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Abstract 

Background:  Immune-related genes (IRGs) remain poorly understood in their func‑
tion in the onset and progression of sepsis.

Methods:  GSE65682 was obtained from the Gene Expression Omnibus database. The 
IRGs associated with survival were screened for subsequent modeling using univari‑
ate Cox regression analysis and least absolute shrinkage and selection operator in the 
training cohort. Then, we assessed the reliability of the 7 IRGs signature’s independ‑
ent predictive value in the training and validation cohorts following the creation of 
a signature applying multivariable Cox regression analysis. After that, we utilized the 
E-MTAB-4451 external dataset in order to do an independent validation of the prognos‑
tic signature. Finally, the CIBERSORT algorithm and single-sample gene set enrichment 
analysis was utilized to investigate and characterize the properties of the immune 
microenvironment.

Results:  Based on 7 IRGs signature, patients could be separated into low-risk and 
high-risk groups. Patients in the low-risk group had a remarkably increased 28-day 
survival compared to those in the high-risk group (P < 0.001). In multivariable Cox 
regression analyses, the risk score calculated by this signature was an independent pre‑
dictor of 28-day survival (P < 0.001). The signature’s predictive ability was confirmed by 
receiver operating characteristic curve analysis with the area under the curve reaching 
0.876 (95% confidence interval 0.793–0.946). Moreover, both the validation set and the 
external dataset demonstrated that the signature had strong clinical prediction perfor‑
mance. In addition, patients in the high-risk group were characterized by a decreased 
neutrophil count and by reduced inflammation-promoting function.

Conclusion:  We developed a 7 IRGs signature as a novel prognostic marker for pre‑
dicting sepsis patients’ 28-day survival, indicating possibilities for individualized reason‑
able resource distribution of intensive care unit.
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Introduction
Sepsis is a major public health problem on a global scale and one of the main causes 
of death in intensive care units (ICU) [1, 2]. At least 5.3 million patients in the world 
are estimated to be diagnosed with sepsis each year, and the mortality of these patients 
remains approximately 30% [3–5]. The high mortality of sepsis patients is largely attrib-
uted to lack of accurate methods for early prediction of clinical outcome [6]. Increas-
ing evidence [7, 8] indicates that the systemic immune response has a critical function 
to play in the pathogenesis and progression of sepsis. In the initial phase of sepsis, the 
immune response is dominated by pro-inflammatory processes and is favorable for 
the eradication of pathogens [9]. Progressive sepsis is mainly characterized by the sup-
pression of the immune response, as seen by a decline in the function and number of 
immune cells [10]. The poor prognosis of sepsis may also be closely related to a com-
promised host immune system [11, 12], and more and more studies [13, 14] have sug-
gested that novel immune biomarkers cannot only serve as potential predictors of sepsis 
prognosis but also can provide potential targets for immunotherapy of sepsis. Thus, it 
becomes necessary to explore immune biomarkers deeply to improve the clinical man-
agement of sepsis patients and their prognosis.

The transcriptomic research landscape has undergone a paradigm shift as a result of 
recent developments in high-throughput, next-generation sequencing and gene chips 
technology [15]. Numerous bioinformatics analyses and machine learning analyses have 
been conducted to explore the mRNA prognostic signatures and to direct clinical prac-
tice [16, 17]. Prognostic signatures based on immune-related genes (IRGs) have been 
described for a variety of types of cancer and have demonstrated high sensitivity and 
specificity [18–20]; however, these signatures have not been applied to predict the out-
come of patients with sepsis. As a result, we sought to develop and validate an IRGs 
signature for predicting sepsis patient prognosis and to characterize the immune micro-
environment in sepsis patients with varying prognostic risk.

In the present investigation, we conducted a systematic analysis of the immunog-
enomic landscape of sepsis using Gene Expression Omnibus (GEO) gene expression 
profiles, and we identified 7 IRGs. In both the training and validation cohorts, a unique 
IRGs prognostic signature was established and showed moderate predictive value for 
sepsis patient survival. Furthermore, the CIBERSORT algorithms and single-sample 
gene set enrichment analysis (ssGSEA) results showed that the high-risk group of sepsis 
patients were characterized by a decreased neutrophil count and by reduced inflamma-
tion-promoting function.

Methods
Acquisition of gene expression profiles and clinical information

GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) [21] was the source of the level 3 
RNA sequencing (RNA-seq) data and related clinical information of 802 sepsis patients 
(GSE65682 [22]). The clinical information encompassed age, gender, pneumonia, throm-
bocytopenia, ICU acquired infection, diabetes, abdominal sepsis, survival status and 
survival time. The healthy controls and sepsis patients with unavailable survival data 
were excluded. In the end 478 sepsis patients with integrated RNA-seq data and clinical 

https://www.ncbi.nlm.nih.gov/geo/
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information were screened. In the ArrayExpress database [23], the high-throughput 
sequencing data of E-MTAB-4451 dataset [24] and prognostic information were selected 
as external data sets to verify and analyze the model. The E-MTAB-4451 dataset con-
tained a total of 114 samples of adult patients with sepsis. After excluding sepsis sam-
ples with incomplete clinical data, 106 sepsis samples were finally included. All the 
above samples were obtained from peripheral blood samples of septic patients within 
24 h after admission to ICU. Subsequently, we performed principal components analysis 
(PCA) analysis on the expression values of the samples after batch correction. The work-
flow sketched in Fig. 1.

Identification of the immune‑related genes

The Immunology Database and Analysis Portal (ImmPort) database (https://​www.​
immpo​rt.​org/) was employed to located IRGs. The ImmPort database had 2498 IRGs, 
which were listed in Additional file 1: Table S1.

Fig. 1  The study’s flow chart. LASSO least absolute shrinkage and selection operator, ROC receiver operating 
characteristic curve, GO gene ontology, KEGG Kyoto encyclopedia of genes and genomes

https://www.immport.org/
https://www.immport.org/
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Construction and validation of a prognostic immune‑related genes signature

Four hundred and seventy-eight sepsis patients were randomly separated into two 
groups, one for training and one for validation, in a ratio of 1:1. Firstly, to assess the 
connections between IRGs and patient survival outcomes in the training cohort, 
univariate Cox regressions were performed. Secondly, the prognostic IRGs were 
recognized utilizing least absolute shrinkage and selection operator (LASSO) Cox 
regression [25], which reduced the number of IRGs with prognostic values. In addi-
tion, an interaction network of IGRs was created by the STRING database [26]. 
Thirdly, multivariable Cox regression analysis was employed to identify prognostic 
IRGs. Seven significant IRGs associated with survival were discovered according to 
the least Akaike information criterion (AIC) value. AIC was mainly used to meas-
ure the goodness of fit of the statistical model, and the model with the lowest AIC 
was the prediction model with the best fit. Fourth, according to the risk score, sep-
sis patients in the training and validation cohorts were separated into low-risk and 
high-risk groups. The following formula was used to determine the risk score: risk 
score = βgene (a) × EXPgene (a) + βgene (b) × EXPgene(b) + …  + βgene(n) × EXPgen
e(n), with EXPgene representing the expression level of the identified IRGs standard-
ized by Z score and β representing the coefficient of that particular IRGs in multi-
variable Cox regression analysis. Kaplan–Meier analysis was performed with the R 
package “survival”, as well as “survminer”, to compare survival between low-risk and 
high-risk groups. For the purpose of assessing the accuracy of the constructed signa-
ture, the “pROC” R package was applied. Univariate and multivariable Cox regression 
analyses were recruited to evaluate the signature’s capacity to serve as an independent 
prognostic yardstick in comparison to clinical features in the study population.

Enrichment analyses of the differentially expressed genes (DEGs)

The DEGs between low-risk and high-risk groups were obtained using the “limma” R 
package [27]. |log2FC|≥ 1 and P < 0.05 were regarded as the cutoff criterion for DEGs. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
sis was performed using the "clusterProfiler" R package based on DEGs [28]. The gene 
set enrichment analysis (GSEA) (http://​softw​are.​broad​insti​tute.​org/​gsea/​index.​js) was 
used to compare inflammatory pattern in the different risk groups.

Comprehensive analysis of immune status

The CIBERSORT algorithms [29] were employed to compare the fraction of immune 
cells between low-risk and high-risk groups. Furthermore, with ssGSEA, we esti-
mated the infiltration score for the activity of 13 immune-related pathways [30]. Pro-
spective immunological check-point genes were described in research articles.

Statistical analysis

Chi-squared tests were conducted to compare differences in proportions. Univari-
ate and multivariable Cox regression analyses were implemented to distinguish IRGs 
linked with prognosis. The Kaplan–Meier analysis and the log-rank test were per-
formed to compare the survival between low-risk and high-risk groups. The ssGSEA 

http://software.broadinstitute.org/gsea/index.js
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scores of immune cells or pathways were compared between the low-risk and high-
risk groups using Mann–Whitney U test with P values adjusted by the Bonferroni-
Holm (BH) method. The prognostic prediction signature’s predictive accuracy was 
measured via receiver operating characteristic curve (ROC) analysis. All of these 
analyses entailed the use of SPSS software 23.0 and R software 4.0. P value less than 
0.05 was considered to be statistically significant.

Results
The clinical information of the training and the validation cohort

Age, gender, the type of pneumonia, the proportion of thrombocytopenia, the propor-
tion of ICU-acquired infection, the proportion of diabetes, the proportion of abdomi-
nal sepsis were not significantly different between the training and the validation cohort 
(P ≥ 0.05) (Table 1).

Construction of a prognostic immune‑related genes signature

We conducted PCA analysis on the expression values of the samples after batch cor-
rection (Additional file 2: Fig. S1a, b). A total of 752 IGRs were expressed in sepsis 
patients. Firstly, following the univariate Cox regression analysis, we identified 126 
IRGs that were linked with survival and had prognostic significance (Fig.  2, Addi-
tional file 1: Table 1, P ˂  0.05). Secondly, to eliminate multicollinearity and to reduce 

Table 1  The clinical characteristics of sepsis patients in the training and the validation cohort

ICU Intensive care unit

Variables Training cohort (n = 239) Validation cohort (n = 239) P

No % No %

Age (y)

 ≤ 65 138 57.74 134 56.07 0.782

 > 65 101 42.26 105 43.93

Gender

Female 100 41.84 106 44.35 0.644

Male 139 58.16 133 55.65

Pneumonia

Community acquired pneumonia 58 24.27 48 20.08 0.442

Hospital acquired pneumonia 40 16.74 37 15.48

Unknown 141 58.99 154 64.44

Thrombocytopenia

Yes 45 18.83 37 15.48 0.396

No 194 81.17 202 84.52

ICU-acquired infection

Yes 23 9.62 23 9.62 1.000

No 216 90.38 216 90.38

Diabetes

Yes 42 17.57 47 19.67 0.639

No 197 82.43 192 80.33

Abdominal sepsis

Yes 27 11.30 22 9.21 0.547

No 212 88.70 217 90.79
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Fig. 2  Identification of the candidate top 50 immune-related genes associated with survival of sepsis 
patients
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the number of IRGs to 20, LASSO Cox regression analysis was applied. (Fig.  3a–c, 
Additional file  1: Table  S2, P ˂  0.05). Figure  3d and Fig.  3e depicted the network of 
interactions and the correlation between these IRGs. Thirdly, subsequent multivari-
able Cox regression analysis was used to construct a prognostic signature based on 7 
IRGs (the C–C motif chemokine ligand 5 (CCL5), defensin alpha 4 (DEFA4), nuclear 
transcription factor Y subunit gamma (NFYC), estrogen receptor 1 (ESR1), tumor 

Fig. 3  An immune-related genes (IRGs) prognostic signature was constructed in sepsis patients. a 20 IRGs 
were screened by the LASSO regression model; b LASSO Cox regression analysis was used to compute the 
coefficients of IRGs; c forest plots illustrating the findings of a univariate Cox regression analysis examining 
the relationship between the 20 IRGs and 28-day survival in patients with sepsis; d the interactions of 
candidate IRGs are depicted in the protein–protein interaction network; e the correlation network of 
candidate IRGs; f forest plots illustrating the findings of a multivariable Cox regression analysis examining the 
relationship between the 20 IRGs and 28-day survival in patients with sepsis. LASSO Least absolute shrinkage 
and selection operator, AIC Akaike information criterion. *P < 0.05, †P < 0.01, ‡P < 0.001
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necrosis factor receptor superfamily member 8 (TNFRSF8), chemokine (C-X3-C 
motif ) receptor 1 (CX3CR1), and serine protease inhibitor A3 (SERPINA3)) (Fig. 3f, 
Additional file 1: Table S3, P ˂ 0.05). As described earlier, the least AIC score aided in 
identifying of the IRGs signature (Table 2). The risk score was calculated as follows: 
−​  0.465 ​× CCL5​ + 0.21​5 × DEFA​4​ − 1 ​.487 × ​NFYC +​ 1.055 ​× ESR1 ​− 0.737 ×​ TNFRSF​
8 − 0.228​ × CX3​CR​1 ​+ 1​.003 ×​ SERPINA​3 ​(AI​C = 522.3​6, Concordance index =​ 0.​78)​. 
Patie​nts were classified into a low-risk group (n = 131) and a high-risk group (n = 108) 
based on the median cut-off value of their risk score (Fig. 4a). Additionally, there was 
no significant difference in clinical data between the high-risk and low-risk groups 
in the training cohort (Table  3). Fourthly, The Kaplan–Meier curve indicated that 

Table 2  Construction of prognostic signatures in patients with sepsis

AIC Akaike information criterion

Model Prognostic signature combination AIC

1 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + TRIM27 
+ PTX3

531.94

2 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + TRIM27 + 
PTX3 + CCL5

530.70

3 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + TRIM27 + 
PTX3 + CCL5 + DEFA4

528.07

4 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + TRIM27 + 
PTX3 + CCL5 + DEFA4 + NFYC

526.33

5 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + TRIM27 + 
PTX3 + CCL5 + DEFA4 + NFYC + ESR1

526.00

6 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + TRIM27 + 
PTX3 + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8

524.77

7 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + TRIM27 + 
PTX3 + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1

524.38

8 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + TRIM27 + 
PTX3 + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3

524.34

9 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + TRIM27 + 
CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3

524.32

10 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + VEGFA + CCL5 + DE
FA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3

524.09

11 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + PIK3CD + CCL5 + DEFA4 + NF
YC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3

524.08

12 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + KCNH2 + CCL5 + DEFA4 + NFYC + ESR
1 + TNFRSF8 + CX3CR1 + SERPINA3

524.00

13 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + TMSB10 + CCL5 + DEFA4 + NFYC + ESR1 + TNFR
SF8  
+ CX3CR1 + SERPINA3

523.98

14 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + HBEGF + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3
CR1  
+ SERPINA3

523.68

15 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + THBS1 + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SER-
PINA3

523.46

16 JUN + CXCR3 + CD3E + EDNRB + ADCYAP1R1 + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3 523.39

17 JUN + CXCR3 + CD3E + EDNRB + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3 523.09

18 JUN + CXCR3 + CD3E + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3 523.66

19 JUN + CXCR3 + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3 522.53

20 JUN + CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3 522.40

21 CCL5 + DEFA4 + NFYC + ESR1 + TNFRSF8 + CX3CR1 + SERPINA3 522.36
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the low-risk group had a considerably increased survival than the high-risk group 
(Fig.  4c). Finally, the ROC curves shown that the area under the curve (AUC) was 
0.876 [95% confidence interval (CI) 0.793–0.946] (Fig. 4e). The results presented the 
sensitivity was 0.893, the specificity was 0.874, the precision was 0.685, the preci-
sion was 0.685, the negative predictive value was 0.964, and the Matthews correlation 
coefficient (MCC) value was 0.706.

Fig. 4  The 7 immune-related genes (IRGs) signature’s prognostic performance in the training cohort and 
the validation cohort. a The median value and distribution of the risk scores calculated by this signature in 
the training cohort; b the median value and distribution of the risk scores calculated by this signature in 
the validation cohort; c Kaplan–Meier curves depicting the 28 days survival based on the risk score in sepsis 
patients in the training cohort; d Kaplan–Meier curves depicting the 28 days survival based on the risk score 
in sepsis patients in the Validation cohort; e the prognostic accuracy of the risk score is confirmed by the AUC 
of ROC curves Kaplan–Meier curves depicting the 28 days survival based on the risk score in sepsis patients 
in the training cohort; f the prognostic accuracy of the risk score is confirmed by the AUC of ROC curves 
Kaplan–Meier curves depicting the 28 days survival based on the risk score in sepsis patients in the validation 
cohort. AUC​ Area under curve, ROC Receiver operating characteristic curve
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Validation of the seven immune‑related genes signature in the validation cohort

Similarly, patients were classified into a low-risk group (n = 119) and a high-risk 
group (n = 120) in the validation cohort (Fig. 4b). There was no significant difference 
in clinical data between the two risk groups in sepsis patients (Table 4). The Kaplan–
Meier curve indicated that the low-risk group had a considerably increased survival 
than the high-risk group (Fig. 4d). The ROC curves indicate that the AUC was 0.855 
(95% CI 0.781–0.932) (Fig.  4f ). The results presented the sensitivity was 0.913, the 
specificity was 0.851, the precision was 0.663, the negative predictive value was 0.969, 
and the MCC value was 0.694 in the validation cohort. The expression levels of these 
7 IRGs in the different outcomes groups were statistically significant (P < 0.05, Addi-
tional file 3: Fig. S2a–g). The verification of the external data set shows that the 28-day 
survival of the low-risk group is significantly higher than that of the high-risk group 
(Additional file  3: Fig. S2h) and the AUC of signature to predict 28-day survival in 
sepsis patients by risk score was 0.815 (P < 0.05, Additional file 3: Fig. S2i). The results 
presented the sensitivity was 0.889, the specificity was 0.789, the precision was 0.814, 
the negative predictive value was 0.872, and the MCC value was 0.682 in the external 
data set.

Table 3  Association between signature and clinical characters in the training cohort

ICU Intensive care unit

High-risk group (n = 108) Low-risk group (n = 131) P

Variables No % No %

Age (y)

 ≤ 65 58 53.70 80 61.09 0.293

 > 65 50 46.30 51 38.91

Gender

Female 42 38.89 58 44.27 0.431

Male 66 61.11 73 55.73

Pneumonia

Community acquired pneumonia 21 19.44 37 28.24 0.076

Hospital acquired pneumonia 16 14.81 24 18.32

Unknown 71 65.75 64 48.85

Thrombocytopenia

Yes 20 18.52 25 19.08 1.000

No 88 81.48 106 80.92

ICU-acquired infection

Yes 13 12.04 10 7.63 0.277

No 95 87.96 121 92.37

Diabetes

Yes 21 19.44 21 16.03 0.500

No 87 80.56 110 83.97

Abdominal sepsis

Yes 8 7.41 19 14.50 0.102

No 100 92.59 112 85.50
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Independent prognostic value of seven immune‑related genes signature

Univariate Cox regression analysis revealed a correlation between the signatures of 
seven IRGs and the 28-day survival of sepsis patients (Fig. 5a and b). The 7 IRGs sig-
nature proved to be an independent prognostic factor in the multivariable Cox regres-
sion analysis (Fig. 5c, d).

Enrichment analyses of the differentially expressed genes

The DEGs between low-risk group and high-risk group were shown in Additional file 1: 
Table S4. We conducted GO enrichment and KEGG pathway analyses on the DEGs to 
better understand their biological functions and pathways. The GO enrichment analysis 
revealed that DEGs were clearly enriched in immune-related functions, such as neutro-
phil degranulation and activation, which are implicated in the immunological response 
in sepsis patients. (Fig. 6a). In addition, the markedly enriched pathways for DEGs were 
neutrophil extracellular trap formation, staphylococcus aureus infection, interleukin 
(IL)-17 signaling pathway and nucleotide-binding oligomerization domain (NOD)-
like receptor signaling pathway in sepsis patients (Fig.  6b). Inflammatory response 
(NES = 2.02, P. adjust < 0.05) was considerably enriched in the low-risk group patients of 
sepsis (Additional file 4: Fig. S3).

Table 4  Association between signature and clinical characters in the validation cohort

ICU Intensive care unit

High-risk (n = 120) Low-risk (n = 119) P

Variables No % No %

Age (y)

 ≤ 65 65 54.17 69 57.98 0.603

 > 65 55 45.83 50 42.02

Gender

Female 51 42.50 55 46.22 0.604

Male 69 57.50 64 53.78

Pneumonia

Community acquired pneumonia 29 23.53 19 15.97 0.279

Hospital acquired pneumonia 17 14.29 20 16.81

Unknown 74 62.18 80 67.22

Thrombocytopenia

Yes 20 16.67 17 14.29 0.721

No 100 83.33 102 85.71

ICU-acquired infection

Yes 11 9.17 12 10.08 0.830

No 109 90.83 107 89.92

Diabetes

Yes 20 16.67 27 22.69 0.259

No 100 83.33 92 77.31

Abdominal sepsis

Yes 13 10.83 9 7.56 0.381

No 107 89.17 112 92.46
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The correlation between the risk score and immune status

We explored the immune cell infiltration landscape while using results of the CIBER-
SORT algorithm. Patients with sepsis in the high-risk group had higher ratios of neu-
trophils, monocyte, and T cells CD8 than those in the low-risk group (P < 0.05, Fig. 7a, 
b). Patients with sepsis in the high-risk group had lower ratios of plasma cell, T cells 
CD4 naive, T cells CD4 memory activated, natural killer (NK) cells resting, NK cells acti-
vated, macrophages M0, macrophages M2, eosinophils, monocytes mast cells activated 
and mast cells resting than those in the low-risk group (P < 0.05, Fig.  7a, b). Next, the 
enrichment scores of a variety of immune related functions or pathways were calculated 
by ssGSEA. The score of CC chemokine receptor, check point, inflammation promoting 
and T cell co-stimulation were lower in the high-risk group in sepsis patients (P < 0.05, 
Fig. 8a). Interestingly, the fraction of neutrophils was the largest statistically significant 
difference between the high-risk and low-risk groups, which was consistent with the 
findings in the GO and KEGG analysis. In addition, the sepsis patients in the high-risk 
group were characterized by upregulated expression of CD200R1 and leukocyte-associ-
ated immunoglobulin-like receptor 1, whereas the sepsis patients in the low-risk group 
were characterized by high expression of C10orf54, CD160, CD244, CD40, CD48, CD86, 
LAG3, TIGIT, TNFRSF14, TNFRSF25, TNFRSF8, TNFRSF9 and TNFSF14 (P < 0.05, 
Fig. 8b).

Fig. 5  The immune-related genes signature has independent prognostic significance in both the training 
and validation cohorts. a Univariate Cox regression analysis of 28 days survival with risk scores and clinical 
information in the training cohort; b univariate Cox regression analysis of 28 days survival with risk scores and 
clinical information.in the validation cohort; c multivariable Cox regression analysis of 28 days survival with 
risk scores and clinical information in the training cohort; d multivariable Cox regression analysis of 28 days 
survival with risk scores and clinical information in the validation cohort. ICU Intensive care unit
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Discussion
Several traditional prognosis indicators are applied in clinical practice today, including 
the Sequential Organ Failure Assessment [31], quick Sequential Organ Failure Assess-
ment [32], the Acute Physiology and Chronic Health Evaluation II [33], the Simplified 
Acute Physiology Score II [34], and C-reactive protein/albumin ratio [35]. Nevertheless, 
their performances are limited in specificity and sensitivity so that they have facilitated 
early diagnosis and prognosis prediction in patients with sepsis [36].

Fig. 6  The results of GO and KEGG enrichment analysis of differentially expressed genes between different 
risk groups in sepsis patients. The most significant GO enrichment analysis; b the most significant KEGG 
pathways enrichment analysis [28]. GO gene ontology, KEGG Kyoto encyclopedia of genes and genomes, 
IL interleukin, NOD nucleotide-binding oligomerization domain, FC fold-change, BP biological process, CC 
cellular component, MF molecular function
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Molecular biomarkers are considered as non-invasive clinical methods that could 
objectively predict or evaluate status and progression of disease. Regulation of the 
immune response and function is known to play a critical role in the pathogenesis and 
progression of sepsis [37, 38]. Wong et al. [39, 40] found that some genes associated with 
innate immune response could be used to predict the prognosis of children with clini-
cal sepsis and showed good clinical efficacy. However, these authors did not systemati-
cally integrate these genes into a signature, making it impossible to use them in clinical 
practice. A study [41] verified that sepsis risk scoring methods based on multi-gene 
biomarkers showed higher performance (sensitivity and specificity) in the ROC curves. 
Therefore, by using univariate Cox regression analysis, it was determined that 126 IRGs 
were substantially linked with sepsis patient survival. In the end, we managed to formu-
late a signature of 7 IRGs for the prognosis of sepsis patients: −​  0.465 ​× CCL5​ + 0.21​
5 × DEF​A4 − 1.​487 × N​FYC + ​1.055 ×​ ESR1 −​ 0.737 × ​TNFRSF8​ − 0.228 ​× CX3C​R1​ +​ 1.​
003 × SERPINA3.

Among these 7 IRGs, which could predict the prognosis of sepsis patients, CCL5, 
DEFA4, ESR1 and CX3CR1 were broadly researched in previous studies. CCL5, 
a member of CC motif chemokines ligand, is recognized as an effective biomarker 

Fig. 7  The immune cell infiltration landscape based on CIBERSORT algorithm between different risk groups 
in sepsis patients. Barplot (a) of the immune infiltrating cell proportions. Violin plot (b) demonstrated the 
differences in the proportions of immune infiltrating cell across different risk groups. NK natural killer
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for the diagnosis of sepsis [42]. However, no study has found a relationship between 
CCL5 and the prognosis of sepsis. DEFA4, a member of the α-defensins family, has 
been shown to induce IL-6 release in macrophages in a toll-like receptor 4-independ-
ent manner [43]. Zhang et al. [44] elaborated that the expression of DEFA4 is strongly 
correlated with the severity of sepsis. Moreover, DEFA4 also may serve as a biomarker 
for clinical diagnosis and as a target for treatment of severe influenza infection [45]. 
ESR1 has been reported as a biomarker of septic syndrome in patients with corona-
virus disease 2019 [46]. CX3CR1 is a G-protein coupled receptor, which is expressed 
on various cells, such as T lymphocytes, monocytes, natural killer cells, neurons and 
microglial cells [47]. Interestingly, not only is lower CX3CR1 expression associated 

Fig. 8  The single-sample gene set enrichment analysis scores of sepsis patients in different risk groups 
are compared. a The scores of immune functions; b the expression levels of immune checkpoints. APC 
allophycocyanin, CCR​ CC chemokine receptor, HLA human leukocyte antigen, MHC major histocompatibility 
complex, IFN interferon. *P < 0.05, **P < 0.01, ***P < 0.001
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with early and late mortality in critically sick patients, but also with septic shock pro-
gression [48, 49]. Although little is known about the roles of NFYC, TNFRSF8 and 
SERPINA3 in sepsis, NFYC is characterized as a new regulator of skeletal muscle 
immunometabolic signaling [50]. TNFRSF8/CD30 has been shown to inhibit the pro-
liferation of autoreactive effector immune cells, hence assisting the body in resisting 
autoimmunity [51]. SERPINA3 is also an inflammatory cytokine gene, which could 
induce significant lung injury after influenza infection [52]. Underlying mechanisms 
of these three genes in sepsis still need further explorations.

In addition, we conducted GO and KEGG enrichment analysis based on the DEGs 
between different risk groups and discovered that immune-related biological processes 
and pathways, such as neutrophil degranulation, neutrophil activation involved immune 
response, neutrophil extracellular trap formation, staphylococcus aureus infection, IL-17 
signaling pathway and NOD-like receptor signaling pathway, were unveiled. Further-
more, our immune cell infiltration landscape results indicated neutrophils had lower 
infiltration than those sepsis patients in the high-risk group. Not only are neutrophils the 
first line of defense, armed with the ability to recognize and respond to infection in the 
absence of normal receptor expression, but they are also activated in sepsis to produce 
reactive oxygen species, nitric oxide, cytokines, proteases, and kinins. Xini et al. [53] dis-
covered that an early absolute CD64/CD15/CD45 neutrophils count lower than 2500/
mm3 is independently associated with unfavorable outcome of sepsis. Another study 
found that reduced neutrophil CD16 expression predicted an increased risk of death in 
critically ill patients with sepsis [54]. As for immune functions, our ssGSEA results indi-
cated that the high-risk groups had slighter inflammation-promoting in both the training 
and the validation cohort. Previous research [6] revealed pro-inflammatory processes aid 
in the clearance of pathogenic agents in the initial phase of sepsis.

Our study still included some limitations. First, we did not employ additional prospec-
tive real-world data to validate our prognostic signature’s clinical efficacy. Second, owing 
to a paucity of relevant clinical data, the predictive model we created did not incorporate 
all relevant clinical data. Finally, it was determined that the relationships between the 
risk score and immunological status should be validated empirically.

In conclusion, our work established a unique prognostic signature of 7 IRGs. In both 
the training and validation cohorts, this signature was found to be independently linked 
with survival, providing insight into the prediction of sepsis prognosis. The differences 
in neutrophil infiltration were found to be correlated to the progression of sepsis. Thus, 
in the future, this marker may develop into a viable biomarker for predicting sepsis, 
allowing for more sensible ICU resource distribution.
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