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Abstract 

Background:  Old mosquitoes are more likely to transmit malaria than young ones. 
Therefore, accurate prediction of mosquito population age can drastically improve 
the evaluation of mosquito-targeted interventions. However, standard methods for 
age-grading mosquitoes are laborious and costly. We have shown that Mid-infrared 
spectroscopy (MIRS) can be used to detect age-specific patterns in mosquito cuticles 
and thus can be used to train age-grading machine learning models. However, these 
models tend to transfer poorly across populations. Here, we investigate whether 
applying dimensionality reduction and transfer learning to MIRS data can improve the 
transferability of MIRS-based predictions for mosquito ages.

Methods:  We reared adults of the malaria vector Anopheles arabiensis in two insectar‑
ies. The heads and thoraces of female mosquitoes were scanned using an attenuated 
total reflection-Fourier transform infrared spectrometer, which were grouped into two 
different age classes. The dimensionality of the spectra data was reduced using unsu‑
pervised principal component analysis or t-distributed stochastic neighbour embed‑
ding, and then used to train deep learning and standard machine learning classifiers. 
Transfer learning was also evaluated to improve transferability of the models when 
predicting mosquito age classes from new populations.

Results:  Model accuracies for predicting the age of mosquitoes from the same popu‑
lation as the training samples reached 99% for deep learning and 92% for standard 
machine learning. However, these models did not generalise to a different popula‑
tion, achieving only 46% and 48% accuracy for deep learning and standard machine 
learning, respectively. Dimensionality reduction did not improve model generalizability 
but reduced computational time. Transfer learning by updating pre-trained models 
with 2% of mosquitoes from the alternate population improved performance to ~ 98% 
accuracy for predicting mosquito age classes in the alternative population.

Conclusion:  Combining dimensionality reduction and transfer learning can reduce 
computational costs and improve the transferability of both deep learning and stand‑
ard machine learning models for predicting the age of mosquitoes. Future studies 
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should investigate the optimal quantities and diversity of training data necessary for 
transfer learning and the implications for broader generalisability to unseen datasets.

Keywords:  Anopheles arabiensis, Convolutional neural network, Standard machine 
learning, Generalisability, Dimensionality reduction, Transfer learning

Background
Malaria currently kills approximately one child every minute [1]. In 2020, there were 
241 million cases and 627,000 deaths, nearly all in Sub-Saharan Africa [1]. Currently, 
the most widespread and cost-effective method of malaria prevention is based on con-
trolling the mosquitoes that transmit the disease. Since 2000, insecticide-treated nets 
(ITNs) and indoor residual spraying (IRS) have so far contributed nearly 80% of all 
global malaria decline [2]. However, the direct impact of individual control programs 
on the mosquito populations and on malaria transmission at the sites of intervention 
remains difficult to measure. To guide further efforts against the disease, evaluating 
the performance of these and other vector control interventions is crucial for meas-
uring their impact in different settings. The World Health Organization (WHO) now 
recommends that surveillance be integrated as a core component of malaria control 
programs [3].

This necessitates scalable, simple-to-implement and low-cost methods for quantify-
ing key biological attributes of mosquitoes, such as age, infection status, and blood meal 
preferences, which are essential for understanding pathogen transmission dynamics. 
The age and survivorship of key Anopheles vectors are especially important in determin-
ing the likelihood that the mosquitoes will live long enough to allow complete parasite 
development (the extrinsic incubation period), and subsequent transmission to humans 
[4]. The assessments are essential for monitoring the impacts of interventions such as 
ITNs and IRS, which primarily kill adult mosquitoes in the field [5].

The current "gold standard" for estimating the age of malaria mosquitoes is to dissect 
their ovaries to estimate how many times they have laid eggs [5, 6]. Despite their low 
technical demands, such procedures are time-consuming and labour-intensive. Age-
grading dissections can also be imprecise because of gonotrophic discordance, which is 
common in Afrotropical malaria vectors [7], or of their reliance on the availability of 
host blood meals, which determines when and how frequently a mosquito blood-feeds.

We and others have demonstrated that spectroscopic analysis of mosquitoes using 
near infrared (12,500–4000  cm−1) or mid-infrared (MIR) (4000–400  cm−1) frequen-
cies can identify key biochemical signals that vary with age [8, 9]. These methods, when 
combined with specific machine learning (ML) techniques, allow for rapid estimation of 
mosquito ages [9, 10].

Despite early successes, these infrared-based applications have limitations such as 
their portability to mosquitoes from different locations or laboratories [10] and the sub-
stantial computational requirements for retraining such models. Indeed, the inherent 
variability of mosquitoes from different environmental and genetic backgrounds may 
limit the generalisability of models trained on infrared spectra. The models could also 
be misled by signals in MIRS that are associated with confounding factors introduced 
during sampling (e.g., atmospheric contamination with water vapour, temperature vari-
ations and high humidity in the laboratory), thus learning features that are not strictly 
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related to the biochemical trait being investigated. Therefore, machine learning models 
must be regularly updated with new data from target mosquito populations.

To increase the generalisability of ML models for a given training dataset, a variety 
of spectral smoothing and regularisation techniques have been tested, such as penal-
ised regression [11]. These methods are known to be computationally efficient and to 
improve generalisability [11]. Deep learning (DL) techniques such as convolutional neu-
ral networks (CNN) have recently been used on large spectra data [10], improving gen-
eralisability through transfer learning (i.e., updating a pre-trained model with a small 
amount of new data from a different target population). However, when trained on 
large datasets, such techniques remain computationally expensive and may necessitate 
repeated sampling of hundreds of mosquitoes from different populations and environ-
ments to allow successful generalisability. Alternatively, since standard ML models are 
less complex than DL, computational time can be kept to a minimum. DL methods are 
versatile extensions of machine learning that are ideal for complex or large datasets [12]. 
But are prone to overfitting, such as predicting the training dataset well but failing on 
previously unseen or new data.

However, unsupervised learning algorithms, which find patterns independent of 
pre-defined target labels, can aggregate, cluster or eliminate features while retaining 
dominant statistical information before machine learning training on the spectra data. 
The resulting dimensionality reduction may improve generalisability, reducing overfit-
ting, increasing the signal-to-noise ratio of the data, as well as lowering computational 
requirements for training machine learning models. Examples include principal compo-
nent analysis (PCA) [13–15], which projects a large number of variables into distinct 
categories that summarise data into a small number of independent principal compo-
nents, and t-distributed Stochastic Embedding (t-SNE) [16], which clusters datapoints 
based distances between all their input dimensions.

This study assessed whether the generalisability and computational costs of MIRS-
based models for predicting the age classes of female An. arabiensis mosquitoes reared 
in two different insectaries in two locations could be improved by combining dimen-
sionality reduction and transfer learning methods.

Methods
Collection of mosquito spectra data

We analysed mid-infrared spectra from two strains of An. arabiensis mosquitoes 
obtained from two different insectaries, one from University of Glasgow, UK and 
another from Ifakara Health Institute, Tanzania. The same data had previously been 
used to demonstrate the capabilities of mid-infrared spectroscopy and CNN for distin-
guishing between species and determining mosquito age [10]. The insectary conditions 
under which the mosquitoes were reared (temperature 27 ± 1.0 °C, and relative humidity 
80 ± 5%) have been described elsewhere [17].

Mosquitoes were collected from day 1 to day 17 after pupal emergence at both labo-
ratories and divided in two age classes (1–9 day-olds and 10–17 day-olds). Silica gel was 
used to dry the mosquitoes. For each chronological age in each laboratory, ~ 120 samples 
were measured by MIRS on each day. The heads and thoraces of the mosquitoes were 
then scanned with an attenuated total reflectance Fourier-Transform Infrared (FTIR) 
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ALPHA II and Bruker Vertex 70 spectrometers both equipped with a diamond ATR 
accessory (BRUKER-OPTIC GmbH, Ettlingen, Germany). The scanning was performed 
in the mid-infrared spectral range (4000–400 cm−1) at a resolution of 2 cm−1, with each 
sample being scanned 16 times to obtain averaged spectra as previously described [9, 
18]. As a result, the spectral dataset contained 1665 spectral features (Fig. 1).

Data pre‑processing

The spectral data were cleaned to eliminate bands of low intensity or significant atmos-
pheric intrusion using the custom algorithm [19]. The final datasets from Ifakara and 
Glasgow contained 1720 and 1635 mosquito spectra, respectively. In these two datasets, 
the chronological age of An. arabiensis was categorised as 1–9 days old (i.e. young mos-
quitoes representative of those typically unable to transmit malaria) and 10–17 days old 
(i.e. older mosquitoes representative of those potentially able to transmit malaria) [20].

To improve the accuracy and speed of convergence of subsequent algorithms, data 
were standardised by centring around the mean and scaling to unit variance [21].

Dimensionality reduction

Principal component analysis (PCA) and t-distributed stochastic neighbour embedding 
(t-SNE) were used separately to reduce the dimensionality of the data [13–16]. Both 
PCA and t-SNE were implemented using the scikit-learn library [21].

Separately, t-SNE was used to convert high-dimensional Euclidean distances between 
spectral points into joint probabilities representing similarities. To cluster the data into 
three features, the embedded space was set to 3, because the Barnes-hut algorithm in 
t-SNE is limited to only 4 components. Perplexity was set to 30 as the number of nearest 
neighbours, which means that for each point, the algorithm took the 30 closest points 
and preserved the distances between them. For smaller datasets perplexity values rang-
ing from 5 and 50 are thought to be optimal for avoiding local variations and merged 
clusters caused by small or large perplexity values [16]. The learning rate for t-SNE is 
generally in the range of 10–1000 [21], thus it was set to 200 scalar.

Machine learning training

Deep learning

DL models were trained and used to classify the An. arabiensis mosquitoes into the 
two age classes (1–9 or 10–17 day-olds). The intensities of An. arabiensis mid-infrared 

Fig. 1  The Average mid-infrared spectra of dried mosquitos aged 1–9 days and 10–17 days. The supervised 
learning was trained on the slight difference between mosquitos aged 1–9 and 10–17 days
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spectra (matrix of features) were used as input data, while the model outputs were the 
mosquito age classes.

Three different deep learning models were trained; (1) Convolutional neural network 
(CNN) model without dimensionality reduction, (2) Multi-Layer Perceptron (MLP) with 
PCA as dimensionality reduction, and (3) MLP with t-SNE as dimensionality reduction. 
For all models, a SoftMax layer was added to transform the non-normalized outputs of 
K-units in a fully connected layer into a probability distribution of belonging to either 
one of two age classes (1–9 or 10–17 days). Moreover, to compute the gradient of the 
networks, stochastic gradient boosting was used as an optimisation algorithm [22], and 
categorical cross-entropy loss was used for the classifier’s metric.

To begin, we trained a one-dimensional CNN model with four convolutional layers 
and one fully connected layer when the dimensionality of the data was not reduced 
(Fig.  2A), and therefore consisting of 1666 training features from the data. The one-
dimensional CNN was used because it is effective at deriving features from fixed-lengths 
(i.e. the wavelengths of the mid-infrared spectra), and it has been previously been used 

Fig. 2  A schematic representation of a deep learning models that uses mosquito spectra as input to predict 
mosquito age classes. A CNN—no dimensionality reduction is applied: standardised spectral features are fed 
as input through four different convolutional layers, followed by one fully connected layer, with the predicted 
age classes shown as the output layer. B MLP—dimensionality reduction is used: spectral features that have 
been reduced in dimension using PCA or t-SNE are fed as input through 6 fully connected layers, with the 
predicted age classes shown as the output layer
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efficiently with spectral data [17]. To extract features from spectral signals, the deep 
learning architecture used convolutional, max-pooled and fully connected layers. The 
convolutional operation was carried out with kernel sizes (window) of 8, 4, and 6, and 
a kernel window shift size (stride) of either 1 or 2. For each kernel size, 16 filters were 
used to detect and derive features from the input data. Furthermore, given the size of 
the training data, the fully connected layer consisted of 50 neurons to reduce the model’s 
complexity.

Moreover, batch normalisation layers were added to both models to improve model 
stability by keeping mean activation close to 0 and activation standard deviation close 
to 1. To reduce the likelihood of overfitting, dropout was used during model training to 
randomly and temporarily remove units from the network at a rate of 0.5 per step. Fur-
thermore, after 50 rounds, early stopping was used to halt training when a validation loss 
stopped improving.

Dimensionality reduction

We trained two additional deep learning models, in this case Multi-Layer Perceptron 
(MLP), with PCA or t-SNE transformed input data (Fig. 2B). The models were trained 
with only fully connected layers (n = 6) containing 500 neurons each, given the limited 
number of training features to ensure performance and stability. To control for overfit-
ting, the procedure was similar to that of the CNN above, except that early stopping was 
used to halt training when a validation loss stopped improving after 500 rounds.

Transfer learning

The Ifakara dataset was used as the source domain for pre-training the ML models. The 
Ifakara dataset was divided into training and test sets, and estimator performance was 
assessed using K-fold cross-validation (k = 5) [23], (Fig.  3). We therefore determined 
what percentage of the new spectra data from the alternate location as target domain 
was required for ML models to learn the variability between the insectaries. To put 
transfer learning options to the test, either 82 or 33 spectra were randomly selected from 
the 1635 of the Glasgow data, accounting for 5% and 2% of the dataset, respectively. The 

Fig. 3  Schematic illustrating the process of data splitting, model training, cross-validation, and transfer 
learning
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learning process in this case relied on a pre-trained model (trained with Ifakara data), 
avoiding the need to start training from scratch (Fig.  3). The ML models pre-trained 
with Ifakara dataset were fine-tuned using 2% or 5% subsets of the Glasgow dataset. The 
output was compared to that of a model trained solely with Ifakara data (i.e., no transfer 
learning).

Precision, recall, and F1-scores were calculated from predicted values for each age 
class to demonstrate the validity of the final models in predicting the unseen Glasgow 
data. Keras and TensorFlow version 2.0 were used for deep learning process [24, 25].

Standard machine learning

We also compared the prediction accuracy of CNN  and MLP to that of a standard 
machine learning model trained on spectra data transformed by PCA or t-SNE. Different 
algorithms were compared, including K-Nearest Neighbour, logistic regression, support 
vector machine classifier, random forest classifier, and a gradient boosting (XGBoost) 
classifier. The model with the highest accuracy score for predicting mosquito age classes 
was optimised further by tuning its hyper-parameters with randomised search cross-
validation [21]. The cross-validation evaluation used to assess estimator performance in 
this case was the same as that used in deep learning. The fine-tuned model was used to 
predict mosquito age classes in previously unseen Glasgow dataset.

Python version 3.8 was used for both the deep learning and standard machine learn-
ing training. All computations were done on a computer equipped with 32 Gigabytes of 
random-access memory (RAM) and an octa-core central processing unit.

Results
DL mosquito age classification with and without dimensionality reduction, did 

not generalise between the two locations

In the initial analysis, only spectra from the Ifakara insectary were used to train the 
CNN. During model training, the CNN classifier achieved 99% training accuracy with-
out any dimensionality reduction (Fig.  4A). When given new held-out data from the 
same Ifakara insectary (test set), the model predicted mosquitoes aged 1–9  days with 
100% accuracy and those aged 11–17 days with 99% accuracy (Fig. 4B). However, when 
the same model was used to predict age classes for Glasgow insectary samples, the 

Fig. 4  CNN generalisation and prediction of mosquito age using data from a single insectary (Ifakara) with 
no dimensionality reduction. A Training and validation classification accuracy for mosquito age classes 
improved from  ~ 60 to 95% as training iterations increased (200 epochs). B A normalised confusion matrix 
displaying the proportions of correct mosquito age class predictions achieved on the held-out Ifakara data 
(test set) during model training. C Proportions of correct mosquito age class predictions based on unseen 
data from the alternate insectary (Glasgow)
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overall accuracy was 46%, and therefore indistinguishable from any random classifica-
tions (Fig. 4C).

In addition, a CNN classifier required 200 epochs for training, with a running time 
of 7.2–7.8  s per epoch when no dimensionality reduction on the input data was used 
(Table 1).

PCA was used to project the data into lower dimensional space using singular value 
decomposition [13, 26], with the goal of achieving the best summary using optimal num-
ber of principal components (PCs) with up to 98% of variance explained (Fig. 5A). Fur-
ther, when the impact of PCs on accuracy was assessed, a greater prediction accuracy 
was found, leading to the selection of 8 PCs. (Fig. 5B).

When PCA was used to reduce the dimensionality of the data, the MLP model trained 
with only Ifakara spectra predicted the held-out data from the same insectary (Ifakara) 
with an overall accuracy of 91% but could attain only 58% accuracy for predicting age 
classes of Glasgow mosquitoes (Table 1). Similarly, when t-SNE was used as the dimen-
sionality reduction technique, the model predicted the held-out Ifakara data (test set) 
with an accuracy of 85% but failed to accurately predict age classes of Glasgow data 
(Table 1).

Furthermore, when PCA or t-SNE were used to transform the input data, a MLP clas-
sifier needed 5000 epochs to train, with a running time of 0.7–0.8 s per epoch (Table 1).

Transfer learning improves DL accuracy and generalisability

To improve generalisability (i.e., the ability of the models to predict the age classes of 
samples from other sources), we tuned the pre-trained CNN models with 2% or 5% of 
the spectra from Glasgow (i.e., 2% or 5% target population samples for transfer learning) 
and used the updated model to predict the unseen Glasgow dataset. When no dimen-
sionality reduction was used, the pre-trained model predicted the held-out test (Ifakara 
dataset) with 99% accuracy and transferred well to the Glasgow dataset when 2% and 
5% target population samples were used for transfer learning, achieving 100% and 96% 
accuracies, respectively (Table 1).

However, when PCA or t-SNE were used to reduce the dimensionality of the data, 
the MLP classifier was trained with only fully connected layers in this case to allow the 
model to learn the combination of features with the network’s learnable weights. Using 
PCA, the pre-trained model predicted the held-out test (Ifakara dataset) with 91% accu-
racy, but when 2% transfer learning was applied, the model transferred well to the Glas-
gow dataset, achieving 97% accuracy when predicting the mosquito age classes, and 96% 
accuracy with 5% target population samples (Table 1, Fig. 6A–C).

When using t-SNE, the pre-trained predicted the age classes in the held-out data (test 
set) with 83% accuracy but failed to achieve generalisability for the Glasgow data when 
either 2% or 5% transfer learning was applied, achieving only 50% and 55% accuracy, 
respectively (Table 1, Fig. 6D–F).

Transfer learning also reduced training time while improving the performance of both 
DL and standard machine learning models in predicting samples from the target pop-
ulation. Transfer learning took less than two minutes for both models to produce the 
desired results (Table 1).
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Comparison between deep learning and standard machine learning models in achieving 

generalisability

The XGBoost classifier (Fig. 7A), when trained with Ifakara data only, failed to predict 
age classes of mosquitoes from the Glasgow insectary, with or without dimensionality 

Table 1  The performance of deep learning and standard machine learning models for predicting 
mosquito age classes from the same or alternate insectaries, with and without dimensionality 
reduction (DR) and transfer learning

*CNN—1 to 3: Different versions of convolutional neural network, MLP—1 to 6: Different versions of Multi-Layer Perceptron, 
XGB-1 to 9: Different versions of XGBoost classifier (standard machine learning), No DR: No dimensionality reduction, PCA: 
Principal component analysis, t-SNE: t-distributed stochastic neighbour embedding, No TL: No Transfer learning, N/A: Not 
applicable. The highest prediction accuracy as a result of transfer learning with less computational time is shown in the bold

Models Dimensionality 
reduction (DR) 
technique

Training 
data 
sources

Transfer 
learning

Base 
Model 
runtime

Transfer 
learning 
runtime

Predictions 
for age of 
mosquitoes 
from same 
insectary 
(Ifakara) 
-Test 
accuracy 
(%)

Predictions 
for age of 
mosquitoes 
from 
alternate 
insectary 
(Glasgow)—
unseen data 
accuracy (%)

CNN-1 No DR Ifakara No TL 7.2 s/itera‑
tion

N/A 99 46

CNN-2 No DR Ifakara 2% (33 of 
1635)

7.2 s/itera‑
tion

1 min 99 100

CNN-3 No DR Ifakara 5% (82 of 
1635)

7.8 s/itera‑
tion

2 min 99 96

MLP-1 PCA Ifakara No TL 6.5 s/itera‑
tion

N/A 91 58

MLP-2 t-SNE Ifakara No TL 1 s/itera‑
tion

N/A 84 58

MLP-3 PCA Ifakara 2% (33 of 
1635)

0.8 s/itera‑
tion

35 s 91 97

MLP-4 PCA Ifakara 5% (82 of 
1635)

0.7 s/itera‑
tion

51 s 91 96

MLP-5 t-SNE Ifakara 2% (33 of 
1635)

0.7 s/itera‑
tion

47 s 83 50

MLP-6 t-SNE Ifakara 5% (82 of 
1635)

0.7 s/itera‑
tion

49 s 83 55

XGB-1 No DR Ifakara No TL 645 s/itera‑
tion

N/A 92 48

XGB-2 No DR Ifakara 2% (33 of 
1635)

975 s/itera‑
tion

1 s 92 98

XGB-3 No DR Ifakara 5% (82 of 
1635)

861 s/itera‑
tion

1 s 92 98

XGB-4 PCA Ifakara No TL 60 s/itera‑
tion

N/A 90 48

XGB-5 t-SNE Ifakara No TL 66 s/itera‑
tion

N/A 68 55

XGB-6 PCA Ifakara 2% (33 of 
1635)

54 s/itera‑
tion

1 s 90 98

XGB-7 PCA Ifakara 5% (82 of 
1635)

54 s/itera‑
tion

2 s 90 97

XGB-8 t-SNE Ifakara 2% (33 of 
1635)

60 s/itera‑
tion

1 s 81 43

XGB-9 t-SNE Ifakara 5% (33 of 
1635)

60 s/itera‑
tion

1 s 82 49
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Fig. 5  A cumulative explained variance and eigenvalues as the function of principal components. B Number 
of principal components included in the XGB classifier (i.e. from 1:8 PCs)

Fig. 6  MLP trained on PCA-transformed Ifakara dataset plus 2% new target population samples: A As 
training time increased (5000 epochs), training and validation classification accuracy for mosquito age classes 
increased from 50 to 91%, B A normalised confusion matrix displaying the proportions of correct mosquito 
age class predictions achieved on the held-out Ifakara test set during model training, C Proportions of correct 
mosquito age class predictions achieved on unseen Glasgow dataset. MLP trained on t-SNE-transformed 
Ifakara dataset plus 2% new target population samples: D As training time increased (5000 epochs), training 
and validation classification accuracy for mosquito age classes increased from 60 to 83%, E A normalised 
confusion matrix displaying the proportions of correct mosquito age class predictions achieved on the 
held-out Ifakara test set during model training, F Proportions of correct mosquito age class predictions 
achieved on unseen Glasgow dataset

Fig. 7  Standard machine learning models’ predictive accuracies and generalisability when trained with 
PCA-transformed Ifakara data plus 2% new target population. A Comparison of standard machine learning 
models for mosquito age classification; KNN: K-nearest neighbours, LR: Logistic regression, SVM: Support 
vector machine classifier, RF: Random Forest classifier, and XGB: XGBoost. B proportions of correct mosquito 
age class predictions achieved on unseen Glasgow dataset



Page 11 of 15Mwanga et al. BMC Bioinformatics           (2023) 24:11 	

reduction (Table  1). However, when the classifier was updated with 2% target pop-
ulation samples, the model correctly classified individual mosquito age classes with 
98% for both 1–9 days old and 10–17 days old mosquitoes (Fig. 7B). Increasing the 
samples for transfer learning to 5% of the training set had no effect on the accura-
cies (Table 1). However, when t-SNE was used for dimensionality reduction, transfer 
learning with either 2% or 5% Glasgow samples did not improve the generalisability of 
the XGBoost classifier (Table 1).

Table  2 shows how the performance of deep learning and standard machine learn-
ing was evaluated using other metrics such as precision, recall, and f1-scores. When it 
comes to mosquito age classification, the XGBoost classifier matches the deep learning 
model in both specificity (precision) and sensitivity (recall).

Further to that, standard machine learning models were trained with 10 iterations, and 
still the computing runtimes were generally shorter than those for CNN models when 
PCA and t-SNE were used to transform the input data, in some cases by up to 5 times 
(Table 1).

Discussion
This study demonstrates that transfer learning approaches can substantially improve the 
generalisability of both deep learning and standard machine learning in predicting the 
age class of mosquitoes reared in two different insectaries. We evaluated 1635 mosquito 
spectra from Glasgow-reared mosquitoes and show that using transfer learning and 
dimensionality reduction techniques could improve machine learning models to predict 
mosquito age classes from alternate insectaries. Furthermore, reducing the dimensional-
ity of the spectral data reduced computational costs (i.e. computing time) when training 
the machine learning models.

The current study adds to the growing evidence of the utility of infrared spectros-
copy and machine learning in estimating mosquito age and survival [8, 27–29]. In 
the past, most applications of infrared spectroscopy in estimating mosquito vector 
survival relied on near-infrared frequencies (12,500–4000 cm−1). A recent study used 
mid-infrared spectra (from 4000 to 400  cm−1 frequencies) and standard machine 
learning to distinguish mosquito species with up to 82% accuracy, but found lower 
age prediction accuracy in several alternate settings [9]. González et  al., suggested 

Table 2  Precision, recall, and f1-score of the best deep learning model for classifying mosquito 
age classes from alternate sources compared to the best standard machine learning algorithm (i.e. 
XGBoost classifier)

*MLP–3: Multi-Layer Perceptron trained with PCA as a dimensionality reduction technique and 2% transfer learning, XGB-6: 
XGBoost classifier trained with PCA as a dimensionality reduction technique and 2% target population samples used for 
transfer learning

Model name Age class (Days) Precision Recall f-1 score No. of 
samples per 
age class

MLP-3 1–9 0.98 0.97 0.98 895

10–17 0.97 0.97 0.97 707

XGB-6 1–9 0.98 0.99 0.98 895

10–17 0.98 0.98 0.98 707
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that machine learning underprediction may be explained by the small training dataset 
and ecological variability between the training and validation sets [9].

In our study, despite categorising mosquito chorological age into two classes 
(young: 1–9-day olds and old: 10–17-day olds), deep learning and standard machine 
learning approaches both remained unable to generalise, even after reducing the 
dimensionality of the spectra data. This result is consistent with Siria et al. [10], where 
CNN underperformed as a result of the difference in data distribution between the 
training and evaluation data driven by non-genetic factors such as ecological varia-
tion. When near-infrared spectroscopy was used to predict the age of Anopheles mos-
quitoes reared from wild populations, a similar limitation was reported [8, 27].

Nonetheless, Siria et  al. [10] also observed that using transfer learning to correct 
the difference data distribution between training and evaluation data improved deep 
learning generalisation, achieving 94% accuracy in predicting both species and mos-
quito age classes. Furthermore, in the latter study, the performance of the classifier 
was improved by incorporating a subset (n = 1200–1300 spectra) of the evaluation 
data into the training data.

The present study shows performing transfer learning using 2% of the spectra 
from the target domain (33 of 1635) as well as dimensionality reduction resulted in 
the improved generalisability of both deep learning and standard machine learning 
models achieving overall accuracy of ~ 98%. In this case, we expected that all mod-
els to which transfer learning was applied would outperform the baseline models as 
previously demonstrated [10, 30]. However, as the proportion of data from the tar-
get domain in the training increased, the performance slightly dropped for the deep 
learning. The reason for the deterioration in performance after turning the pre-
trained/base model with 5% transfer learning could be that the model overfitted 
random noise during training, which negatively impacted the performance of these 
models on unseen data. Other studies have proposed alternative transfer learning 
approaches, such as adaptative regularisation to address cross-domain (i.e. source 
domain and target domain) learning problems [31], transferring knowledge gained in 
the source domain during training to the target domain [32], and integrating dimen-
sionality reduction to transform features of the source to ensure data distribution 
in different domains is minimised [33], such as transfer learning with multi-target 
regression approach to exploit orthologous genes to capture similarities in metabolic 
responses in mice and humans [34, 35].

Furthermore, dimensionality reduction was used in conjunction with transfer 
learning to reduce noise, redundant features, and computational time. Based on our 
findings, dimensionality reduction alone cannot achieve generalisability of machine 
learning models. The PCA improved model stability because the eigenvectors of the 
correlation matrix in PCA provide new axes of variation to project new data while 
preserving the original distance between the points in the data. The model with 
t-SNE as a dimensionality reduction technique failed to achieve generalisability on 
the new data, the reason for poor performance could be t-SNE is a probabilistic tech-
nique with a non-convex cost function [16], causing the output to differ from multi-
ple runs, and may not preserve the original distances between the points in the data. 
In this study, PCA is considered a better choice than other dimensionality reduction 
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technique for training machine learning models from spectra data because it is simple 
to implement, computationally efficient, and produces good results.

Furthermore, incorporating dimensionality reduction substantially reduces model 
training time and thus, computational requirements. When compared to models trained 
without dimensionality reduction, the computing runtimes for models trained with 
dimensionality reduction were less than five-fold. Moreover, transfer learning in general 
was fast, tuning the pre-trained models in under two minutes on our machine (standard 
laptop). This makes the technique applicable and reproducible even to users with low 
computing power and capacity providing they have access to pre-trained models.

This study only included An. arabiensis reared in the laboratory from two insectar-
ies. Future research should put the techniques to the test with samples from more lab-
oratories, field settings, and mosquito species, as these factors can affect the model’s 
predictive capacity. The optimal ratio of transfer learning data required to achieve best 
generalisability in predicting mosquito age class has yet to be determined, so future stud-
ies could investigate this gap. Furthermore, because dimensionality reduction reduced 
the computational requirements in this study, we suggest that clustering spectra with 
algorithms such as PCA can be a beneficial strategy for models trained on MIRS.

Conclusion
This study found that using transfer learning and dimensionality reduction with prin-
cipal component analysis (PCA) improved the generalizability of machine learning 
models for predicting mosquito age classes from 56 to  ≥ 97%. This suggests that these 
techniques could be scaled up and further evaluated to determine the age of mosqui-
toes from different populations. In addition, when dimensionality reduction and transfer 
learning are used, simpler machine learning algorithms, such as the XGBoost classifier, 
can reduce computational time while still achieving performance close or equal to deep 
learning. This could help entomologists reduce the amount of time and work required 
to dissect large numbers of mosquitoes. Overall, these approaches have the potential to 
improve model-based surveillance programs, such as assessing the impact of malaria 
vector control tools, by monitoring the age structures of local vector populations.

For future research, our goal is to create a large database of spectra data and use trans-
fer learning to build a pipeline that can predict the age of wild malaria mosquitoes across 
different populations in order to support vector surveillance in malaria-endemic areas. 
Here we have presented a new technique that uses transfer learning and dimensionality 
reduction to improve the generalizability of machine learning predictions. However, the 
optimal proportion of new data from target populations required for generalizability is 
still unknown, and warrants further optimisation.
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