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Abstract 

Background:  Constructing molecular interaction networks from microarray data and 
then identifying disease module biomarkers can provide insight into the underlying 
pathogenic mechanisms of non-small cell lung cancer. A promising approach for iden‑
tifying disease modules in the network is community detection.

Results:  In order to identify disease modules from gene co-expression networks, a 
community detection method is proposed based on multi-objective optimization 
genetic algorithm with decomposition. The method is named DM-MOGA and pos‑
sesses two highlights. First, the boundary correction strategy is designed for the mod‑
ules obtained in the process of local module detection and pre-simplification. Second, 
during the evolution, we introduce Davies–Bouldin index and clustering coefficient as 
fitness functions which are improved and migrated to weighted networks. In order to 
identify modules that are more relevant to diseases, the above strategies are designed 
to consider the network topology of genes and the strength of connections with other 
genes at the same time. Experimental results of different gene expression datasets of 
non-small cell lung cancer demonstrate that the core modules obtained by DM-MOGA 
are more effective than those obtained by several other advanced module identifica‑
tion methods.

Conclusions:  The proposed method identifies disease-relevant modules by optimiz‑
ing two novel fitness functions to simultaneously consider the local topology of each 
gene and its connection strength with other genes. The association of the identified 
core modules with lung cancer has been confirmed by pathway and gene ontology 
enrichment analysis.

Keywords:  Disease module identification, Biological network construction, Gene 
expression data, Genetic algorithm, Multi-objective optimization

Background
Lung cancer is the cancer with the highest mortality rate worldwide, and about 80% of 
cases are non-small cell lung cancer (NSCLC) that has a poor 5-year survival rate (aver-
age, 9–11 months) [1]. In recent years, research on molecular mechanisms of lung can-
cer has promoted the development of their corresponding targeted drugs which have 
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greatly improved the survival and prognosis of patients [2]. Meanwhile, more and more 
evidence has indicated that a group of genes related to a specific disease do not work in 
isolation, on the contrary, they usually interact with each other, thus gene co-expres-
sion networks (GCNs) have become a competitive model. Analysis on GCNs can help 
researchers identify disease modules. A disease module is considered as a subnetwork 
that contains most of the disease-related genes with compact topological connections 
and closely related functions, providing a system-level understanding of disease patho-
genesis [3].

In recent years, many methods have been proposed for identifying disease modules. 
In general, these methods can be divided into four categories: local expansion, machine 
learning, mathematical programming and evolutionary algorithm (EA) [4]. DISeAse 
MOdule Detection algorithm (DIAMOnD) is a typical method based on local expansion 
which uses known disease-associated genes (seeds) to iteratively expand modules by 
evaluating the significance of the number of connections between seeds and other genes 
[5]. Although this method can identify disease modules, the coverage of disease-related 
genes may be low. The node and edge Prioritization-based Community Analysis is a 
knowledge-guided and network-based integration method to reveal functional modules 
in non-small cell lung cancer [6]. The protein–protein interaction network is prioritized 
by a random walk algorithm based on NSCLC seed genes and integrating edge weights, 
and then a "community network" is constructed in combination with Girvan-Newman 
and Label Propagation algorithms. MTGO is another method for functional module 
detection based on prior biological knowledge and topology information [7]. It directly 
utilizes gene ontology (GO) terms during module detection and labels each module 
with the most appropriate GO term, thereby simplifying the functional interpretation of 
modules. Molecular Complex Detection (MCODE) is a popular method without using 
prior knowledge for seeds [8]. It calculates the weight for each vertex according to the 
local neighborhood density. Nodes with the largest weight are selected as seeds, then 
the method traverses outwards and incorporates nodes with the weight higher than a 
given threshold into the module. SWItch Miner (SWIM) is a method to identify small 
modules containing key regulatory genes (switch genes) by introducing three topologi-
cal attribute statistics for nodes [9]. SWIM was applied to a dataset from The Cancer 
Genome Atlas (TCGA) to characterize the etiology of interesting diseases. Identifying 
disease modules through machine learning methods is another efficient way. Wu and 
Stein used Markov Clustering (MCL) to cluster the weighted gene functional interaction 
network into a series of disease modules to respectively identify prognostic biomarkers 
of breast cancer and ovarian cancer [10]. PS-MCL (Parallel Shotgun Coarsened MCL) 
was proposed by Lim et  al., a parallel community detection method that outperforms 
MCL in both runtime and the division quality [11]. PS-MCL adopts an effective coarsen-
ing scheme called shotgun coarsening (SC) to improve the module fragmentation prob-
lem of MCL, while providing a multi-core parallel algorithm for community detection 
to increase scalability. In addition, machine learning based methods are more efficient 
to identify disease modules from multi-omics data. A greedy decision forest is proposed 
to identify community structure from molecular interaction networks [12]. It obtains a 
high degree of interpretability by using shapley additive explanations. A strongly inter-
connected disease module identification method called SigMod is proposed by Liu et 
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al. based on mathematical programming [13]. It identifies disease modules by integrat-
ing the results of genome-wide association study (GWAS) and gene networks, as well as 
optimizing the binary quadratic objective function by a graph min-cut approach. EAs 
are popular and widely used in the field of disease module identification. Multi-objec-
tive evolutionary algorithm (MOEA) DiffCoMO identifies differential co-expression 
modules by maximizing the difference between module membership value of genes cor-
responding to two different infection stages [14]. A new method ModuleDiscoverer is 
proposed to identify regulatory modules from the protein–protein interaction network 
(PPIN) and gene expression data [15]. It uses a randomization heuristic-based approxi-
mation of community structure to discover modules according to the maximum clique 
enumeration problem.

In this research, we construct a GCN relying on the PPIN, then we develop a disease-
related module identification method based on the  multi-objective genetic algorithm, 
named DM-MOGA. This method is utilized to analyze the obtained network by opti-
mizing two fitness functions which can evaluate the functional similarity and the density 
of the topological connection of modules, respectively. In addition, a boundary correc-
tion strategy is designed for local modules obtained by pre-simplification, to reconfirm 
the genes in the margin belonging to which module.

Methods
Network construction

Studies have confirmed that integrating gene expression data and PPIN helps people 
understand the complex multi-layered molecular structure of human diseases. There-
fore, two gene expression datasets of NSCLC in the NCBI Gene Expression Omnibus 
(GEO) database are selected to construct GCNs with PPIN information being referred 
to, respectively. Detailed steps of data preprocessing and network construction are as 
follows. First of all, limma package in the R/Bioconductor software is utilized to identify 
differentially expressed genes (DEGs) whose t-statistics p value are adjusted by the Ben-
jamini–Hochberg method [16]. Genes with the adjusted p value less than 0.05 are con-
sidered as DEGs. Only interactions between DEGs are used to construct GCNs.

To estimate the interaction intensity between DEGs, a new criterion called Gaussian 
Copula Mutual Information (GCMI) is introduced [17]. GCMI uses the concept of a sta-
tistical copula to provide the advantages of Gaussian parametric estimation for variables 
with any type of marginal distributions, and it is suitable for estimating MI between two 
continuous variables. At the same time, we use the simRel score to calculate and compare 
functionally related products of a pair of DEGs which provides a similarity criterion for 
gene ontology (GO) terms of two gene products. The computation of simRel has been 
implemented by the R package GOSemSim [18]. The definition of simRel is as follows,

where S(c1, c2) is the set of common ancestors of GO terms c1 and c2 , p(c) is the prob-
ability of c . It is utilized to calculate a fitness value in "Fitness functions" section.

After obtaining the correlation matrix between DEGs, it is compared with the PPIN. 
We downloaded the PPIN from the human protein reference database (HPRD) which 

(1)simRel(c1, c2) = max
c∈S(c1,c2)

2 · log p(c)

log p(c1)+ log p(c2)
· (1− p(c))
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contains 39,240 interactions [19]. The original protein–protein interaction information 
is presented in Additional file  1. If a correlation does not exist in the PPIN, it will be 
modified to 0.

DM‑MOGA framework

Due to the high complexity of identifying disease modules from a large-scale GCN, 
heuristic strategies are required to guide the search process. One of the most popular 
strategies is EA which are suitable for solving global optimization problems in the dis-
crete search space [20]. EA is an optimization algorithm inspired by Darwin’s principles 
of natural selection. Each solution is described as an individual in the population, and 
each individual is associated with one or more fitness functions optimized by natural 
selection process. In this paper, we propose a new method DM-MOGA based on MOEA 
and decomposition to identify modules which is regarded as biomarkers of NSCLC. The 
workflow of DM-MOGA is displayed in Fig. 1. In this section, we describe the frame-
work of DM-MOGA, including pre-simplification with boundary correction, chromo-
some encoding and initialization scheme, operators of MOEA and the optimal solution 
selection strategy. After the evolution is completed, the result with the largest W ′ in the 
Pareto front is considered as the final solution that contains hundreds of modules. We 
only select the biggest module involving more biological information from the GCN.

Local module pre‑simplification and boundary correction

In order to improve the adaptability of DM-MOGA for large-scale biological networks, 
a pre-simplification strategy for local module (LM) is introduced from [21] and executed 
before the evolution. This strategy randomly selects one node a from the network, then a 
LM is defined as containing node a , its neighbor ak with the largest degree, a′k s neighbor 
akk that has the largest number of common neighbors with ak , and all joint neighbors of 
ak and akk . For neighbors of all nodes in the LM, those neighbors whose number of con-
nections with LM is beyond half of its degree are also added to LM. Finally, a complete 
graph of order 3 in the LM is selected and simplified to a single node. Specifically, we 
will not consider the possibility that nodes in the LM do not belong to the same mod-
ule during the evolution. Above operations are repeated to find another LM from the 
remaining nodes of the network until all nodes are assigned to a LM.

However, this strategy only considers the topology of the network without the weight 
of edges, and vertices of some edges with smaller weights do not necessarily belong to 
a LM. Therefore, we develop a module boundary correction strategy. In this strategy, 
the matrix NodeTable for all nodes is maintained, of which each row represents a node. 
The first column is the index of the node, the second column is the module to which the 
node belongs after the LM pre-simplification strategy, and the third column is the new 
module to which the node belongs after the boundary correction.

The constructed GCN is denoted as G = (V ,E) , where V = {vi|i = 1, 2, . . . ,N } is 
the set of nodes, E = {ei|i = 1, 2, . . . ,M } is the set of connections between a pair of 
nodes. Firstly, calculate the weight {Vw

1 ,Vw
2 , . . . ,Vw

i , . . .Vw
N } for each node in the net-

work. Specifically, the most densely connected area in the module made up of node i 
and its immediate neighbors is defined as the highest k-core, and Vw

i  is the product of 
the density and the minimum degree of the highest k-core. The density of the highest 
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k-core is DG = 2E
|V |(|V |−1) [8]. Then, we get the attribute {Va

1 ,V
a
2 , . . . ,V

a
i , . . .V

a
N } for 

each node, where Va
i =

∑

j Eij , j ∈ LCNodeTable(i,2) . For each module, if node i satisfies 
(Vw

i > 2)&(Vw
i ≥ Vw) , node i is reserved in this module; otherwise, the third element of 

the corresponding row of node i in the NodeTable is set to 0, indicating that node i will 
be reassigned afterwards. Secondly, for each LM, the node with the largest sum of the 
weight of connecting edges is selected as the seed node, and neighbors of this seed are 
also recursively assigned to this module. For those nodes that still cannot be allocated to 
a LM, they are retained in the network independently.

Fitness functions

The proposed DM-MOGA identifies disease modules by minimizing the following two 
fitness functions. The first function is Davies–Bouldin Index (DBI) which should have 

Fig. 1  The DM-MOGA workflow
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been a measure to evaluate the quality of clustering results [22]. The basic idea of DBI 
is to evaluate the distance between two clusters, considering that the distance between 
nodes belonging to different clusters should be as large as possible and the distance 
between nodes within a cluster should be as small as possible. With the similarity matrix 
obtained by calculating simRel between genes, DBI is applied to assess the similarity of 
functions of genes belonging to the same disease module. The formula is as follows:

where Cnum is the number of modules, dist(·) is the simRel similarity between two nodes, 
Si =

1
|Ci|

∑

xj∈Ci
dist

(

xj , vi
)

 measures the extent of dispersion of module Ci , Ci represents 

the i-th module, xj is the j-th node of Ci , and vi represents the center of Ci.
The second function is a modified clustering coefficient ( CC ′ ) suitable for weighted 

networks. In general, CC ′ quantifies the aggregation of one node and its neighbors, but 
it is modified to the sum of CC ′ of nodes to evaluate the overall module, and the specific 
formula is as follows. For a random module Ci , clustering coefficient is defined as:

where Rxj is the set of neighbors of node xj . Since the result of MOEA is a group of mod-
ules, the second fitness function is set to the maximum of CC ′.

The criterion W  proposed by Zhao et al. is used to select a solution from the Pareto 
front obtained by MOEA as the final result [23]. The result with the largest W  is consid-
ered as the final result. The original W  is applied to extract a module from unweighted 
social networks. In order to put all modules into consideration and adapt to weighted 
GCNs, W  is changed to the following form:

where C ′
i is the complement of Ci , O(Ci) =

∑

j,k∈Ci

Ej,k , B(Ci) =
∑

j∈Ci ,k∈C
′

i

Ej,k.

Multi‑objective optimization based on decomposition

The basic theory is multi-optimization problem (MOP) based on Pareto optimum which 
is to optimize a group of functions at the same time:

where x = [x1, x2, . . . , xN ] ∈ � and � is the feasible region. Then, the definition of domi-
nance relationship is explained, that is, xA dominates xB (written as xA ≻ xB , xA, xB ∈ � ) 
if and only if:

(2)DBI =
1

Cnum

Cnum
∑

i=1

max
i;j �=i

Si + Sj

dist
(

vi, vj
)

(3)CC ′
i =

∑

xj∈Ci

2
∑

xl ,xk∈Rxj∧l �=k E(xl , xk)
∣

∣

∣
Rxj

∣

∣

∣

(∣

∣

∣
Rxj

∣

∣

∣
− 1

)

(4)W ′ =

Cnum
∑

i=1

(

O(Ci)

|Ci|
2

−
B(Ci)

|Ci|
∣

∣C
′

i

∣

∣

)

(5)min F(x) =
(

f1(x), f2(x), . . . , fk(x)
)T

(6)∀i ∈
{

1, 2, . . . , k
}

fi(xA) ≤ fi(xB) ∧ ∃j ∈
{

1, 2, . . . , k
}

fj(xA) < fj(xB)
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If there is no vector x ∈ � such that x ≻ x∗ , x∗ is called a non-dominated solution or 
Pareto-optimal solution.

MOEA/D-Net is a community detection method based on MOEA with decomposi-
tion. It decomposes a MOP into a number of scalar optimization subproblems and opti-
mizes them simultaneously by population evolution. At each iteration, the population is 
made up of the best solution found for each subproblem since the beginning of evolu-
tion. In MOEA/D-Net, the popular Tchebycheff method is used to construct the aggre-
gation function and therefore the scalar optimization subproblems are in the form:

where � =
{

�1, �2, . . . , �pop
}

 is a series of weight vectors uniformly distributed on 
�
1
i + �

2
i = 1 , � =

〈

�
1
i , �

2
i

〉

∈ [0, 1] , i = {1, 2, . . . , pop} , pop is the population size, and 
z∗ =

〈

z∗1 , z
∗
2

〉

 is the reference point in which each point z∗j  corresponds to the minimum 
value of a fitness function obtained from the population. For each target vector �i , calcu-
late the Euclidean distance between all weight vectors and �i , and the neighborhood of 
�i , denoted as Neibi , is made up of nm individuals with the smallest Euclidean distance 
to �i , where nm is a predefined parameter. For each non-dominated individual, there is 
a weight vector that makes it the optimal solution of Eq. 7, and each optimal solution of 
Eq. 7 is a Pareto-optimal solution of Eq. 5.

Initialization

Individuals are encoded and initialized based on the locus-based adjacency encod-
ing schema which is popular in EA-based community detection algorithms [24]. In an 
individual, each element is initialized as a random neighbor index of its corresponding 
node or the index of the corresponding node itself, and then this element is recursively 
replaced by the index that most neighbors of this node share until the element is not 
changed. Another variable that needs to be initialized is the reference point z∗ , and it is 
set to the minimum of two fitness functions in the initial population.

The main loop of DM‑MOGA

DM-MOGA adopts the similar framework with MOEA/D-Net that is proposed by Gong 
et al. [25]. In this method, the following procedure is applied to evolve the population. 
Every individual pj

(

1 ≤ j ≤ pop
)

 is used to perform the crossover and mutation opera-
tion with another randomly selected individual to generate a child . If the Tchebycheff 
value of the child is better than a neighbor in Neibj , replace that neighbor with the child 
and update the reference point z∗ . Specifically, we choose the two-point crossover to take 
advantage of protecting the effective connection between nodes. We randomly select 
two elements i and j (i.e., 1 ≤ i ≤ j ≤ N  ), and elements in [i, j] are exchanged between 
two parents in the population. After the crossover operation is finished, an individual pj 
is randomly selected for mutation, on which the neighbor-based mutation is performed. 
According to the encoding strategy, the mutation operator is to randomly select an ele-
ment el in the individual pi and replace the neighbor index in it with the index of other 
neighbors of the node corresponding to el . DM-MOGA will continue to evolve until the 
maximum number of generations is reached.

(7)min gte
(

x|�i, z
∗
)

=
2

max
j=1

{

�
j
i

∣

∣Fj(x)− z∗
∣

∣

}
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Results and discussion
Datasets

In the experiments, two NSCLC expression microarray datasets obtained using the same 
platform (GPL570) were downloaded from the GEO database. The first dataset (ID: 
GSE19804) [26] is balanced and contains 60 disease and control samples, respectively. The 
second dataset (ID: GSE19188) [27] contains 91 disease samples and 65 control samples. In 
the above two datasets, each sample contains the expression data of 21,879 genes. After dif-
ferential expression analysis, 7669 DEGs and 10,496 DEGs were respectively selected from 
GSE19804 and GSE19188. Detailed information of these two datasets is shown in Table 1.

Comparison with other methods

Ground‑truth dataset

We integrated four kinds of lung cancer-related genes obtained from the MalaCards data-
base as ground truth, including differentially expressed genes, genes related to lung cancer, 
genes contained in lung cancer related pathways, top affiliated genes of GO terms related to 
lung cancer [28].

Comparison methods

In the experiment, five methods were used to compare the performance with DM-MOGA, 
that is, a network reduction-based MOEA for community (module) detection (RMOEA), a 
disease module identification method SigMod, MCODE, and two classic module identifica-
tion methods from the R package igraph, that is, Hierarchical Clustering [29] and Louvain 
[30].

To make a fair comparison, parameters in DM-MOGA and RMOEA were set to the same 
value, namely, the number of iterations max_gen = 100 , the population size pop = 50 , the 
neighborhood size nm = 40 , and the mutation rate was 0.1. In addition, to ensure that Sig-
Mod can search for modules smoothly, the parameter maxjump was set to 27, and we used 
the default value for parameters of other methods.

Classification performance of disease and healthy samples

Fivefold cross-validation was applied on the largest module to verify its effectiveness as a 
biomarker. The set of samples is randomly divided into five parts with the same size, one of 
which is selected as the test set each time, and the other four parts are used for training (the 
train set). Support vector machine (SVM) is used as the classifier, and the value of five crite-
ria (Accuracy, Precision, Recall, F1 and AUC) of each experiment is taken as the cross-val-
idation result. Since there is a random value during the five-fold cross-validation, for each 
identified module, we performed five-fold cross-validation for ten times independently, 
and the final result was the average value of each criterion in experiments. Figures 2 and 3 
respectively display the classification performance of the disease module identified by six 

Table 1  Details of two datasets

Datasets Tumor samples Normal samples Genes

GSE19804 60 60 21879

GSE19188 91 65 21879
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methods on two NSCLC gene expression datasets. The serial number of the disease module 
is marked after the abbreviation of comparison methods. According to the figures, module 
1 (M1) in community detection results of DM-MOGA obtained the best classification per-
formance on the GSE19804 dataset whose value of five criteria is better than other meth-
ods. As for the GSE19188 dataset, the classification performance of the module detected 
by DM-MOGA was also significant which obtained the maximum value on four of the five 
metrics. Therefore, the effectiveness of the module obtained from DM-MOGA is verified 
in guiding the classification of disease and control samples. Moreover, the basic framework 
of RMOEA is similar to that of DM-MOGA, and both have the ability to effectively guide 
sample classification. The difference between them is that RMOEA lacks the boundary cor-
rection strategy which may lead to unstable results in ten independent experiments. The 
reason for SigMod, hierarchical clustering and the Louvain algorithm that fails to provide 
reasonable results might be the same, that is, the default values of their key parameters are 
not applicable for GCNs. MCODE tends to obtain smaller modules because it has strict 
conditions for expanding nodes in modules.

Fig. 2  The value of the five-fold cross-validated classification index of the optimal module in GSE19804

Fig. 3  The value of the five-fold cross-validated classification index of the optimal module in GSE19188
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Enrichment analysis for the disease module

The quality of the identified module was further quantitatively studied by gene set 
enrichment analysis [31]. A hypergeometric test is used to estimate the enrichment of 
the identified module with reference to the ground truth set, where the statistical signifi-
cance of the enrichment is defined as follows [32]:

where Ng is the number of genes in the ground-truth dataset, Nm is the number of genes 
in the identified module, Ngm is the number of genes that belong to both the ground 
truth set and the identified module. A smaller p value indicates a more significant 
enrichment of genes in the identified module. Figures 4 and 5 display the − log (p) value 
of the module obtained by comparison methods running on GSE19804 and GSE19188, 
respectively. It can be observed that the proposed method obtains significantly better p 
value than the other methods on both two GCNs.

Effectiveness of GCMI

In order to study whether the gene–gene interaction metric can affect the efficiency 
of modules identified by DM-MOGA, we employed the most commonly used Pear-
son Correlation Coefficient (PCC) to reconstruct GCNs for comparison. Except for the 

(8)p =

Ng
∑

k=Ngm

[(

Ng

k

)(

N − Ng

Nm − k

)/(

N
Nm

)]

Fig. 4  Enrichment of the module discovered by different methods from GSE19804

Fig. 5  Enrichment of the module discovered by different methods from GSE19188
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interaction criterion, other steps of network construction remain unchanged. Then the 
proposed method was applied to detect modules on the new networks. Figures 6 and 
7 respectively show the classification performance of the module identified by DM-
MOGA based on different criteria on the two datasets. It can be observed that GCMI we 
choose to calculate edge weights can improve the biological significance of the disease 
module.

Identification of modules associated with lung cancer

Pathways

Pathway enrichment analysis was implemented by the KOBAS v3.0 web server, in which 
four datasets are considered in the analysis, including the KEGG pathway [33], BioCyc, 

Fig. 6  The classification performance of the module identified based on different interaction metrics from 
GSE19804

Fig. 7  The classification performance of the module identified based on different interaction metrics from 
GSE19188
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PANTHER, and Reactome [34, 35]. Pathways that are considered to be significant only 
if the Benjamini–Hochberg adjusted p value ≤ 0.05. Pathway enrichment analysis was 
performed on the disease modules of GSE19804 and GSE19188 independently, and ten 
pathways with the smallest p values ( − log (p) ) were respectively displayed in Figs.  8 
and 9. Moreover, in Additional file 2, we provided the enrichment significance of these 
pathways in the two disease modules. Except for the Pathways in cancer pathway that is 
from the KEGG pathway database, the other pathways in Figs. 8 and 9 are all from the 
Reactome pathway database [33, 34]. Each pathway was proved to be connected with 
lung cancer more or less. To be specific, recent studies have found that the mutation 
frequency of the PTEN locus in lung cancer is high, and there is a strong correlation 
between loss of PTEN function and positive expression (p value < 0.05) of EGFR, TGF-α 
and P-AKT signal transduction pathway (adjusted p value = 4.39E−61) in the devel-
opment of NSCLC [36]. Besides, there are evidence demonstrating that other signal-
ing pathways enriched in the two disease modules are associated with lung cancer, for 
instance, the PI3K/Akt signaling pathway (adjusted p value = 5.87E−28) inhibiting the 
metastasis of A549 cell line from lung adenocarcinoma, the receptor tyrosine kinases 
(RTKs) (adjusted p value = 2.1E−35) participating in the signal transmission across 

Fig. 8  Top 10 significantly enriched pathway terms associated with genes in the identified module of 
GSE19804

Fig. 9  Top 10 significantly enriched pathway terms associated with genes in the identified module of 
GSE19188
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the plasma membrane, signaling by interleukin (adjusted p value = 4.29E−40) and cell 
cycle (adjusted p value = 1.97E−31) [37–40]. In Figs. 8 and 9, all pathways related to the 
immune system were confirmed to participate in the progression of NSCLC, including 
the immune system (adjust p-value = 3.23E-55), cytokine signaling in immune system 
(adjusted p value = 4.23E−40) and innate immune systems (adjusted p value = 6.65E−47) 
[41–43] RNA Polymerase II Transcription pathway participates gene expression (tran-
scription) pathway (adjusted p value = 2.72E−50) and generic transcription pathway 
(adjusted p value = 7.61E−50). By inhibiting RNA polymerase II-dependent transcrip-
tion (adjust p value = 1.29E−48), cell growth in the malignant cell line A549 can be 
effectively inhibited [44, 45]. Studies have found that metabolism of protein (adjusted p 
value = 1.53E−29) is related to cancer cachexia. In cancer cachexia, overall protein syn-
thesis is decreasing that is directly proportional to tumor growth [46]. Some researchers 
believe that cancer is a developmental biology (adjusted p value = 2.48E−36) problem. 
They found that embryos and cancer have a number of common cellular and molecu-
lar features [47]. It is known that hemostatic biomarkers (adjusted p value = 3.31E−43) 
can affect the survival and venous thromboembolism (VTE) occurrence in lung cancer 
patients [48].

GO terms

GO enrichment analysis was implemented by the R package clusterProfiler [49]. In 
Figs. 10 and 11, the top ten GO terms that were most significantly enriched in the mod-
ules identified from the two datasets are respectively shown. The modules obtained in 
GSE19804 and GSE19188 were both significantly enriched in regulation of protein ser-
ine/threonine kinase activity (GO:0071900, adjusted p value = 3.87E−44). Under EGF-
stimulated conditions, it is revealed that proteins interacting with B-Raf are enriched in 

Fig. 10  Top 10 significantly enriched GO terms associated with genes in the identified module of GSE19804
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regulation of protein serine/threonine kinase activity, and several interacting partners of 
B-Raf are enriched in NSCLC [50].

Besides, the core module from GSE19804 was mainly enriched in GO:1901653, 
GO:0043434, GO:0002683, GO:0051348, GO:0033673, GO:0030522, GO:0006352, 
GO:0006469, GO:0006367, corresponding to cellular response to peptide, response to 
peptide hormone, negative regulation of immune system process, negative regulation of 
transferase activity, negative regulation of kinase activity, intracellular receptor signaling 
pathway, DNA-templated transcription, initiation, negative regulation of protein kinase 
activity, transcription initiation from RNA polymerase II promoter. Several studies have 
confirmed that these GO terms are related to the pathogenesis and development of 
NSCLC. For instance, studies have found that licorice is a potential NSCLC treatment 
drug, and the targets of licorice are enriched in the biological process of cell response to 
peptide (GO:1901653, adjusted p value = 3.16E−16) which is an important way to stim-
ulate the acquired immune system [51]. DHX36 plays a role in lung cancer cells by regu-
lating signaling pathways such as response to peptide hormone (GO:0043434, adjusted p 
value = 1.57E−14) [52]. Interleukin-34 (IL-34) is significantly enriched in "negative regu-
lation of immune system processes" (GO:0002683, adjusted p value = 7.18E−15) which 
is highly expressed in primary lung cancer tissues and associated with poor prognosis 
[53]. Exposure to cigarette smoke (CS) can cause injury to the epithelial cells of the res-
piratory tract and is considered to be one of the pathogenic factors of lung cancer. DEGs 
were extracted by comparing BEAS-2B cells (a he human bronchial epithelial cell line) 
before exposure to CS with after, and they are significantly enriched in the negative reg-
ulation of transferase activity (GO:0051348, adjusted p value = 2.21E−15) [54]. In addi-
tion, negative regulation of kinase activity (GO:0033673, adjusted p value = 1.57E−14), 
intracellular receptor signaling pathway (GO:0030522, adjusted p value = 3.78E−14), 

Fig. 11  Top 10 significantly enriched GO terms associated with genes in the identified module of GSE19188
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DNA-templated transcription, initiation (GO:0006352, adjusted p value = 1.57E−14), 
negative regulation of protein kinase activity (GO:0006469, adjusted p value = 2.25E−14) 
and transcription initiation from RNA polymerase II promoter (GO:0006367, adjusted p 
value = 1.10E−15) are the most enriched terms by GO enrichment analysis on key lung 
cancer-related gene sets that have been reported in other studies [55–59].

In Fig. 11, the identified module was mainly enriched in GO:0018108, GO:0018212, 
GO:0051090, GO:0043405, GO:0032147, GO:0071902, GO:0031098, GO:0051403, 
GO:0046777, corresponding to peptidyl-tyrosine phosphorylation, peptidyl-tyrosine 
modification, regulation of DNA-binding transcription factor activity, regulation of 
MAP kinase activity, activation of protein kinase activity, positive regulation of pro-
tein serine/threonine kinase activity, stress-activated protein kinase signaling cascade, 
stress-activated MAPK cascade, protein autophosphorylation. These GO terms have 
a certain correlation with lung cancer. Somatic variants that can be detected in the 
matched lymph node metastases but not in the primary lung cancer, are termed as 
LME-SMs genes. They are enriched in GO terms, for instance, peptidyl-tyrosine phos-
phorylation (GO:0018108, adjusted p value = 6.70E−33) and peptidyl-tyrosine modifica-
tion (GO:0018212, adjusted p value = 1.16E−32) [60]. In [61], there are 35 genes that 
have been reported to be related to lung cancer. They are mainly related to GO terms 
in biological pathways, such as regulation of DNA-binding transcription factor activity 
(GO:0051090, adjusted p value = 1.51E−23), positive regulation of DNA-binding tran-
scription factor activity, etc. In [62], it is found that cPLA2 is over-expressed in NSCLC 
cells transformed by oncogenic Ras, and cPLA2 is a well-known substrate of MAP kinase 
and closely related to the regulation of MAP kinase activity (GO:0043405, adjusted p 
value = 8.96E−32). Stem cell factor (SCF) and its receptor c-kit proto-oncogene are co-
expressed in at least 70% of small cell lung cancer tumors and tumor-derived cell lines. 
The binding of SCF to c-Kit leads to receptor dimerization and activation of protein 
kinase activity (GO:0032147, adjusted p value = 1.62E−24) [63]. In other studies, the rest 
GO terms are also the most enriched terms in the results of GO enrichment analysis on 
key lung cancer-related gene sets [64–66].

Conclusions
In this work, to identify disease modules in GCNs, a multi-objective optimization 
method DM-MOGA is proposed based on the MOEA framework with decomposition. 
In DM-MOGA, the first step is to respectively construct the GCN on two NSCLC gene 
expression datasets, in which GCMI between all genes is calculated and considered as 
edge weights, and then the edges are filtered by referring to the prior knowledge of the 
PPI network. Secondly, DM-MOGA is separately executed on two GCNs that searches 
for disease modules by simultaneously optimizing two novel fitness functions, DBI and 
CC ′ . After the evolution is finished, the Pareto-optimal solution with the largest W ′ is 
selected as the final result.

To examine the validity of disease modules obtained through the above process, a 
series of experiments performed. First of all, DM-MOGA was compared with several 
other module identification methods from the following aspects, specifically, the clas-
sification effect of disease and control samples guided by modules, the enrichment of 
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modules in the disease-related gene set, and the validity of the edge weight criterion. 
Then, the correlation between modules and lung cancer was verified by pathway and GO 
term enrichment analysis. Experiments proved that the biological meaning of key mod-
ules obtained by DM-MOGA was more significant.

The proposed method possesses two main advantages. First, two fitness functions that 
have never been used for module identification problems are introduced which effec-
tively improve the accuracy of the module in guiding patient classification. Second, the 
boundary correction strategy is designed for local modules, so that nodes with high cor-
relation strength and low degree can be incorporated into the module. However, there 
are still some works in this field that can be further studied. On the one hand, it is nec-
essary to develop fitness functions that are more suitable for disease module identifica-
tion; on the other hand, studying the improvement strategies of EAs can further improve 
search efficiency.
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