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Abstract 

Background:  Rhodopsin is a seven-transmembrane protein covalently linked with 
retinal chromophore that absorbs photons for energy conversion and intracellular 
signaling in eukaryotes, bacteria, and archaea. Haloarchaeal rhodopsins are Type-I 
microbial rhodopsin that elicits various light-driven functions like proton pumping, 
chloride pumping and Phototaxis behaviour. The industrial application of Ion-pumping 
Haloarchaeal rhodopsins is limited by the lack of full-length rhodopsin sequence-based 
classifications, which play an important role in Ion-pumping activity. The well-studied 
Haloarchaeal rhodopsin is a proton-pumping bacteriorhodopsin that shows promising 
applications in optogenetics, biosensitized solar cells, security ink, data storage, artificial 
retinal implant and biohydrogen generation. As a result, a low-cost computational 
approach is required to identify Ion-pumping Haloarchaeal rhodopsin sequences and 
its subtype.

Results:  This study uses a support vector machine (SVM) technique to identify these 
ion-pumping Haloarchaeal rhodopsin proteins. The haloarchaeal ion pumping rho-
dopsins viz., bacteriorhodopsin, halorhodopsin, xanthorhodopsin, sensoryrhodopsin 
and marine prokaryotic Ion-pumping rhodopsins like actinorhodopsin, proteorho-
dopsin have been utilized to develop the methods that accurately identified the ion 
pumping haloarchaeal and other type I microbial rhodopsins. We achieved overall 
maximum accuracy of 97.78%, 97.84% and 97.60%, respectively, for amino acid 
composition, dipeptide composition and hybrid approach on tenfold cross validation 
using SVM. Predictive models for each class of rhodopsin performed equally well on an 
independent data set. In addition to this, similar results were achieved using another 
machine learning technique namely random forest. Simultaneously predictive mod-
els performed equally well during five-fold cross validation. Apart from this study, we 
also tested the own, blank, BLAST dataset and annotated whole-genome rhodopsin 
sequences of PWS haloarchaeal isolates in the developed methods. The developed 
web server (https://​bioin​fo.​imtech.​res.​in/​serve​rs/​rhodo​pred) can identify the Ion 
Pumping Haloarchaeal rhodopsin proteins and their subtypes. We expect this web tool 
would be useful for rhodopsin researchers.

Conclusion:  The overall performance of the developed method results show that it 
accurately identifies the Ionpumping Haloarchaeal rhodopsin and their subtypes using 
known and unknown microbial rhodopsin sequences. We expect that this study would 
be useful for optogenetics, molecular biologists and rhodopsin researchers.
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Background
Rhodopsin is present in a wide range of organisms, from vertebrates to bacteria. Rho-
dopsin consists of seven retinal chromophore-associated transmembrane helix proteins 
belonging to the superfamily of GPCRs that act as photoreceptors [1, 2]. Based on the 
seven transmembrane topology, the rhodopsins are classified into two groups: type-I 
Microbial Rhodopsin and type-II animal Rhodopsin. Type-I microbial rhodopsins con-
sist of seven transmembrane domain that is covalently associated with retinal chromo-
phore functions like proton pumping, chloride pumping, and phototaxis behaviour. The 
type-I microbial rhodopsins used in this study, such as actinorhodopsin, bacteriorhodop-
sin, proteorhodopsin, xanthorhodopsin, belong to the proton pumping type-I microbial 
rhodopsins family. Halorhodopsin and sensory rhodopsin functions like non-proton-
pumping type-I Microbial rhodopsin, such as chloride pumps and photoreceptors. Bac-
teriorhodopsin is the first microbial rhodopsin to be isolated and well-characterized 
from the Halobacterium salinarium in the 1970s by Oesterhelt and stockineus group 
[3]. The Light driven proton pump bacteriorhodopsin extensively used in several bio-
photonics and Bioelectronics applications [4]. Proton pump proteorhodopsins were first 
discovered during environmental sequencing of pacific coastal waters and deep ocean 
samples. Proteorhodopsins are the largest subfamily of type-I rhodopsins. 13% of pro-
teorhodopsins harboring bacterial cells live in the photic zone of oceanic marine sam-
ples. Proteorhodopsin is the largest type-I microbial rhodopsin subfamily among marine 
proteobacteria [5, 6]. Xanthorhodopsin, originally found in Salinibacter ruber binds 
to salinixanthin-like carotenoids that bind specifically to the rhodopsin protein. These 
carotenoids contain a retinal chromophore that absorbs light and transfers energy to the 
rhodopsin protein in hypersaline Haloarchaea. The light-driven proton pump was trans-
formed into halorhodopsin due to Asp 85 single mutation which acts as proton acceptor 
[7, 8]. ActR gene lineage is also the one of the globally abundant Type-I microbial rho-
dopsin gene. Actinorhodopsin was first reported in the freshwater lakes in the actino-
bacteria. Subsequent findings suggested that actinorhodopsin is present abundantly in 
the terrestrial and ocean environments [9, 10]. Light-modulated swimming behavior is 
a well-known feature of sensory rhodopsins I. Takahashi and colleagues suggested the 
existence of a second sensory photoregulatory receptor, rhodopsin II, present in Halo-
bacterium salinarium for their repellent response under highly aerobic conditions and 
showed slow photocyclic processes [11, 12]. Many computational methods have been 
developed to identify or predict the proteins and their functions, based on protein struc-
ture, DNA binding sites, glycosylation sites, subcellular localization and hybridization-
based prediction methods [13–15]. Recently a research group Jeanthon from France 
has developed a MicRhoDE is a comprehensive database that categorize the different 
types of microbial rhodopsins and their taxonomy classification [16]. Research group 
Kandori and Takeuchi from Japan developed a machine learning approach to predict the 
light absorption properties of microbial rhodopsin [17]. Classification and prediction of 
GPCRs based on amino acid sequences have been reported using a three-layer approach 



Page 3 of 18Selvaraj et al. BMC Bioinformatics           (2023) 24:29 	

[18, 19]. The isolation of rhodopsin proteins from wild type Haloarchaeal culture is 
laborious, expensive involves lengthy procedures. The well studied bacteriorhodopsin 
protein from Haloarchaeal strains has a wide range of applications in Biophotonics and 
bioelectronic applications. Therefore, it is necessary to identify the bacterial rhodopsin 
proteins that express in their wild type as well as additional microbial rhodopsin proteins 
with restricted expression at the mg/l expression level. The full length bacteriorhodopsin 
sequence also plays a crucial role in the ion pumping activity of recombinant bacteri-
orhodopsin, which helps to facilitate the development of recombinant bacteriorhodop-
sin. Full length microbial rhodopsin expressed at high levels is useful for finding new 
rhodopsin proteins with ion pumping capabilities through crystallography studies.

Currently, GPCR is the only rhodopsin superfamily that has been studied in detail 
using support vector machine learning by multiple research groups [20]. As per our 
knowledge, there were no reports on the classification of microbial rhodopsin proteins 
by support vector machine (SVM). Here, we have developed a method for identifica-
tion of Ion pumping Haloarchaeal rhodopsin using amino acid composition (AAC), 
dipeptide composition (DPC), and hybrid models. Support vector machine is a super-
vised machine learning method that has been used in various bioinformatics studies to 
classify GPCR, proteins of oxygen-binding, plasminogen activators and evolutionary 
relationship of receptor-associated proteins (RAPs) [21–23]. SVM is a powerful predic-
tor tool that has been extended to many clinical investigations beyond protein studies 
[15]. It is well-established that sequence-based SVM statistical predictors for biologi-
cal systems are susceptible to the following rules: (a) Data set construction, (b) Program 
the biological sequence in mathematical terms (c) Develop a robust algorithm (d) Per-
form cross-validation to evaluate prediction accuracy (e) Run the algorithm using the 
server user-friendly online web [24]. SVM models have been created for bacteriorho-
dopsin, actinorhodopsin, xanthorhodopsin, proteorhodopsin, sensory rhodopsin, and 
halorhodopsin. To run the SVM to generate models, a sequence of subclasses is labelled 
as positive and negative every other classes are labelled as negative [25]. When creat-
ing classification models, it is repeated for all classes. Each of the five SVM models was 
developed by employing a fivefold cross validation procedure that is identical in both 
techniques. To recognise the classes depicted in the prediction score graphs, Each and 
every sequence in the dataset was analyzed using recently constructed models. Haloar-
chaeal rhodopsin proteins and subtypes were also identified using the blind dataset. The 
accuracy (ACC), sensitivity (SN), and specificity (SP) of the prediction results were com-
pared with in the classes [26]. SVM classifiers integrated with rhodopred webserver cor-
rectly identified the subtype of Ion pumping Haloarchaeal rhodopsin and experimentally 
validated whole-genome Haloarchaeal rhodopsin sequences extracted from NCBI and 
Haloweb Genome web databases (https://​www.​halow​eb.​org/) [27]. This SVM method 
focuses on the prediction and analysis of various ion-pumping Haloarchaea rhodopsins 
of recently isolated Haloarchaeal strains whole genome data available in the NCBI 
(https://​www.​ncbi.​nlm.​nih.​gov/​genome/) database using the Rhodopred web server. 
Among the Type-I Ion pumping Microbial rhodpsins the sensory rhodopsins were out 
grouped from the chloride pumping rhodopsins were different from Ion Pumping rho-
dopsin amino acid sequences.

https://www.haloweb.org/
https://www.ncbi.nlm.nih.gov/genome/
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The developed SVM models suggest that full-length rhodopsin sequences are respon-
sible for Ion pumping properties of type-I microbial rhodopsin, which would be helpful 
in heterologous protein expression and optogenetics studies [28].

Methods
The present method classifies the ion pumping type-I microbial rhodopsin by combin-
ing the amino acid composition (AAC) and the dipeptide composition (DPC) in order to 
get a higher level of precision. These predictive models were developed to compare the 
type-I microbial rhodopsin amino acid sequences using -5-fold and 10-fold cross-valida-
tion methods. Amino acid composition (AAC), dipepide composition (DPC), and hybrid 
(HYB) approach were used to build the predictive models. The known and experimen-
tally verified rhodopsin sequences extracted from NCBI, and Haloweb genome database 
were given as input in the rhodopred web server. Based on the AAC, DPC, HYB scores, 
the outcome of the predictor clearly shows that amino acid sequences belong to type-I 
microbial rhodopsins proteins. This indirectly indicates the information that those rho-
dopsin proteins belongs to Haloarcheal rhodopsins or Prokaryotic rhodopsins. Among 
Haloarchaeal rhodopsins, we can also predict the above amino acid sequence belongs to 
proton pumping or non-proton pumping rhodopsin proteins

Data set preparation

The most-reported proton-pumping rhodopsins are in NCBI databases as bacteri-
orhodopsin, actinorhodopsin, proteorhodopsin and xanthorhodopsin. We retrieved 
the various microbial rhodopsin sequences from the uniport database using the pro-
tein’s keyword (https://​www.​unipr​ot.​org/). The sequences labelled “fragments,” “iso-
forms,” “potentials,” “similarity,” or “probables” were removed. Furthermore, the CD-hit 
programme was used to reduce redundancy with a cutoff of 90% ensuring that no two 
sequences in the dataset share more than 90 percent of redundancy [29].

The final dataset includes 366, 139, 23, 191, 16, and 167 sequences from bacteriorho-
dopsin, actinorhodopsin, halorhodopsin, proteorhodopsin, sensoryrhodopsin and xan-
thorhodopsin respectively, the complete datasets are available publicly at the following 
link (https://​bioin​fo.​imtech.​res.​in/​serve​rs/​rhodo​pred/​downl​oad.​php)

Amino acid composition

AAC was initially computed by dividing the fraction of each amino acid in a protein by 
the total number of amino acids. The AAC profile generated a final output of 20. The 
DPC was calculated by dividing the fraction of each dipeptide in a protein by the total 
number of dipeptides with a pattern length of 400(20X20) [30].

The percentage of each amino acid present in a protein is referred to as its amino acid 
composition (AAC).

Data must be encoded into vectors in order for the SVM light to run. The following 
equation was used to determine the percentage of each of the 20 naturally occurring 
amino acids:

https://www.uniprot.org/
https://bioinfo.imtech.res.in/servers/rhodopred/download.php
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Dipeptide composition

DPC was calculated in the same way, using a vector with a fixed length of 400 (20 × 20) 
dimensions. The following equation was used to determine the fraction of each dipep-
tide composition [31]:

Hybrid approach

To increase the prediction accuracy the HYB approach was developed. A prediction 
model that combines two or more profiles is known as a hybrid model. This study used 
420 vector lengths to create hybrid models that included AAC and DPC. The GPSR 1.0 
package’s col_add function was used to combine the AAC and DPC profiles to create a 
hybrid profile (https://​webs.​iiitd.​edu.​in/​ragha​va/​gpsr/).

Support vector

A SVM is a supervised machine learning technique (MLT) used for classification and 
regression analysis. For SVM implementation, predictive models were developed by 
converting the various sequence length into fixed length vectors by implementing sev-
eral sequence properties. We have used SVMlight v6.02 to predict the various types of 
microbial rhodopsin proteins. While the performance was optimized using RBF kernel 
on diverse g and c values [32].

Random forest

Random forest (RF) is an ensemble-learning method based on decision tree model hav-
ing bootstrapping algorithm. Firstly, decision tree was developed from training data sets 
and the classes of unknown sample is assigned either according to the mode of classes 
either in the classification or regression based data sets. We have used RF through Wai-
kato Environment for Knowledge Analysis (WEKA) package for developing a prediction 
model [33].

Cross validation

We have used 5-fold and 10-fold cross validation method to evaluate the performance 
of all the module. For 10-fold cross validation, the data set is randomly divided into 
10-equally sized sets [34]. From the 10 sets, one set is used for testing while the remain-
ing nine sets are considered for training. This process is repeated ten times and each set 
will get the chance to be the testing data set. Likewise, in 5-fold cross validation, data set 
is divided into 5-sets, where 1 set is tested by the model developed on the remaining 4 
sets. This process is also iterated 5 times.

(1)Fraction of amino acid (i) =
Total number of amino acid (i)

Total number of amino acids in protein

(2)Fraction of dipeptide (i) =
Total number of dipep (i)

Total number of all possible dipeptides

https://webs.iiitd.edu.in/raghava/gpsr/
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Performance measures

The performance of the predictive models was evaluated by calculating specificity (SP), 
sensitivity (SN), accuracy (ACC) and Mathew’s correlation coefficient (MCC) using the 
following equations [35]:

Webserver

Rhodopred webserver is developed using LAMPP software. The front-end was devel-
oped using PHP, HTML, CSS, JavaScript and PERL. The backend was linked to the 
apache server using linux platform. The webserver is freely accessible at https://​bioin​
fo.​imtech.​res.​in/​serve​rs/​rhodo​pred. We have also provided the general information of 
webserver in the “About” section. Rhodopred webserver is a machine learning based 
classification method for predicting various microbial rhodopsin proteins. Rhodopsin 
protein modeling was done using support vector machines (SVM) and their classes, 
viz. actinorhodopsin, bacteriorhodopsin, halorhodopsin, proteorhodopsin, sensoryrho-
dopsin and xanthorhodopsin. On the home page, the user can paste/upload the pro-
tein sequence (fasta or multiple fasta) in the textbox. This will predict the input protein 
sequence as rhodopsin (YES) or non-rhodopsin (NO) proteins based on SVM score for 
amino acid composition (AAC), dipeptide composition (DPC) and hybrid (AAC+DPC). 
Users can also predict rhodopsin protein for each class by selecting each rhodopsin pro-
tein in the “Class” section of the webserver. It will also provide score and predict whether 
the sequence belongs to a particular rhodopsin protein or not.

Results
Many computational approaches are currently available for predicting diverse functional 
proteins utilizing a machine learning methodology. This work is concerned with pre-
dicting and analyzing various microbial rhodopsins and analysing our recently isolated 
Haloarchaeal strains of whole genome data available in NCBI database (https://​www.​
ncbi.​nlm.​nih.​gov/​genome/). The developed SVM approaches were also evaluated against 
the annotated whole genome sequence of PWS Haloarchaeal isolates. According to our 
findings, the established approach accurately identifies the rhodopsin sequences and 
various types of Type-I microbial rhodopsins (Fig. 1).

(3)Accuracy (ACC) =
TP + TN

TP + TN + FP + FN

(4)Sensitivity (SN ) =
TP

TP + FN

(5)Specificity (SP) =
TN

TN + FP

(6)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

https://bioinfo.imtech.res.in/servers/rhodopred
https://bioinfo.imtech.res.in/servers/rhodopred
https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/genome/
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Analyze the aminoacid profile of microbial rhodopsin

The average amino acids for various rhodopsin proteins were computed, and resi-
dues “L” and “A” are present in more than 10% of all rhodopsins. A high abundance 
of these non-polar amino acids like Leucine and Alanine are signature amino acids 
for integral membrane proteins like Microbial Type-I rhodopsins. Compared to other 
rhodopsins, bacteriorhodopsin and sensory rhodopsin make up almost 20% of the 
total residues “G” and “V” in excess of 5%. The residues “C” and "H" are mostly miss-
ing. The remaining residues are found in all rhodopsins in similar amounts. Figure 2a 
depicts the aminoacid composition of all rhodopsins.

We also computed the sequence length profile of several rhodopsins and found that 
the majority of the sequences were between 200 and 399 amino acids long. Interest-
ingly, the majority of the bacteriorhodopsin sequences are in the 200–299 ranges. 
Furthermore, most xanthorhodopsin and Proteo rhodopsin sequences are found 
in the 300–399 ranges. Other rhodopsins, such as Sensory, Halo, and Actino rho-
dopsins, are found in various lengths 200–299, 300–399. The details of the results are 
shown in Fig. 2b.

Performance of AAC‑SVM based classification

The entire classes of rhodopsin performed equally well during 10-fold cross vali-
dation. For AAC, the maximum accuracy and MCC has been achieved for acti-
norhodopsin followed by halorhodopsin, sensoryrhodopsin, xanthorhodopsin, 
proteorhodopsin, bacteriorhodopsin and overall with 99.88%, 1; 99.75%, 0.95; 99.38%, 
0.80; 98.65%, 0.96; 98.27%, 0.95; 98.15%, 0.96 and 97.78%, 0.96 respectively during 
10-fold cross validation. These models showed equal performance on independent 
data set on all classes of rhodopsin as shown in Table  1. Further, rhodopsin classes 
also performed well during 5-fold cross validation as given in Additional file  2: Fig. 
S1, Additional file 1: Table S1.

Fig. 1  Flow Chart for developing SVM method to predict microbial rhodopsin proteins
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Performance of DPC‑SVM based classification

For DPC, actinorhodopsin achieved the highest accuracy and MCC followed by bac-
teriorhodopsin, halorhodopsin, sensoryrhodopsin, xanthorhodopsin, proteorho-
dopsin, and overall with 99.88%, 1; 99.75%, 0.99; 99.75%, 0.95; 99.38%, 0.81; 99.02%, 
0.97; 98.27%, 0.95; and 97.84%, 0.96 correspondingly during 10-fold cross validation. 
Similarly all models performed equally well on independent data set of all classes of 
rhodopsin (Table 1). Likewise, rhodopsin classes also showed good performance on 
5-fold cross validation (Additional file 2: Fig. S1, Additional file 1: Table S1).

Performance of HYB‑SVM based classification

In case of HYB, bacteriorhodopsin got the maximum accuracy and MCC of 99.75% 
and 0.99 followed by halorhodopsin, actinorhodopsin, sensoryrhodopsin, xanthorho-
dopsin, proteorhodopsin, and overall with 99.75%, 0.95; 99.63%, 0.99; 99.51%, 0.85; 
99.02%, 0.97; 98.77%, 0.96 and 97.60%, 0.95 respectively during 10-fold cross valida-
tion. Similalrly, predictive models also performed equally well on the independent 
data set (Additional file 2: Fig. S1) (Table 1). Likewise, rhodopsin classes also showed 
good performance on 5-fold cross validation (Additional file  2: Fig. S1, Additional 
file 1: Table S1).

Performance of random forest (RF) based classification

Using RF based algorithm for 10-fold cross validation, we achieved the maximum 
MCC for actinorhodopsin with 0.99 followed by bacteriorhodopsin, overall, xan-
thorhodopsin, proteorhodopsin, halorhodopsin and sensoryrhodopsin with 0.98, 0.97, 

Fig. 2  a Amino acid distribution chart of Ion Pumping Type-1 Microbial rhodopsin. b Aminoacid Sequence 
length distribution profile of Type I Microbial rhodopsin
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0.94, 0.93, 0.84, and 0.53 respectively for AAC on the training data set. For DPC, acti-
norhodopsin also has the highest MCC of 1followed by bacteriorhodopsin, overall, 
xanthorhodopsin, proteorhodopsin, halorhodopsin and sensoryrhodopsin with 0.99, 

Table 1  Performance of SVM based predictive models for different classes of rhodopsin during 
tenfold cross validation

ACC, accuracy; MCC, Matthew’s correlation coefficient; AUC, area under curve; AAC, amino acid composition; DPC, dipeptide 
composition; Hybrid, AAC + DPC

Class Datasets Type ACC​ MCC AUC​ GC

Overall (902p + 902n) T812p+812n AAC​ 97.78 0.96 1.00 g:0.001 c:0.1

V90p+90n 98.89 0.98 1.00

T812p+812n DPC 97.84 0.96 1.00 g:0.005 c:0.1

V90p+90n 99.44 0.99 1.00

T812p+812n HYB 97.6 0.95 1.00 g:0.005 c:0.01

V90p+90n 98.89 0.98 1.00

Actinorhodopsin (139p + 763n) T125p+687n AAC​ 99.88 1 1.00 g:0.01 c:10

V14p+76n 98.89 0.96 1.00

T125p+687n DPC 99.88 1 1.00 g:0.01 c:10

V14p+76n 98.89 0.96 1.00

T125p+687n Hybrid 99.63 0.99 1.00 g:0.01 c:10

V14p+76n 100 1 1.00

Bacteriorhodopsin (366p + 536n) T330p+482n AAC​ 98.15 0.96 1.00 g:0.01 c:50

V36p+54n 98.89 0.98 1.00

T330p+482n DPC 99.75 0.99 1.00 g:0.01 c:50

V36p+54n 98.89 0.98 1.00

T330p+482n Hybrid 99.75 0.99 1.00 g:0.01 c:50

V36p+54n 98.89 0.98 1.00

Halorhodopsin (23p + 879n) T21p+791n AAC​ 99.75 0.95 0.97 g:0.01 c:10

V2p+88n 100 1.00 1.00

T21p+791n DPC 99.75 0.95 1.00 g:0.01 c:10

V2p+88n 100 1.00 1.00

T21p+791n Hybrid 99.75 0.95 1.00 g:0.01 c:5

V2p+88n 100 1.00 1.00

Proteorhodopsin (191p + 711n) T171p+640n AAC​ 98.27 0.95 1.00 g:0.0001 c:50

V20p+71n 98.9 0.97

T171p+640n DPC 98.27 0.95 1.00 g:0.001 c:1

V20p+71n 100 1.00 1.00

T171p+640n Hybrid 98.77 0.96 1.00 g:0.001 c:1

V20p+71n 98.9 0.97 1.00

Sensoryrhodopsin (16p + 886n) T14p+798n AAC​ 99.38 0.8 0.90 g:0.01 c:5

V2p+88n 98.89 0.7 0.88

T14p+798n DPC 99.38 0.81 0.97 g:0.001 c:10

V2p+88n 98.89 0.7 0.99

T14p+798n Hybrid 99.51 0.85 0.93 g:0.01 c:1

V2p+88n 98.89 0.7 0.99

Xanthorhodopsin (167p + 735n) T151p+662n AAC​ 98.65 0.96 1.00 g:0.05 c:1

V16p+73n 98.88 0.96 1.00

T151p+662n DPC 99.02 0.97 1.00 g:0.01 c:1

V16p+73n 97.75 0.92 1.00

T151p+662n Hybrid 99.02 0.97 1.00 g:0.01 c:1

V16p+73n 97.75 0.92 1.00
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0.98, 0.95, 0.95, 0.90, and 0.38 respectively. Likewise in HYB approach, actinorhodop-
sin has the MCC of 1 followed by bacteriorhodopsin, overall, xanthorhodopsin, pro-
teorhodopsin, halorhodopsin and sensoryrhodopsin with 0.99, 0.98, 0.95, 0.95, 0.87, 
and 0.46 respectively (Additional file 2: Fig. S1, Additional file 1: Table S2). While, the 
complete result of rhodopsin classes during 5-fold cross validation on RF algorithm 
is given in Additional file 2: Fig. S1, Additional file 1: Table S3. Further these models 
showed equal performance on independent data set as shown in Additional file 2: Fig. 
S1, Additional file 1: Table S4.

Confusion matrix performance by prediction scoring graphs

The confusion matrix and prediction scoring graphs were also used to assess the per-
formance of SVM modules. The prediction score for each unique sequence studied is 
depicted in the scoring graph, which shows how a threshold distinguishes the positive 
set’s score from the negative set’s score in order to distinguish between positive and 
negative predictions. However, not all positive or negative sequences can be accurately 
detected, resulting in false negative and positive predictions. In this analysis, we found 
that all models such as Amino acid composition, dipeptide composition, the SVM pre-
diction scores for the Amino acid models are found to be positive scores for actinorho-
dopsin, bacteriorhodopsin, proteorhodopsin and xanthorhodopsin. This confirms the 
very distinct classification of Type I proton pumping among all Type I microbial rho-
dopsin. In this amino acid composition model the proton pumping rhodopsins were not 
confused with the other Type I microbial rhodopsin sequences (Fig. 3a–c).

BLAST dataset prediction and analysis

To validate of our developed methods microbial rhodopsin protein sequences was 
extracted from NCBI database to identify BLAST data using our developed models 
to analyse the performance of the developed models. In this investigation, a total of 

Fig. 3  Prediction performances of Confusion matrix a Amino acid Composition, b Dipeptide Amino acid 
Composition, c Hybrid Composition
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500 sequences from each family were employed, with five sequences from our data-
set running BLAST and collecting 100 each from a sequence. The output findings 
demonstrate that on an average 54% of actinorhodopsin BLAST sequences were rec-
ognized by its own models, 91% sequences on an average were recognized by bac-
teriorhodopsin models overlapping with halorhodopsin sequences suggest that 
bacteriorhodopsin and halorhodopsin sequences were over lapping each other which 
shows close sequences similarity in rhodopsin amino acid sequences. All models 
recognise BLAST data sequences. In the other classes, the BLAST sequences were 
recognised by its own all models as 53.4%, 97.4%, 97.6%, 99.4%, 45.2 %, and 99.6% 
in actinorhodopsin, (Table  2) bacteriorhodopsin, halorhodopsin, proteorhodopsin, 

Table 2  Rhodopred performance on BLAST dataset—overall

Microbial-
rhodopsins

No. of seq BLAST sequences

Actinorhodopsin Bacterior 
hodopsin

Halorhodopsin Proteor 
hodopsin

Sensory 
rhodopsin

Xanthor 
hodopsin

Actinorho-
dopsin

500 267 (53.4%) 233

Bacteriorho-
dopsin

500 487(97.4%) 28

Haloarho-
dopsin

500 488(97.6%)

Proteorho-
dopsin

500 497(99.4%)

Sensory 
rhodopsin

500 41 1 226(45.2%) 3

Xanthorho-
dopsin

500 1 498(99.6%)

Table 3  ‘Rhodopred’ performance on annotated PWS experimental isolates dataset

PWS Haloarchaeal isolates Actino
rhodopsin

Bacterio
rhodopsin

Halo
rhodopsin

Proteo
rhodopsin

Sensory
rhodopsin

Xantho
rhodopsin

 > PWS11 Rhodopsin NO NO NO NO NO NO

 > PWS12 Rhodopsin NO YES NO NO NO NO

 > PWS13 Sensory Rhodopsin2 NO YES NO NO NO NO

 > PWS5 Cruxrhodopsin Cop3 NO YES NO NO NO NO

 > PWS5 Sensoryrhodopsin II NO NO NO NO YES NO

 > SL3 Rhodopsin 1 NO NO NO NO YES NO

 > SL3 Rhodopsin 2 NO YES NO NO NO NO

 > SL3 Sensoryrhodopsin 2 NO NO NO NO YES NO

 > R1 Bacteriorhodopsin NO YES NO NO NO NO

 > R1 Halorhodopsin NO NO YES NO NO NO

 > R1 Sensoryrhodopsin I NO NO NO NO YES NO

 > R1 Sensoryrhodopsin II NO NO NO NO YES NO

 > NRC1 Bacteriorhodopsin bop NO YES NO NO NO NO

 > NRC1 Bacteriorhodopsin 
related protein

NO NO NO NO NO NO

 > NRC1 Halorhodopsin NO NO YES NO NO NO

 > NRC1 Sensoryrhodopsin I NO NO NO NO YES NO

 > NRC1 Sensory rhodopsin II NO NO NO NO YES NO
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sensory rhodopsin and xanthorhodopsin respectively. Actinorhodopsin and sensory 
rhodopsin BLAST data prediction percentage scores showing less percentage because 
of presence of rhodopsin like hypothetical sequences in the NCBI Database. Some 
sequences were predicted by other models rather than by their own, while a few 
sequences were recognized by both their own and other class models. Table 3 sum-
marises the findings of this investigation.

Rhodopsin genes extraction from annotated whole genome sequence analysis

In this study, we used SVM_light to predict the various type-I Ion pumping Microbial 
Rhodopsin proteins. Whole genome sequencing data of our PWS1,5, SL3 and 11 iso-
lates for identifying Type I microbial rhodopsin genes were analysed from the NCBI 
genome database (Table  3). Extracting the microbial rhodopsin gene sequences con-
sist of following steps (1) Enter the accession number in the NCBI Database, (2) go to 
nucleotide sequence, (3) Enter Gen bank number and WGS : WOYG00000000.1, (4) 
Search rhodopsin in scaffolds. In addition to the microbial Rhodopsin classification, 
our group recently published and deposited whole-genome sequencing of PWS isolates 
PWS1,5,11 identified from Pondicherry Solar Salterns. (Pondicherry salterns located 
in the east coast road of Tamil nadu, India). These extreme haloarcheal isolates (PWS1, 
PWS5, PWS11) where subjected for whole-genome sequencing yielded 3.39 Mb, 4.0 Mb, 
3.67 Mb, and SL3 is reference Haloarcula genome. The GC Content was found to be 
65.7%, 61.3%, 62.0% and 66.1% for pws1, pws5, SL3, and pws11 respectively. The acces-
sion number for PWS1, PWS5, SL3, PWS11 was reported to be WOYG00000000.1, 
NZ_WOWA00000000.1, LIUF00000000.1, WOWC00000000.1 (Table  4, Fig.  4). The 
support vector machine classifier clearly distinguished the presence of rhodopsin pro-
teins and Non rhodopsin proteins. In addition the SVM model identified the type of 
Type-I microbial rhodopsin A single proton pumping Bacteriorhodopsin expression in 
Halobacterium salianrium requires bop, Blp, brp, crtb, blh genes (Table  5) [36]. Pres-
ence of brp, blh, blp, bat, Crtb1 essential genes and structural rhodopsin genes in the 
reference Halobacterium salianrium NRC1 and R1 whole genome annotated sequence 
indicates that these two wild type Halobacterium strains capable to express milligram 

Table 4  Annotated whole genome sequences of rhodopsin genes from Laboratory Isolated

S. no Haloarchaeal Genus Actino
rhodopsin 
gene 
(actR)

Bacterio
rhodopsin 
gene (bop)

Halo
rhodopsin 
gene (hop)

Xantho 
rhodopsin
(Xop)

Proteo 
rhodopsin
(PR)

Sensory 
rhodopsin
(sop)

1 Halobacterium bacte-
rium salianrium NRC1

No Yes Yes No No Yes

2 Halobacterium sali-
narium R1

No Yes Yes No No Yes

3 PWS1 (Halomicrobium 
mukohatae)

No Yes No No No No

4 PWS5 (Haloarcula 
argentinensis)

No Yes No No No Yes

5 SL3 (Haloarcula rupri-
montori)

No Yes No No No Yes

6 PWS11 (Halaferax 
volcanii)

No No No No No No
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per liter scale of native bacteriorhodopsin protein. A total of 17 rhodopsin sequences 
were employed, with the majority of them recognized as bacteriorhodopsin, halorho-
dopsin, and sensory rhodopsins as per the whole genome sequence analysis (Fig.  4). 
Out of 17 microbial rhodopsin sequences extracted from NCBI whole genome database 
PWS1,5,11 were experimentally verified Haloarchaeal whole genome analysed rhodop-
sin sequences. Actinorhodopsin, Proteorhodopsin and xanthorhodopsin models show-
ing negative histograms which shows the absence of rhodopsin proteins in the PWS 
Haloarchaeal isolates. This indicates that bacteriorhodopsin harboring PWS isolates 
such as PWS12 rhodopsin, PWS13 Sensory rhodopsin, PWS5 Cruxrhodopsin Cop3, 
SL3 Rhodopsin2, R1 Bacteriorhodopsin and NRC1 Bacteriorhodopsin bop were identi-
fied by all models of bacteriorhodopsin. R1 Halorhodopsin and NRC1 [27, 37] Halorho-
dopsin were rightly differentiated between other Type-I microbial rhodopsins (Fig. 4). 
Actinorhodopsin, Proteorhodopsin and Xanthorhodopsin protein models were not 

Fig. 4  Prediction performance of rhodopsin proteins extracted from annotated Haloarchaeal whole genome 
sequencing

Table 5  Bacteriorhodopsin synthesizing genes analysis from annotated whole genome sequences 
of Laboratory Isolated PWS Haloarchaeal Strains

S. no Bacteriorhodopsin 
synthesis genes

Genes expansion PWS1 PWS5 SL3 PWS11 NRC1 R1

Present in the Haloarchaeal genomes

1 brp BR Related protein No No No No Yes Yes

2 blh brp like protein No No No No No Yes

3 blp bacterioopsin linked blp No No No No No Yes

4 bop bacteriorhodopsin protein expressing 
gene

Yes Yes Yes No Yes Yes

5 boa 1/3/4 Homolog to transcription regulator 
bat

No No No No Yes Yes

6 bat bacerioopsin activator No No No No No Yes

7 boa2 Homolog to transcription regulator 
bat

No No No No Yes Yes

8 CrtB1 Phytoene synthase No No No No Yes Yes

9 CrtB2 Phytoene synthase No No No No Yes Yes
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identified in the PWS-Isolates confirms our finding these whole genome sequenced rho-
dopsin sequences originates from extreme haloarchaea not from prokaryotic rhodopsin 
harboring microorganisms.

Rhodopred webserver performance using PWS Isolates rhodopsin sequences

Seventeen microbial rhodopsin sequences retrieved from PWS1,5, SL3 and reference 
genomes from Haloarchael NRC1 and R1 isolates were fed to rhodopred web server. 
The rhodopred webserver clearly identifies bacteriorhodopsin and cruxrhodopsin like 
Bacteriorhodopsin proteins and sensory rhodopsin I and II proteins from PWS1 and 
PWS5 whole-genome rhodopsin sequences. Absence of bacteriorhodopsin in PWS11 
Haloarchael isolates indicates the presence of non-bacteriorhodopsin expressing genes. 
Bacteriorhodopsin, Halorhodopsin, sensory rhodopsin proteins present in the reference 
genome of haloarchaeal isolates like Halobacterium salianirum NRC-1 and R1 confirm 
that our developed webserver rhodopred accurately predicts the sub types of haloar-
chaeal rhodopsin proteins. Absence of actinorhodopsins and proteorhodopsin proteins 
in the respective models of rhodopred webserver indicates the presence of haloarchaeal 
whole genome rhodopsin sequences and absence of Prokaryotes microbial rhodopsins. 
Among the bacteriorhodopsin proteins identified through rhodopred webserver were 
further analysed for bacteriorhodopsin synthesizing genes in the NCBI Genome data-
base. Absence of these bacteriorhodopsin genes in the Haloarchaeal genomes will 
express more red pigmented carotenoids which masks the bacteriorhodopsin protein 
expression in PWS1,5, SL3 isolates.

Discussion
In halophilic archaea, rhodopsin is a retinal binding protein that provides light-sensitive ion 
transport and sensory function. Marine and Prokaryotic organisms. It is difficult to express 
the rhodopsin proteins by culturable methods when all the bacteriorhodopsin synthesizing 
genes were absent in the genome [38]. The culturable methods for wild type and recom-
binant rhodopsin protein expression will be expensive and time consuming. Therefore, 
low-cost computational methods are required to identify the microbial rhodopsins proteins 
and their related subclasses. This study established a very reliable approach for recogniz-
ing several Ion pumping Type-I microbial rhodopsins. The first step is to predict Type-I 
Microbial rhodopsin and non-Type-I Microbial rhodopsin. The second step is to classify 
Type-I microbial rhodopsin classifications, such as actinorhodopsin, bacteriorhodopsin, 
haloarhodopsin, proteorhodopsin, sensory rhodopsin, and xanthorhodopsin. The over-
all prediction accuracy was achieved above 95% in all approaches except AAC, DPC and 
Hybrid approaches of actinorhodopsin and sensory rhodopsin. According to the results of 
the BLAST dataset, the developed methods are performing well in all approaches identify-
ing microbial rhodopsins. In the confusion matrix analysis, the 233 sequences of actinotho-
dopsin were identified by xanthorhodopsin, the results suggest that these two proteins 
sequences may have a close similarity or it may have an evolutionary relationship with one 
another. Also the results suggest that some sensory rhodopsin sequences have been identi-
fied as bacteriorhodopsin. Overall, according to BLAST data, the related sequences were 
not identified by the own class models, rather identified by other class protein models. As 
a result, when running, BLAST is unable to recognize the proper sequences; instead, it 
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retrieves comparable proteins that are not the genuine proteins. So our developed method 
is successfully identifies the different types of Type-I microbial rhodopsins. SVM light and 
Rhodopred webserver based prediction accurately identifies the Type-I microbial rhodop-
sin protein sequences from annotated whole genome rhodopsin sequences.

We developed a very accurate method, for identifying various microbial rhodopsins using 
SVM light and rhodopred webserver with different amino acid approaches. As a result, all 
the developed models accurately detect the different subtypes of Type-I microbial rhodop-
sin. All our findings indicate that it is better than the BLAST search in identifying micro-
bial rhodopsin, because the BLAST search did not accurately extract the genuine rhodopsin 
proteins and instead collected other than microbial rhodopsin. We anticipate that this 
work will aid researchers in finding new or undiscovered microbial rhodopsins having Ion 
pumping properties. These models accurately predicted the sub type of Type-I Microbial 
rhodopsin. The general blast search of microbial rhodopsin brings non specific microbial 
rhodopsin proteins in large numbers. Reference Halobacterium salinarium NRC1, R1 whole 
genome annotated data indicates the presence of Bacteriorhodopsin, Halorhodopsin, sen-
sory rhodopsin I, II like genes in the genome [39]. Single bacteriorhodopsin protein in the 
NRC1 and R1 Halobacterium salinarium consist of bacteriorhodopsin structural and sup-
porting genes like bop, brp, bat, blp, and Ctb1 [40]. Among these five genes expect bop gene 
four supporting genes were absent in the PWS1,5, SL3 isolates. Further it will explores the 
possibility for the recombinant rhodopsin protein expression in E-coli in functional form 
by adding all trans retinal chromophore invitro. Our group has recently published our find-
ings on Initial 17 amino acids near the N-terminal rhodopsin sequences helps in the proper 
expression and folding of proton pumping rhodopsin [41]. Another published report on 
recombinant PWS-5 BR protein was expressed in E. coli with light driven proto pumping 
property by adding all trans retinal invitro [42]. This is the first detailed studied of Support 
vector machine based Proton pumping the recombinant bacteriorhodopsin protein expres-
sion by fishing it out bop gene using specific primers from these PWS isolates by choosing 
proper vector and host to demonstrate the light driven proton pumping property [43]. The 
From these two reported research work from our group and our current developed mod-
els by SVM light and Rhodopred webserver would be useful for designing rhodopsin genes 
primers for heterologous expression of rhodopsin proteins in E-coli and other host system 
for Optogentics and Microbial rhodopsin applications.

APC, DPC and HYB performance were good in recognizing the rhodopsin related pro-
teins. We observed that the developed all approaches were equal performance on the inde-
pendent dataset. The complete analysis results are shown in the Additional file 2: Fig. S1. 
The similar performance were observed in 10 and 5-fold cross validation. The SVM and 
random forest techniques performance were also similar in identification of microbial rho-
dopsins. Since there is no webserver or methods available for microbial rhodopsin, hence 
we cannot compare the performance with any other methods.

Conclusion
There is no separate method is available for predicting the various microbial rhodopsin. 
A method has been developed (Rhodopred) which accurately identify the rhodopsins. 
This method is developed with 10-fold and fivefold cross-validation techniques with the 
approaches of AAC, DPC and HYB. All the developed models are validated with the 
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known and the unknown datasets. We also interested to use a deep learning method for 
our future studies [44–46]. The developed method will be useful for researches working 
on microbial rhodopsin proteins.
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