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Abstract 

Background:  Structural variation (SV), which ranges from 50 bp to ∼ 3 Mb in size, is an 
important type of genetic variations. Deletion is a type of SV in which a part of a chro-
mosome or a sequence of DNA is lost during DNA replication. Three types of signals, 
including discordant read-pairs, reads depth and split reads, are commonly used for SV 
detection from high-throughput sequence data. Many tools have been developed for 
detecting SVs by using one or multiple of these signals.

Results:  In this paper, we develop a new method called EigenDel for detecting the 
germline submicroscopic genomic deletions. EigenDel first takes advantage of discord-
ant read-pairs and clipped reads to get initial deletion candidates, and then it clusters 
similar candidates by using unsupervised learning methods. After that, EigenDel uses 
a carefully designed approach for calling true deletions from each cluster. We con-
duct various experiments to evaluate the performance of EigenDel on low coverage 
sequence data.

Conclusions:  Our results show that EigenDel outperforms other major methods in 
terms of improving capability of balancing accuracy and sensitivity as well as reducing 
bias. EigenDel can be downloaded from https://​github.​com/​lxwgc​ool/​Eigen​Del.

Keywords:  Structure variation, Deletion, High-throughput sequencing, Genomics, 
Unsupervised learning

Background
The differences in genetic compositions, which are relatively large in size ( ∼  3 Mb or 
more) and mainly rare changes in the quantity and structure of chromosomes, are 
defined as microscopic structural variations [1]. With the development of molecular 
biology and DNA sequencing technology, smaller and more abundant alterations were 
observed. We define these variants, which range from ∼ 1 kb to 3 Mb in size, as submi-
croscopic structural variations [1]. Recently, they have widened to include much smaller 
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events (for example, those >50 bp in length) [2]. The potential contribution of submicro-
scopic structural variants to human genetic variation and disease might be higher than 
that of microscopic variants, as they seem to occur at a higher frequency [1]. Deletion is 
a type of SVs in which a part of a chromosome is lost during DNA replication [3]. Small 
indels are the most common type of SVs [4]. Deletions may have significant phenotypic 
influence. Specifically, among genetic disorders annotated in some disease database, 
such as DECIPHER [5], 80% are caused by deletions [6].

Traditionally, three types of sequence data based signals are used for deletion detec-
tion, including discordant reads pairs, reads depth and split reads [2]. Discordant read 
pairs are the reads pairs that the mapped positions and/or orientation of the two ends of 
the pairs are inconsistent with the reference genome. Read pairs that are mapped too far 
apart may be related to deletions [2]. Read-depth approaches assume a random distri-
bution in mapping depth and investigate the divergence from this distribution to high-
light duplications and deletions. Deleted regions may show reduced read depth when 
compared to wild-type regions [2]. Split reads are single reads that are mapped to the 
reference genome discontinuously as two or more segments [7]. The presence of the so-
called SV breakpoint is used as the basis of a split sequence-read signature. A breakpoint 
breaks the alignment of a read into multiple segments on the reference. A split-read may 
indicate the presence of a deletion [2]. There are some limitations for those three sig-
nals. Discordant read pairs may uncover structural variants but only give inexact posi-
tions of breakpoints. Split-read methods have low time and memory efficiency, and can 
have both high false positive and false negative rates. Read depths are not able to iden-
tify smaller events and much poorer at localizing breakpoints [2]. Moreover, De novo 
assembly is another common method in bioinformatics [8], which has also been used 
for finding structure variations. It allows - at least in principle - for the detection of 
all the forms of structural variations. However, the application of this approach is still 
challenging due to the limited length of NGS (next-generation sequencing) reads [9]. 
Many methods have been developed for SV detection by using one or multiple signals 
mentioned above. Pindel [10] uses an algorithm called pattern growth to report dele-
tions with micro-insertions. Delly [11] uses split reads alignments to define the exact 
positions of SV breakpoints by aligning the split reads across the two regions linked by 
the discordant clusters, which are identified by discordant read-pairs. Lumpy [12] inte-
grates multiple SV signals and uses different reads mappers for SV detection. SvABA 
[13] is a method for detecting structural variants in sequencing data using genome-wide 
local assembly. Manta [14] is developed and maintained by Illumina, which calls struc-
tural variants and indels from mapped paired-end sequencing reads. Machine learning 
is widely used in many research fields in recent decades. Some tools, such as forestSV 
[15], extract the features from alignment signals and apply supervised learning method 
to find SV. Although many approaches have been developed for SV detection, there is 
no single method that outperforms others, especially in terms of balancing accuracy and 
sensitivity. In addition, for supervised-learning-based methods, since the benchmark 
repositories do not contain every SV for all individuals, the training data may contain 
many noises, which can significantly reduce the accuracy of prediction.

In this paper, we introduce a new unsupervised-learning-based method called Eigen-
Del to detect germline deletions in submicroscopic SV from pair-end reads for diploid 



Page 3 of 15Li and Wu ﻿BMC Bioinformatics          (2022) 23:568 	

organisms. Since each potential deletion is presented by multiple principal components, 
which are extracted based on eigenvalue, we name our method as EigenDel. There are 
two major advantages of applying unsupervised-learning-based methods. First of all, 
since the BAM file may contain many reads mapping errors, such as repetitive ranges, 
it is hard to use a single threshold to separate potential deletions (homozygous/hemizy-
gous) and normal (none-SV) ranges. Unsupervised learning can discover hidden signals 
within dataset, and these hidden signals are significant for calling true deletions from 
raw candidates. Secondly, unsupervised learning works without labeling training data, 
which is more adaptable than supervised learning. We compare EigenDel with other 5 
widely used tools in terms of the capability of balancing accuracy and sensitivity. The 
results show that EigenDel outperforms these existing methods.

Method
High‑level approach

EigenDel works with mapped sequence reads. Three statistic values, including aver-
age depth ( Depthavg ), average insert size ( AvgIS ), and standard deviation of insert size 
( STDIS ) are calculated at the beginning. After that, EigenDel processes each chromo-
some separately to call deletions. For each chromosome, EigenDel extracts discordant 
read-pairs and clipped reads from mapped reads. Then, the initial deletion candidates 
are determined by grouping nearby discordant read-pairs. Clipped reads are used to 
produce more accurate estimates of the left and right breakpoints of each deletion can-
didate. Since the depth of deletion regions should be significantly lower than wild-type 
regions, candidates with depth larger than average are discarded. Then, for the remain-
ing candidates, EigenDel gets a number of features based on depth for each of them and 
applies unsupervised learning to classify these candidates into four clusters. Finally, 
EigenDel marks these clusters as either good or bad and applies different strategies to 
keep true deletions from each cluster respectively. A good cluster means the majority 
candidates in this cluster are likely to be true deletions, while a bad cluster means the 
majority candidates are likely to be false. The details are illustrated in Fig. 1.

EigenDel

Collecting border‑clipped reads and discordant read‑pairs

Bam file that contains alignment information of read-pairs is required by EigenDel. 
EigenDel uses Picard [16] to get AvgIS and STDIS from BAM file. Samtools [17] is used to 
calculate Depthavg . Some reads are filtered right away, including unmapped reads, poly-
merase chain reaction (PCR) duplicate reads, reads with low quality, and non-primary 
alignment reads.

Since a deletion breaks the mapping relationship between reads and reference, two 
types of reads, including border-clipped reads and discordant read-pairs, are collected. 
Border-clipped reads are the reads clipped from either tail or head, and we call them 
as tail-clipped reads and head-clipped reads, which are considered to support the left 
and right breakpoints of a deletion respectively. Since the clipped part is expected to be 
from the other side of a deletion, we filter the border-clipped reads, whose clipped part 
is shorter than 15 bp. For discordant reads, since the general read insert size follows a 
normal distribution across the genome and the discordant reads come with abnormal 
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insert size, read-pairs that satisfy LenIS > AvgIS + 3 ∗ STDIS are collected as the discord-
ant reads and used to locate the deletion candidates because the deletion event would 
enlarge the insert size of pair-end reads. Note that, since we only consider the deletion 
in submicroscopic structure variation, the discordant read-pairs with too large insert 
size are discarded. Since deletions are intrachromosomal events, a single deletion never 
spans different chromosomes. Therefore, we collect border-clipped reads and discordant 
read-pairs to identify deletion candidates for each chromosome separately.

Identifying deletion candidates

EigenDel first sorts all discordant read-pairs based on the position of left mates. Then 
it groups nearby discordant read-pairs based on the positions of their left mates to get 
the range of deletion candidates. Two discordant read-pairs are grouped together if the 
distance between their left mates is shorter than the length of read (e.g., 101 bp). Once 
all discordant read-pairs are grouped, each group represents a deletion candidate site. 
EigenDel discards candidate sites that are supported by only one discordant read-pair. 
The left and right boundary of each site come from the smallest mapping position of left 
mates and the largest position of right mates plus its alignment length respectively. Two 
candidate sites are merged if their boundaries are overlapped, and boundaries of the new 
merged site are updated. Then, EigenDel discards candidate sites that have no border-
clipped reads. For each remaining site, the left breakpoint of deletion candidate comes 
from the largest mapping position of left mates plus its alignment length, while the right 

Fig. 1  High-level approach. EigenDel takes BAM file as input. Clipped reads (CR) and discordant reads (DR) 
are used to obtain deletion candidates (total 35 candidates in the figure, denoted as D1 to D35). Then, some 
candidates, such as D2 and D6, are discarded by the depth filter. EigenDel extracts features (F1, F2,...) for each 
remaining deletion candidates and classify them into four clusters named C1 to C4 by unsupervised learning. 
There are 7, 6, 6 and 9 candidates in clusters C1 (blue), C2 (yellow), C3 (red) and C4 (green) respectively. 
Finally, false deletion candidates are removed from each cluster. 17 remaining candidates are called as true 
deletions, including 6 in C1, 4 in C2, 4 in C3 and 3 in C4
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breakpoint is determined by the smallest mapping position of right mates. This roughly 
locates deletion candidate on the reference genome.

After that, border-clipped reads that satisfy the situations below are used to update the 
left and right breakpoints of deletion candidate in each site. Specifically, tail-cliped reads 
and head-clipped reads are viewed to contribute to left and right breakpoint respectively. 
For the left breakpoint, the distance between it and tail-clipped reads should be shorter 
than AvgIS . If the tail-clipped read is the second mate, its insert size should be close to 
AvgIS , and the mapping position of its first mate should be close to the left boundary of 
current site. If the tail-clipped read is the first mate, the mapping position of its second 
mate should be near the right boundary of current site. Once all qualified tail-clipped 
reads are collected, EigenDel only consider the best clipped positions that are sup-
ported by the largest number of tail-clipped reads. Multiple best clipped positions may 
be obtained, and the largest one is used to update the left breakpoint. Note we do not 
update it if the best clipped positions are only supported by one tail-clipped reads. There 
are three major differences during the updating of right breakpoint. First, the position 
of head-clipped reads should be near the right breakpoint. Second, if the head-clipped 
read is the second mate, the mapping position of its first mate should be near the left 
boundary of current site. If the head-clipped read is the first mate, its insert size should 
be around AvgIS , and the mapping position of its second mate should be close to the 
right boundary of current site. Third, the smallest best clipped positions supported by 
the largest number of head-clipped reads are selected to adjust the right breakpoint. Fig-
ure 2 shows the details.

Extracting features from candidates

We calculate average depth for each deletion candidate in the region between left and 
right breakpoints. Since a deletion may lead to significantly lower reads depth than wild-
type region, the candidates with depth larger than Depthavg are discarded. EigenDel is 

Fig. 2  Identifying deletion candidates. Discordant read-pairs (DR) and border-clipped reads (CR) are collected 
from BAM file. Two deletion candidate sites, including candidate site 1 (purple) and candidate site 2 (green), 
are identified by DRs. Each site contains 3 DRs. Left boundary (LB) and right boundary (RB) are used to present 
the range of site. Left breakpoint (LBP) and right breakpoint (RBP) are used to describe the deletion candidate 
in current site. 5 CRs are contained by site 1, which are used to adjust LBP and RBP. Deletion Candidate 1 
refers to the potential deletion in site 1. Site 2 contains 5 CRs, and its potential deletion is shown as Deletion 
Candidate 2
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designed for detecting germline deletions in diploid organism. That is, EigenDel does 
not consider the situation where ploidy can change (in, e.g. tumor samples). For dip-
loid organism, there are two types of deletions, including homozygous and hemizygous 
deletions. Hemizygous deletion refers to the loss of one allele, whereas homozygous 
(biallelic) deletion refers to the loss of both alleles identified by allele-specific analysis 
in clinical samples [18]. For homozygous deletions, the deletions occur in both copies. 
Thus, ideally, there is no reads within the deletion, and the depth should be equal to 0. 
For hemizygous deletion, since it is single copy deletion, the depth should be roughly 
equal to 50% of Depthavg . In practice, however, situations is less clear cut. In order to 
allow mapping errors and inaccurate positions of breakpoints, we identify 4 coverage 
ranges, namely T0 , T1 , T2 and T3 , as shown in Table 1, to describe the internal structure 
of each deletion candidate.
T0 refers to the perfect case of homozygous deletions (i.e., read depth is 0). T1 refers to 

the case of homozygous deletions allowing reads mapping errors and inaccurate bounda-
ries. T2 refers to the case of hemizygous deletions with the same tolerance as T1 . T3 refers 
to the range that contains both true and false deletions. We use (D0, L0) , (D1, L1) , (D2, L2) 
and (D3, L3) to present the internal structure of each deletion candidate. Li stands for 
the total length of all positions that fall into Ti (may be non-consecutive), and Di is the 
average depth of the range of Li . Then, we use the length of current deletion, the distance 
between left and right breakpoints, to normalize Li . We record the normalized result 
as LNi . Therefore, LNi(i = 0, 1, 2, 3) are used as 4 independent features to present each 
deletion candidates. Figure 3 illustrates the approach.

Detecting true deletions with unsupervised learning

So far, EigenDel collects a list of deletion candidates that are identified by discordant 
reads, and then the candidates are refined by clipped reads. After that, some candidates 
are filtered by depth filter. However there are still many false positives. For example, 
some false deletions may appear in the coverage range T3 , which is from 50% Depthavg 
to Depthavg . In addition, since the real data is noisy, it is challenging to handle some 
abnormal alignment situations (e.g. reads mapping error and repetitive ranges), which 
may change the real depth of candidates. Moreover, inaccurate breakpoints may bring 
the normal range into deletion candidates. These may shrink the depth difference among 
homozygous deletion, hemizygous deletion and normal range. Therefore, using simple 
thresholds alone is not able to filter many false positives.

In order to call true deletions from noisy candidates, EigenDel applies unsuper-
vised learning. The key idea is that different types of deletion candidates tend to clus-
ter together due to share features. That is, the same types of true (homozygous or 

Table 1  Coverage ranges for feature collection

Coverage Range

T0 0

T1 [0, Ceil(Depthavg ∗ 0.25))

T2 [Ceil(Depthavg ∗ 0.25), Ceil(Depthavg ∗ 0.5)]

T3 (Ceil(Depthavg ∗ 0.5), Ceil(Depthavg)]
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hemizygous) deletions tend to be similar in features (e.g., depth profile within the 
deletions). Similarly, the same types of false positives may share some similar inter-
nal structure patterns based on reads depth. Thus, it is possible to use unsupervised 
learning to separate different types of deletions into different clusters. In each cluster, 
since the majority candidates share the similar features, it is more easy and accurate 
to find true deletions by applying statistical threshold. Moreover, since unsupervised 
learning does not need labeled samples for training, it is more flexible than super-
vised learning, especially for the species without good benchmark dataset.

Based on the features described in the previous step, EigenDel uses two steps to 
perform unsupervised learning. It first applies principle component analysis (PCA), 
followed by hierarchical clustering [19]. Since true deletions should be either homozy-
gous or hemizygous, two dimensions could express all different types of true deletions. 
Thus, we apply PCA to all candidates and choose the top two principle components 
to represent each deletion. This is also good for visualization. Then, all deletion 
candidates are classified into four clusters based on their top two principle compo-
nents through hierarchical clustering. Those clusters are expected to present 4 cases, 
including perfect homozygous deletions, homozygous deletions with error tolerance, 
hemizygous deletions with error tolerance, and the mix of heterozygous deletions and 
normal range. Hierarchical clustering is a general family of clustering algorithms that 
build nested clusters by merging or splitting them successively. This hierarchy of clus-
ters is represented as a tree (or dendrogram). The root of the tree is the unique clus-
ter that gathers all samples. The leaves are the clusters with only one sample [20]. We 
use an agglomerative clustering object provided by Scikit-learn Python package, which 
performs a hierarchical clustering using a bottom-up approach: each candidate starts 
in its own cluster, and clusters are successively merged. There are several advantages 
of hierarchical clustering. First, it does not need to select the initial node. Second, 

Fig. 3  Feature extractions from deletion candidates. Two deletion candidates are identified by discordant 
reads. “Deletion Candidate 2” is discarded after depth filter because its depth is larger than Depthavg . For 
“Deletion Candidate 1”, 5 ranges are identified by Ti . Li and Di are the total length and the average depth of 
the range defined by Ti respectively. Each Li is normalized by the length of “Deletion Candidate 1”, and the 
normalized results are recorded by LNi . Therefore, the internal structure of “Deletion Candidate 1” is presented 
by LNi(i = 0, 1, 2, 3)
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hierarchical clustering shows the relationship among the candidates in a cluster. Third, 
it is not sensitive to the shape of the cluster (e.g. k-means prefers spherical clusters), 
which makes it adaptable for different dataset. The Euclidean metric and ward (sum of 
squares of deviations) are used for implementation.

Once four clusters are generated, they are marked as either good or bad. A good clus-
ter means the majority of candidates in this cluster are true deletions, while the bad 
cluster means the majority of deletions in this cluster are false. Here is the definition 
of good and bad cluster. First, for a true deletion, ideally, 

∑2
i=0 Li should be equal to the 

whole length of deletion. In another words, 
∑2

i=0 LNi should close to 1. Considering the 
influence of reads mapping error and inaccurate breakpoints, we define a true deletion 
should have 2

i=0 LNi ≥ 0.7 . Suppose there are N deletion candidates in one cluster, we 
collect three values, including LN0 , LN1 and LN2 , for each of them. After that, all dele-
tions in current cluster are sorted by three rounds based on LNi(i = 0, 1, 2) respectively. 
We record the sorted result in each round, and store them as SR0 , SR1 and SR2 . As a 
result, each SRi contains all N deletions in the current cluster, which are sorted by LNi 
from small to large. Then, we calculate three statistic values for each SRi , including aver-
age of LNi ( AvgLNi ), standard deviation of LNi ( STDLNi ) and average of top half deletions 
with the highest LNi ( THAvgLNi ). The cluster is defined as good if 

∑2
i=0 THAvgLNi ≥ 0.7 , 

otherwise it is bad.
Once a cluster is marked as either good or bad, we use LNi , which is associated with 

the largest THAvgLNi , as the principle feature of current cluster to find the true dele-
tions. We assume the distribution of LNi follows empirical rule. Therefore, the major-
ity of deletion candidates should be in the range [AvgLNi − STDLNi ,AvgLNi + STDLNi ] , 
since Pr(µ− 1σ ≤ X ≤ µ+ 1σ) ≈ 0.6827 . Two thresholds, including Thigh and Tlow , are 
defined by AvgLNi ± STDLNi respectively. For a good cluster, the deletions are discarded 

if LNi < Tlow and 
∑2

j=0 LNi(j �= i) < Tlow . For a bad cluster, the deletions are kept if 

LNi > Thigh or 
∑2

j=0 LNi(j �= i) > Thigh . Finally, all remaining deletions in each cluster 
are called as true deletions. The details are shown in Fig. 4.

Results
We use 1000 Genome Project [21] Phase3 dataset as the benchmark, and only the dele-
tions recorded inside are viewed as true deletions. Seven existing tools are used for 
comparison, including Pindel, CNVnator [22], GASVpro [23], SvABA, Manta, Delly and 
Lumpy. We directly use low coverage BAM files provided by 1000 Genome Project as 
input. For some tools that require separate reads files, such as Lumpy, we dump reads 
from BAM file.

We evaluate the performance of balancing accuracy and sensitivity by using F1 score 
among these methods. In our case, since there is no true negative, and all non-true posi-
tives are viewed as false positives, the precision and recall are equal to accuracy and sen-
sitivity respectively. Therefore, the F1 score is equal to 2× Accuracy×Sensitivity

Accuracy+Sensitivity [24]. We 
compare F1 score based on different samples and different chromosomes in one sample 
respectively. A method with low bias means it can get the highest F1 score in both 
majority of these samples and majority of chromosomes in one sample. Our results show 
that EigenDel performs better than others in all testing cases.
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NA12878

The individual NA12878 in 1000 Genomes Project has been studied by many 
researchers. We use the low coverage BAM file (20121211) of NA12878 from the 1000 
Genomes Project for comparison. The average depth of this BAM file is 5.26. It con-
tains the aligned result of SRR622461 (92,459,459 pair-end reads). The reads length in 
this sequence library is 101 bps. There are 1982 deletions from 23 different chromo-
somes of NA12878 are reported in benchmark.

The results are illustrated in Fig. 5A, Additional file 1: Table S1 and Fig. 6C.1, C.2. 
Figure  5A shows that EigenDel has the highest F1 score for NA12878. Additional 
file  1: Table  S1 show that EigenDel has higher F1 score than others in the majority 
of chromosomes. Figure  6C.1, C.2 shows an example of the performance of unsu-
pervised learning for chromosome 1. There are 149 deletion candidates detected in 

Fig. 4  Detecting true deletions with unsupervised learning. 25 deletion candidates from Del0 to Del24 
are identified, and each of which contains multiple features. PCA is applied to all candidates, and the 
top two principle components are used to present each candidate. All candidates are classified into 
four clusters through hierarchical clustering, including blue (6), yellow (6), red (6) and green (7). After 
checking 

∑2
i=0 THAvgLNi , three clusters are marked as good, including blue, yellow and red, while green 

is marked as bad. Then statistic filter is applied to find true deletions. For a good cluster, the deletions are 
discarded if LNi < Tlow and 

∑2
j=0 LNi(j �= i) < Tlow . For a bad cluster, the deletions are kept if LNi > Thigh or 

∑2
j=0 LNi(j �= i) > Thigh . Afterwards, 4, 5, 6, 2 deletions in blue, yellow, red and green groups are remained. 

These deletions are reported as true deletions

Fig. 5  F1 scores. A F1 scores of all comparison tools on the whole genome of NA12878. B F1 scores of all 
comparison tools on five 1000 Genomes individuals: NA12777, NA12776, NA12878, NA12775 and NA12763
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chromosome 1, and 67 of them are presented in benchmark (i.e., the presumed true 
deletions). X and Y axes in Fig.  6C.1, C.2 come from the top two principle compo-
nents of PCA. Figure 6C.1 shows all deletion candidates found by EigenDel, and the 
cyan dots stand for the true deletions from Phase3 callset. Figure 6C.2 shows the clas-
sification result of hierarchical clustering. Four clusters of deletions are generated, 
and they are marked in different colors. The majority of false deletions are classified 
in the blue cluster. The deletions in the same cluster share similar features. For exam-
ple, there are 35 deletion candidates in green cluster, and the values of LN0 for all 
those candidates are ≤ 81% . The yellow, green and red clusters are marked as good, 
while the blue cluster is marked as bad. After the statistic filter is applied for each 
cluster respectively, 130 deletions are left (19 false deletions are discarded) and 67 
of them are presented in benchmark. This means 23.2% false positives are discarded 
while no true deletion is lost. This demonstrates that unsupervised learning can clus-
ter deletions with similar features, which helps to filter false positives efficiently.

Comparison on five 1000 Genomes individuals

The low coverage BAM files from five 1000 Genomes individuals, including NA12777 
(20130415), NA12776 (20130415), NA12878 (20121211), NA12775 (20130415) and 
NA12763 (20130502), are used in this comparison. Their reads depths are 9.08, 5.89, 
5.26, 9.63 and 7.84 respectively. There are 2032, 2115, 1982, 1988 and 2105 deletions in 
benchmark for these five individuals respectively.

Figure 5B shows that EigenDel has the highest F1 score for all five individuals. Figure 6 
shows the examples of clustering results of unsupervised learning from chromosomes 6, 
10, 1, 4 and 13 of NA12777, NA12776, NA12878, NA12775 and NA12763 respectively. 
For chromosome 6 in NA12777 (Fig.  6A.1, A.2), 140 deletion candidates are detected 
and 75 of them are in benchmark. After the statistic filter be applied, 23 false dele-
tions are discarded and 71 true deletions are detected, which means EigenDel discards 
35.4% false positives while only loses 5% true deletions. For chromosome 10 in NA12776 
(Fig.  6B.1, B.2), 76 deletion candidates are detected and 43 of them are recorded in 

Fig. 6  Clustering results with unsupervised learning. A.1, B.1, C.1, D.1, E.1 The two axes are from the top two 
principle components of PCA. The dots represent all deletion candidates in chromosome 6, 10, 1, 4 and 13 
of NA12777, NA12776, NA12878, NA12775 and NA12763 respectively. The cyan dots stand for the deletion 
candidates recorded in the 1000 Genomes Project Phase3 callset, which are viewed as true deletions. The 
black dots refer to the candidates that are not in Phase3 callset, which are viewed as false positives. A.2, B.2, 
C.2, D.2, E.2 Classification results of hierarchical clustering on chromosome 6, 10, 1, 4 and 13 of NA12777, 
NA12776, NA12878, NA12775 and NA12763 respectively. In each scatter plot, four clusters of deletions are 
classified, which are marked in different colors
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benchmark. After the statistic be applied, 9 false deletions are discarded and 43 true 
deletions are detected, which means EigenDel discards 27.3% false positives while no 
true deletion is lost. For chromosome 4 in NA12775 (Fig. 6 D.1 and D.2), 181 deletion 
candidates are detected and 103 of them are recorded in benchmark. After the statis-
tic filter be applied, 32 false deletions are discarded and 97 true deletions are detected, 
which means EigenDel discards 41% false positives while only loses 5.8% true deletions. 
For chromosome 13 in NA12763 (Fig. 6E.1, E.2), 126 deletion candidates are detected 
and 47 of them are recorded in benchmark. After the statistic filter be applied, 50 false 
deletions are discarded and 46 true deletions are detected, which means EigenDel dis-
cards 63.3% false positives while only loses 2% true deletions. All results demonstrate 
that PCA and hieratical clustering can cluster deletions with similar features together, 
which helps filter false positives efficiently for different individuals on real data.

Case study: specific deletions analysis

Due to  the unexpected mapping results and the complexity of genome sequence (e.g. 
repetitive regions), finding potential deletions is not always a straightforward job. In 
this section, we use IGV [25] to check the alignment results and list two typical dele-
tions in Fig. 7 to show the advantage of EigenDel. These two deletions in Fig. 7 come 
from chromosome 1 in sample NA12777, and both of them are recorded in the 1000 
genome trueset. In Fig.  7A, the deletion starts from 21786418 and ends at 21786695. 
The IGV shows that there are multiple clipped reads and discordant reads that clearly 
support both boundaries of this deletion. That’s why all 8 tools used for comparison in 
our research work can find this deletion successfully. However, for the deletion shown in 
Fig. 7B, where the variant is from 63151819 to 63152158, the alignment results are much 
more complex. The clipped reads are not aligned together, and the discordant reads are 
distributed here and there. In addition, there are also some alignment results dropped 
into the deletion area. Therefore, due to these complex mapping results, it is hard to use 
the normal criteria to identify if it is a real deletion and where are its boundaries. With 
the help of unsupervised learning, EigenDel checks this event by tracking the relation-
ship among the deletions with similar alignment situations, and it is the only algorithm 
among these 8 different methods that detects this variant successfully.

Fig. 7  Two specific deletions. A Deletion from 21786418 to 21786695, chromosome 1, sample NA12777. 
Detected by all 8 different methods. B Deletion from 63151819 to 63152158, chromosome 1, sample 
NA12777. Detected by EigenDel only
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Discussion
Structural variants can be divided into two categories in terms of length, including the 
microscopic variants (large variant, > 3 Mb) and submicroscopic variants (small vari-
ant, 50 bp to 3 Mb). Microscopic variants have a relatively long history, since they are 
very long and easy to be found (e.g. visible to the unassisted eye). With the develop-
ment of molecular biology and DNA sequencing technology, smaller and more abun-
dant variants were observed. We call these smaller variants submicroscopic variants. 
Submicroscopic variants occur at a much higher frequency and are not easy to detect 
correctly. Our research work focuses on detecting these smaller events. In addition, 
the motivation of this paper is designing an efficient algorithm that can call as much 
as deletions recorded in SV trueset (sensitivity) while not introducing so many unre-
corded deletions (accuracy). In order to balance sensitivity and accuracy, we use F1 
score as the principal metrics for comparison. Proving whether or not the newly dis-
covered deletions are real is not our research question.

EigenDel is designed for calling deletions based on illumina pair-end reads. All 
comparisons conducted in this paper are based on the low coverage BAM files from 
1000 genome project phase 3 datasets. Since a low coverage data set does not contain 
enough high-quality reads, gaining best performance for balancing sensitivity and 
accuracy based on low coverage dataset is much more challenging than high cover-
age dataset, and this is one of the major motivations of EigenDel. We use multiple 
individuals, including some widely studied samples, such as NA12878, for compari-
son. Some BAM files contain single sequence library while others contain multiple 
libraries. When comparing the breakpoints of each deletion, we allow up to 15 bp 
tolerance.

For the performance, some tools, such as Pindel, provide high sensitivity but have a lot 
of false positives, which leads to low accuracy. Some other tools give better accuracy but 
lower sensitivity. Thus, how to balance sensitivity and accuracy is a key point of evalu-
ation. By taking advantage of PCA and hierarchical clustering, similar deletions candi-
dates are classified together efficiently, which helps us apply different filters to identify 
the true deletions in each cluster. The results show that a large number of false positives 
are filtered while only lose a few true deletions from the clustering results. This gives the 
highest F1 score among all comparison methods.

EigenDel takes 20–50 mins on running each testing sample, and this is similar to 
CNVnator, Delly, GASVpro, and SvABA. Lumpy and Manta take around 1.5 h and 2.5 h 
on running each single individual respectively while Pindel costs about 5 h. As a result, 
the running time of EigenDel is competitive. EigneDel is designed for germline muta-
tions of diploid organism. It uses discordant read pairs to get raw deletion candidates. 
Therefore, in principle, all of deletions shorter than 3 ∗ STDIS are discarded. The bench-
mark includes all types of deletions with the length from tens to tens of thousands bp. 
Based on the comparison results, EigenDel performs well even when short deletions in 
the benchmark dataset are included.

EigenDel is implemented by C++, and bamtools [26] is a very popular C++ toolkit 
to parse BAM files. Similar to samtools, bamtools can report many features of each 
alignment reads, such as PCR duplicate, reads QC, mate index, primary alignment, etc. 
EigenDel uses bamtools directly while implementing.
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For future works, we plan to improve EigenDel in 4 aspects. First of all, Since very 
large deletions will induce read pairs with large insert sizes, average insert size may be 
more susceptible to outliers than median insert size. Therefore, instead of average insert 
size and insert size standard deviation, it is a good idea to use median insert size and 
median absolute deviations to collect discordant reads. Secondly, in order to reduce false 
positives, we can consider increasing the threshold by using a value larger than “a stand-
ard deviation coefficient of 3” to collect discordant reads. However, this change may 
cause the decrease of sensitivity as well. Therefore, it is a good idea to develop a statisti-
cal model to evaluate which value can provide us the best tradeoffs between sensitivity 
and accuracy. Thirdly, our current merging strategy may put two separated but over-
lapped deletions together, which may cause the incorrect variant calling result. We need 
to find a way to prevent these events. Finally, although it is good to gain better perfor-
mance in low coverage dataset, making EigenDel fully support high coverage data is also 
necessary. This is because high coverage datasets contain more number of high-quality 
reads, which may improve the confidence of calling results. However, since the data scale 
in high coverage datasets is much larger than low coverage datasets, it is necessary to 
optimize some part of the current algorithm, such as merging discordant reads and find-
ing potential deletion candidates, to improve the computational efficiency. The “learning 
method” may also need to be adjusted based on the running results from high coverage 
datasets.

Conclusion
In this paper, we design a method named EigenDel for detecting submicroscopic struc-
tural variations deletions in germline mutation of diploid organism. EigenDel uses dis-
cordant read pairs to collect deletion candidates, and it uses clipped reads to update the 
boundary for each of them. The main idea of EigenDel is that it uses unsupervised learn-
ing to detect true deletions. For this, EigenDel first applies a read depth filter, and then it 
extracts four features for remaining candidates based on depth. Unsupervised learning is 
used to cluster similar deletions together: the top two principle components from PCA 
are used to present each deletion candidate. Hierarchical clustering is used to classify all 
candidates into four clusters. Then, EigenDel marks each cluster as either good or bad by 
using the statistic values calculated from the depth features of all candidates in the same 
cluster. A good cluster means the majority in the cluster are true deletions while a bad 
one means the majority candidates are false. EigenDel applies these different statistic fil-
ters to both good and bad clusters to extract true deletions.

The deletions from the 1000 Genomes Project Phase 3 callset are used as benchmark. 
The low coverage BAM files of five different 1000 Genomes individuals are used for 
comparison. Five existing deletion calling methods are compared with EigenDel. The 
results show that EigenDel gives the highest F1 score in all experiments. For each indi-
vidual, EigenDel performs better than other methods in the majority of chromosomes. 
Thus, EigenDel has the best performance in balancing accuracy and sensitivity with low 
bias. EigenDel is developed by C++ and could be downloaded from https://​github.​com/​
lxwgc​ool/​Eigen​Del.

https://github.com/lxwgcool/EigenDel
https://github.com/lxwgcool/EigenDel
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