 
case. In a standard single-cell RNA-seq analysis pipeline, Principal Component Analysis 
can capture the main variance decently with only linear transformation. Thus, we think 
fully-connected layers with linear transformation and activation function have enough 
complexity to solve the integration problem while maintaining the generality. Neverthe-
less, it would be worth experimenting with an attention-based model using larger sam-
ple sizes and computational capacity in the future.

Our supervised model does have obvious drawbacks. Although we demonstrated its 
generalizability by showing that our BMMC trained model can be successfully applied 
to different donors, sequencing sites, and even PBMC tissues, application to entirely dif-
ferent tissues still requires additional training on the specific tissue. However, we argue 
that this additional training is easily achievable. First, the number of paired single-cell 
multi-omics data is growing, providing sufficient tissue- and organism-specific training 
samples. Second, only a few hyper-parameters, including margin altitude m0 , learning 
rate r , and weight of contrastive loss � , need to be tuned. Lastly, the training process 
is standardized and easily executable. But although applying the algorithm to a differ-
ent dataset is easy, we are still working on more generalizable and unsupervised multi-
modal integration models.

We also plan to generalize our two-omics integration framework to multiple omics 
integration. This is beneficial when researchers have more than two sets of omics data 
in hand for integration analysis. This aim is achievable because there are merging 
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techniques like scNMT-seq [10] and scTrio-seq [47] that measure three omics modali-
ties, which can be used as training datasets. By generalizing the Siamese pair generation 
and training process to any number of omics data, the MinNet framework is capable of 
performing more than two omics integration if the training data is available.

Another future improvement involves the gene activity score. This transformation 
of peaks is known to lose information [48] and algorithms like GLUE and bindSC 
therefore perform integration while optimizing the feature transformation between 
peaks and genes. Maintaining peak information makes the model more accurate, so 
we will consider using this design to improve our current MinNet model.

Conclusions
MinNet is a novel deep-learning framework for single-cell multi-omics sequencing 
data integration. With our graph-based flexible margin contrastive loss, it reached 
single-cell resolution integration and ranked top among publicly available methods 
in benchmarking. Moreover, with special attention to batch effect, MinNet poses the 
unique ability in distinguishing batch and biological variances as compared to other 
methods. With our simplified and standardized training process, users can easily 
train their model to achieve high specificity with respect to the research organisms 
or tissues. With MinNet and model-based cis-regulatory element inferring, users 
can explore the potential causal interplays between epigenome and transcriptome, as 
we demonstrated in the COVID-19 study. Finally, MinNet offers a novel and feasible 
framework to solve integration problem with the Siamese neural network.

Methods
The Siamese neural network

The model simultaneously receives as inputs one cell from the single-cell modality 
1 and another from the single-cell modality 2, denoted as x ∈ R

1×p1 , y ∈ R
1×p2 . p1 is 

the number of features in modality 1, and p2 is the number of features in 2. The x 
and y will go through the encoding module first to get x′

, y′ ∈ R
1×h , h is the num-

ber of units in the hidden layer. Then, x′
, y′ ∈ R

1×h are linearly transformed into 
xpred, ypred ∈ R

1×k vectors representing the probability of cells belonging to each of 
the k cell types. Cross entropy loss is used for the final classification loss Ll:

where labelx stands for the cell type label. Ll(ypred, labely) is defined in the same 
way. Meanwhile, x′

, y′ ∈ R
1×h is linearly transformed toR1×32 vectors representing its 

position on the final 32-dim joint embedding space. The contrastive loss is calculated 
as follows:

Ll xpred, labelx = −

k

c=1

I(c, labelx) · log
exp xpred,c
k
i=1 exp xpred,i

,

I(c, labelx) =

{

0, if c �= labelx
1, if c = labelx
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u is the label indicating whether the two cells are corresponding pairs ( u=0) or not 
( u=1). D(•)defines the distance between x′ and y ′ . m here is the margin predefined 
between each pair of different cells using the shortest distance between the two in a 
KNN graph generated in the preprocessing step (explained next). Intuitively, cells far 
away from each other in the graph have larger margin values; highly similar cells that 
are close in the graph have smaller margin values (Figure 1B). Thus, the total loss is:

The is the weight between classification loss and contrastive loss.

Determining the flexible margin from KNN graph

During training data processing, one of the omics data is processed with batch correc-
tion, principal component decomposition (PCA), and KNN graph construction. The 
modality chosen is scRNA-seq for 10X Multiome and Cite-seq training data, because 
it presents the variation in data better in most cases. With the graph, the shortest dis-
tance dijbetween all cell pairs is calculated as part of the margin mij . The contrastive 
loss margin mij of cell i from modality 1 and cell j from modality 2 is defined as:

m0 is a constant controlling the scale of contrastive loss and can be the tunable hyper-
parameter. c is used to increase the penalty of two cells of different cell types being close 
to each other in the co-embedding space. Value 3.0 worked in all our scenarios.

Training process

The two preprocessed feature matrices are scaled by genes to unit variance and zero 
mean, followed by clipping values larger than 10. We use the Adam optimizer to train 
the model with user-provided hyper-parameter values including m0 QUOTE, � , and 
learning rate. Before each epoch, the two matrices are shuffled, and all cells are ran-
domly assigned either a positive (same cell in different modalities) or negative (differ-
ent cells) cell pair to calculate the contrastive loss. The number of negative pairs and 
positive pairs is controlled near 3:1.

Two assigning strategies were tried and performed equally well. The first is the 
between-modality strategy, in which negative pairs are different cells in different 
modalities. The second is the within-modality strategy, in which negative pairs are dif-
ferent cells in the same modality. Because the positive pairs are the same for the two 
strategies, both within and between-modality co-embedding space correction works 
well. In the final model, we chose the between-modality strategy for the scRNA-seq 
and scATAC-seq integration tasks, and the within-modality strategy for the scRNA-
seq and cell surface protein integration tasks.

Lc
(

x′, y′,u
)

= (1− u) · D
(

x′, y′
)2

+ u · max
{

0,m− D
(

x′, y′
)2
}

,

L
(

x, y
)

= Ll
(

xpred, labelx
)

+ Ll
(

ypred, labely
)

+ �× Lc,

mij = m0 ∗
(

dij + cij
)

, cij =

{

0, if i and j from the same cell type
3, if i and j from different cell type
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Data processing

The preprocessed and well-annotated bone marrow mononuclear cells data from the 
NeurIPS 2021 competition can be downloaded in GSE194122. The AnnData object 
was loaded in Python 3.6.13 with AnnData 0.7.6. All Scanpy-based processing men-
tioned below is done with Scanpy 1.7.2.

NeurIPS 2021 competition 10X multiome training data

Samples from sequencing sites 1, 2 and 3 were taken as the training dataset, including 
s1d1, s1s3, s2d1, s2d4, s2d5, s3d3, s3d6, and s3d10. S stands for sequencing site and d 
stands for donor number. First, we performed feature and cell selection. Highly vari-
able genes in scRNA-seq data of all batches were determined by Scanpy pp.highly_
variable_genes function with Cell Ranger flavor. Only genes marked as highly variable 
genes in more than one batch were kept. We also kept cell surface protein genes as the 
features for training. We then performed stricter cell filtering based on mitochondria 
gene expression proportion (< 4), number of genes expressed (100–4000), number of 
peaks (1000–80,000), and the total number of fragments (1000–300,000). This is the 
final feature set and cell set for training.

We used the already processed gene activity matrix saved in the Anndata obsm 
gene_activity. It is the count sum of peaks 2 kb upstream of the selected genes’ TSS 
region, calculated by Seurat v3. Together with the feature-selected scRNA-seq data, 
log-transformed per cell normalization was performed to correct sequencing depth 
difference. These were the final input of two matrices for model training.

To determine the margin value between cell pairs, we constructed a KNN graph 
using the scRNA-seq data. ComBat implemented in Scanpy was used to perform 
batch correction, followed by PCA and K nearest neighbor graph construction 
saved as a large sparse matrix in the AnnData object named connectivity. Distances 
between neighbor cells were then estimated by 1.01—connectivity value. To calculate 
the shortest distance between all pairs from the large sparse matrix efficiently, Scipy 
1.5.4 dijkstra function was used to generate the n× n matrix recording all shortest 
distances for training.

NeurIPS 2021 competition cite‑seq training data

Samples from sequencing sites 1, 2 and 3 were taken as the training dataset, includ-
ing s1d1, s1d3, s2d1, s2d4, s2d5, s3d1, and s3d6. We performed similar feature and 
cell selection as 10X Multiome data in GEX data. Highly variable genes in scRNA-
seq data of all batches were determined by Scanpy pp.highly_variable_genes function 
with Cell Ranger flavor. Only genes marked as highly variable genes in more than two 
batches were kept. We also kept cell surface protein genes as the features for train-
ing. We then performed stricter cell filtering based on mitochondria gene expres-
sion proportion (< 15), the number of genes expressed (75–1200), and the number of 
peaks (75–1500). All features in ADT data were kept and cell orders were consistent 
between modalities. The final feature and cell-selected matrices were under log-trans-
formed normalization before training.
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The same strategy was applied as the 10X Multiome dataset to determine the short-
est distances between all cell pairs.

NeurIPS 2021 competition 10X Multiome test data

Samples from s1d2 and s3d7 were taken as the first testing set. Samples from s4d1, s4d8, 
and s4d9 were taken as the second testing set. Log-transformed transcriptome matrix 
was used as one of the inputs for the trained model. The gene activity matrix was from 
the already processed samples saved in the Anndata obsm gene_activity. Before applying 
the neural network, we selected the features in training and compensated for missing 
features with all 0 values. Then the two matrices were scaled by genes to unit variance 
and zero mean, followed by clipping values larger than 10. Finally, the test mode of the 
trained model was run to generate the 32-d co-embedding space coordinate for every 
cell.

NeurIPS 2021 competition Cite‑seq test data

Samples from s1d2 and s3d7 were taken as the first testing set. Samples from s4d1, s4d8, 
and s4d9 were taken as the second testing set. The same process was done as the 10X 
Multiome dataset, but we used the ADT data instead of the gene activity matrix.

Human peripheral blood mononuclear cells (PBMCs) Multiome data from 10X Genomics

The dataset can be downloaded on 10X Genomics website at https://​suppo​rt.​10xge​nom-
ics.​com/​single-​cell-​multi​ome-​atac-​gex/​datas​ets/1.​0.0/​pbmc_​granu​locyte_​sorted_​10k. 
We followed all the same processing of Seurat integration tutorial document at https://​
satij​alab.​org/​seurat/​artic​les/​atacs​eq_​integ​ration_​vigne​tte.​html. The gene activity matrix 
was calculated using Signac 1.1.1 summing up counts 2  kb upstream of the gene TSS 
region. Gene activity matrix and genes count matrix were saved as HDF5 files together 
with the metadata. Then the files were loaded in Python and underwent log-transformed 
normalization using Scanpy. The subsequent processes were the same as those applied 
to the NeurIPS 10X Multiome data.

Human brain multiome data from 10X genomics

The dataset can be downloaded from the 10X Genomics website at https://​www.​10xge​
nomics.​com/​resou​rces/​datas​ets/​frozen-​human-​healt​hy-​brain-​tissue-​3-k-​1-​stand​ard-2-​
0-0. Preprocessing was done by filtering cells in RNA-seq that had less than 1000 counts, 
larger than 25,000 counts or high mitochondria proportion (> 10%), and filtering cells 
in ATAC-seq with fragment counts less than 5000 or larger than QUOTE. Only cells 
remaining in both modalities were kept. Dimension reduction and clustering were done 
following the Surat default pipeline. The gene activity matrix was calculated using Seurat 
v3 summing up counts 2 kb upstream of the gene TSS region. The gene activity matrix 
and genes count matrix were saved as HDF5 files together with the metadata. Then the 
files were loaded in Python and underwent log-transformed normalization using Scanpy. 
The subsequent processes were the same as those applied to the NeurIPS 10X Multiome 
data.

https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://satijalab.org/seurat/articles/atacseq_integration_vignette.html
https://satijalab.org/seurat/articles/atacseq_integration_vignette.html
https://www.10xgenomics.com/resources/datasets/frozen-human-healthy-brain-tissue-3-k-1-standard-2-0-0
https://www.10xgenomics.com/resources/datasets/frozen-human-healthy-brain-tissue-3-k-1-standard-2-0-0
https://www.10xgenomics.com/resources/datasets/frozen-human-healthy-brain-tissue-3-k-1-standard-2-0-0
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JEM COVID‑19 multi‑omics profiling scRNA‑seq data

The fully processed scRNA-seq AnnData H5AD file can be downloaded at https://​www.​
covid​19cel​latlas.​org/​index.​patie​nt.​html. Metadata is downloaded at their GitHub page at 
https://​github.​com/​ajwilk/​COVID_​scMul​tiome. We performed log-transform normali-
zation with the processed data. To stay consistent with scATAC-seq data, we kept only 
shared donor batches and re-annotated cell types.

JEM COVID‑19 multi‑omics profiling scATAC‑seq data

The raw data can be downloaded at GSE174072. The fragment files were processed using 
ArchR 1.0.1 following the same quality control as mentioned in the paper. The batch-
specific TSS enrichment score and the minimum number of fragments cutoff can be 
found on their GitHub page mentioned above. It is worth mentioning that although these 
researchers claim the sequencing reads were aligned with the hg19 reference genome, 
we found that using only hg38 can yield the correct TSS enrichment score. Thus, hg38 
was used in all following related processes. We followed the same data processing pipe-
line in the paper, removing doublets, clustering, batch correction with Harmony, and 
calling peaks with MACS2. To follow the same practice as the training dataset, we 
used the Seurat 3.1.1 CreateGeneActivityMatrix function to generate the gene activity 
matrix instead of using the ArchR-provided gene activity matrix. The saved HDF5 file 
was loaded in Python and compiled into AnnData object together with the metadata 
from their GitHub page and went through log-transformed normalization. Again, to stay 
consistent with scRNA-seq data, the cell type was re-annotated and only shared batches 
were kept. Finally, the two log-transformed matrices provided to the model followed the 
same pipeline as other test datasets. Summary statistics of all datasets mentioned above 
are available in Additional file 2: Table S2.

Running of all algorithms

GLUE 0.1.1, bindSC 1.0.0, Seurat 3.1.1, UnionCom 0.2.3, Liger 1.0.0, its Online-iNMF 
and UINMF version were all included to obtain a systematic benchmarking. Due to the 
memory outflow problem, UnionCom failed to get the results with GLUE-provided 
codes on their GitHub page. All others were implemented successfully according to the 
authors’ tutorial. All codes are available at GitHub.

We followed GLUE’s tutorial at https://​scglue.​readt​hedocs.​io/​en/​latest/​tutor​ials.​html 
with all default settings. We started from raw test data to run the data preprocessing and 
model training steps. The final cell co-embedding space was saved for all benchmarking. 
GLUE was run eight times with different random seeds.

We followed bindSC’s tutorial at https://​htmlp​review.​github.​io/?​https://​github.​com/​
KChen-​lab/​bindSC/​blob/​master/​vigne​ttes/​CITE-​seq/​CITE_​seq.​html for Cite-seq data 
integration and https://​htmlp​review.​github.​io/?​https://​github.​com/​KChen-​lab/​bindSC/​
blob/​master/​vigne​ttes/​method_​eval/​method_​eval.​A549.​html for 10X Multiome data 
integration task. The final embedding used was the bi-CCA generated results. BindSC 
was run eight times with different random seeds.

We followed Seurat’s tutorial at https://​satij​alab.​org/​seurat/​artic​les/​atacs​eq_​integ​
ration_​vigne​tte.​html for both Cite-seq and 10X Multiome data integration. The final 

https://www.covid19cellatlas.org/index.patient.html
https://www.covid19cellatlas.org/index.patient.html
https://github.com/ajwilk/COVID_scMultiome
https://scglue.readthedocs.io/en/latest/tutorials.html
https://htmlpreview.github.io/?https://github.com/KChen-lab/bindSC/blob/master/vignettes/CITE-seq/CITE_seq.html
https://htmlpreview.github.io/?https://github.com/KChen-lab/bindSC/blob/master/vignettes/CITE-seq/CITE_seq.html
https://htmlpreview.github.io/?https://github.com/KChen-lab/bindSC/blob/master/vignettes/method_eval/method_eval.A549.html
https://htmlpreview.github.io/?https://github.com/KChen-lab/bindSC/blob/master/vignettes/method_eval/method_eval.A549.html
https://satijalab.org/seurat/articles/atacseq_integration_vignette.html
https://satijalab.org/seurat/articles/atacseq_integration_vignette.html
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embedding space is the UMAP dimensional reduction space following Seurat integra-
tion pipeline.

Liger and its online iNMF version were implemented for 10X Multiome data integration, 
following the tutorials at https://​htmlp​review.​github.​io/?​https://​github.​com/​welch-​lab/​
liger/​blob/​master/​vigne​ttes/​walkt​hrough_​rna_​atac.​html and http://​htmlp​review.​github.​
io/?​https://​github.​com/​welch-​lab/​liger/​blob/​master/​vigne​ttes/​online_​iNMF_​tutor​ial.​html. 
Cite-seq data was integrated using Liger and its UINMF version at http://​htmlp​review.​
github.​io/?​https://​github.​com/​welch-​lab/​liger/​blob/​master/​vigne​ttes/​UINMF_​vigne​tte.​
html. Each model was run eight times with different random seeds.

All the UMAP visualizations were done either using the software’s available functions or 
Scanpy default settings.

Benchmark criteria

Silhouette score was used to evaluate how well cell types were clustered and modalities were 
mixed. It is a measure of how similar an object is to its own cluster (cohesion) compared to 
other clusters (separation). The silhouette ranges from − 1 to + 1, where a high value indicates 
that the object is well matched to its own cluster and poorly matched to neighboring clusters. 
The silhouette score was calculated using Scikit-learn 0.24.2. To measure how well cell types 
were clustered, we used the raw silhouette score value. For modality mixing and batch mixing, 
1− silhouettevalue QUOTE was used, i.e., the higher the score, the better the performance.

Rand index is a measure of similarity between two sets of data clustering. Adjusted rand 
index was calculated using Sklearn 1.0.1 adjusted_rand_score function comparing unsuper-
vised clustering and cell type annotations. Unsupervised clustering was done using Scanpy 
tl.leiden function with different resolutions so that all algorithms received the evaluation on 
cluster numbers from eight to the number of cell types in each dataset.

FOSCTTM (Fraction of samples closer than the true match) score was used to evalu-
ate the co-embedding space at single-cell resolution. Assuming two single-cell omics data 
profiled the same set of n cells, when cells are projected into the co-embedding space, the 
FOSCTTM we calculated was defined as:

where ni2 means the number of cells in the second modality that are closer to the ithcell in 
the first modality than its true matches in modality 2.

Label transfer accuracy is used to measure the performance of all co-embeddings on this 
common task. The transfer is measured from scRNA-seq cell type annotations to either 
scATAC-seq or cell surface protein data. While Seurat used its own label transfer method, all 
other algorithms’ label transfer is done by weighted K nearest neighbors. That is, the label of 
cell from the second modality is predicted as the max weighted vote of its K nearest cells in 
scRNA-seq. K is chosen for each algorithm when it reached the best performance. With the 
predicted cell type label and the true label, the label transfer accuracy is defined as:

FOSCTTM =
1

n

n
∑

i=1

ni2,

Accuracy =
1

n

n
∑

i=1

I(xipred , labelx
i
)

https://htmlpreview.github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/walkthrough_rna_atac.html
https://htmlpreview.github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/walkthrough_rna_atac.html
http://htmlpreview.github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/online_iNMF_tutorial.html
http://htmlpreview.github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/online_iNMF_tutorial.html
http://htmlpreview.github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/UINMF_vignette.html
http://htmlpreview.github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/UINMF_vignette.html
http://htmlpreview.github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/UINMF_vignette.html
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Data smoothing, mini‑bulk synthesis, and cis‑regulatory element inference

Correlation-based regulatory element inferring is always weakened because of the 
high dropout rate. To solve this, we first undertook data smoothing and generated 
transcriptome and chromatin accessibility mini-bulk data with the single-cell resolu-
tion co-embedding space.

Smoothing

A nearest neighbor graph was constructed based on the model generated co-embed-
ding space using Scanpy pp.neighbors function with default parameters and different 
number of neighbors, including 5, 10, 15 and 20. The raw count matrix was multiplied 
by the binarized connectivity matrix to complement missing values by neighbors. The 
connectivity matrix was binarized by two steps: (1) cells are the nearest neighbors of 
the target cell; (2) the distance between them should be smaller than the 95% distance 
percentile value. Cells passing the criteria were used to complement the target miss-
ing values by keeping the value as 1 in the binary connectivity matrix.

Mini‑bulk

We used Scipy 1.5.3 pdist function to perform hierarchical clustering of all cells in 
the two modalities. Then with the hierarchical order and cell types, cells were cut into 
N = 100 mini-bulks, and each mini-bulk was ensured to contain only one cell type. 
The mini-bulk matrix was generated with scglue 0.1.1 aggregate_obs function.

Next, genes of interest were selected and their correlation with their 150  kb 
upstream peaks were calculated from the mini-bulk data. The abnormally high corre-
lations between remote peaks and genes might indicate cis-regulatory relationships. 
Correlation results were visualized with box and violin plots using ggplot2 in R.

pcHi‑C data processing

pcHi-C data is available at https://​ars.​els-​cdn.​com/​conte​nt/​image/1-​s2.0-​S0092​86741​
63132​28-​mmc4.​zip and https://​osf.​io/​e594p/. Our codes were based on GLUE’s pro-
cessing and scglue functions but simplified to only extract the pcHi-C evident pairs. 
Only evidence of overlapped cell types was chosen to be validated. Then scglue was 
used to map these peak-gene pairs to the 10X Multiome PBMC dataset peak-gene 
pairs. The evidence was saved as.graphml file for reading and writing efficiency.

Enrichment analysis with Homer

Peaks of interest were listed in BED format as the input for Homer v4.11.1. Function 
findMotifsGenome were applied to enrich the peaks of interest in known motifs. In 
some cases, we had only a few peaks, so the statistical test was not reliable. In such 
cases, we only trusted the information regarding which motifs were matched with 
most of the peaks.

Data visualization

All visualization figures were done using ggplot2. The example genome tracks were 
plotted with ArchR plotBrowserTrack and Seurat v3 CoveragePlot function.

https://ars.els-cdn.com/content/image/1-s2.0-S0092867416313228-mmc4.zip
https://ars.els-cdn.com/content/image/1-s2.0-S0092867416313228-mmc4.zip
https://osf.io/e594p/
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