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Abstract 

In clinical trials, identification of prognostic and predictive biomarkers has became 
essential to precision medicine. Prognostic biomarkers can be useful for the prevention 
of the occurrence of the disease, and predictive biomarkers can be used to identify 
patients with potential benefit from the treatment. Previous researches were mainly 
focused on clinical characteristics, and the use of genomic data in such an area is 
hardly studied. A new method is required to simultaneously select prognostic and 
predictive biomarkers in high dimensional genomic data where biomarkers are highly 
correlated. We propose a novel approach called PPLasso, that integrates prognostic 
and predictive effects into one statistical model. PPLasso also takes into account the 
correlations between biomarkers that can alter the biomarker selection accuracy. Our 
method consists in transforming the design matrix to remove the correlations between 
the biomarkers before applying the generalized Lasso. In a comprehensive numerical 
evaluation, we show that PPLasso outperforms the traditional Lasso and other exten‑
sions on both prognostic and predictive biomarker identification in various scenarios. 
Finally, our method is applied to publicly available transcriptomic and proteomic data.

Keywords:  Variable selection, Highly correlated predictors, Genomic data

Introduction
With the development of precision medicine, there has been an increasing interest in the 
discovery of different types of biomarkers. A prognostic biomarker informs about a likely 
clinical outcome (e.g., disease recurrence, disease progression, death) in the absence of 
therapy or with a standard therapy that patients are likely to receive, while a predictive 
biomarker is associated with a response or a lack of response to a specific therapy. Four-
ati [3] and Clark [8] provided a comprehensive explanation and concrete examples to 
distinguish prognostic from predictive biomarkers, respectively. During the past decade, 
prognostic and predictive biomarkers showed their power in the development of preci-
sion medicine. Giannos et  al. [15] identified ten prognostic gene biomarkers for non-
small cell lung cancer that can be useful for improving risk prediction and therapeutic 
strategies. Zhao et al. [38] obtained prognostic biomarkers for 13 cancers by integrating 
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multi-omics data and provided a reference for translational medicine researchers. He 
et  al. [16] identified predictive biomarkers for sorafenib resistance and contributed to 
the guidance of individualized drug therapy. Yet, correctly identifying such biomarkers 
remains difficult.

Concerning the biomarker selection, the high dimensionality of genomic data is one 
of the main challenges as explained in Fan and Li [9]. To identify effective biomarkers 
in high-dimensional settings, several approaches can be considered including hypoth-
esis-based tests described in [23], wrapper approaches proposed in [25], and penal-
ized approaches such as Lasso designed by [30] among others. Hypothesis-based tests 
consider each biomarker independently and thus ignore potential correlations between 
them. Wrapper approaches often show high risk of overfitting and are computationally 
expensive for high-dimensional data as explained in [27]. More efforts have been devoted 
to penalized methods given their ability to automatically perform variable selection and 
coefficient estimation simultaneously as highlighted in [10]. However, Lasso showed 
some potential drawbacks when biomarkers are highly correlated. Particularly, when 
the Irrepresentable Condition (IC) proposed by [39] is violated, Lasso can not guaran-
tee to correctly identify true effective biomarkers. In genomic data, biomarkers are usu-
ally highly correlated such that this condition can hardly be satisfied, see [34]. Several 
methods have been proposed to adress this issue. Elastic Net [41] combines the ℓ1 and ℓ2 
penalties and is particularly effective in tackling correlation issues and can generally out-
perform Lasso. Adaptive Lasso [42] proposes to assign adaptive weights for penalizing 
different coefficients in the ℓ1 penalty, and its oracle property was demonstrated. Wang 
and Leng [35] proposed the HOLP approach which consists in removing the correlation 
between the columns of the design matrix; Wang et al. [34] proposed to handle the cor-
relation by assigning similar weights to correlated variables in their approach called Pre-
cision Lasso; Zhu et al. [40] proposed to remove the correlations by applying a whitening 
transformation to the data before using the generalized Lasso criterion designed by [31].

The challenge of finding prognostic biomarkers has been extensively explored with 
previously introduced methods, however, the discovery of predictive biomarkers has 
seen much less attention. Limited to binary endpoint, Foster et al. [13] proposed to first 
predict response probabilities for treatment and use this probability as the response in 
a classification problem to find effective biomarkers. Tian et  al. [29] proposed a new 
method to detect interaction between the treatment and the biomarkers by modifying 
the covariates. This method can be implemented on continuous/binary/time-to-event 
endpoint. Lipkovich et al. [20] proposed a method called SIDES, which adopts a recursive 
partitioning algorithm for screening treatment-by-biomarker interactions. This method 
was further improved in [19] by adding another step of preselection on predictive bio-
markers based on variable importance. The method was demonstrated with continu-
ous endpoint. Evaluated on time-to-event data, Ternès et al.[28] proposed a framework 
for identifying biomarker-by-treatment interactions but not specifically in the context 
of correlated biomarkers. More recently, Sechidis et al. [26] applied approaches coming 
from information theory for ranking biomarkers on their prognostic/predictive strength. 
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Their method is applicable only for binary or time-to-event endpoint. Moreover, all of 
these methods were assessed under the situation where the sample size is relatively large 
and the number of biomarkers is limited, which is hardly the case for genomic data.

In the literature mentioned above, the authors focused on one of the problematic of 
identifying prognostic or predictive biomarkers, but rarely on both. Even if predictive 
biomarkers is of major importance for identifying patients more likely to benefit from 
a treatment, the prognostic biomarkers is also key in this context. Indeed, the clini-
cal impact of a treatment can be judged only with the knowledge of the prognosis of 
a patient. It is thus of importance to reliably predict the prognosis of patients to assist 
treatment counseling [36]. To properly describe the two effects, the experimental treat-
ment should be compared to a standard therapy (or a placebo), and patients receiving 
different treatments should be randomized. A randomized clinical trial can be ideal 
for such a study. In this paper, we developed a new method called PPLasso (Prognostic 
Predictive Lasso) to identify prognostic and at the same time predictive biomarkers in 
a high dimensional setting with continuous endpoints, as presented in “Methods” sec-
tion . Extensive numerical experiments are given in “Numerical experiments” section  to 
assess the performance of our approach and to compare it to other methods. PPLasso is 
also applied on two publicly available transcriptomic and proteomic data in “Application 
to transcriptomic and proteomic data” section. Finally, we give concluding remarks in 
“Conclusion” section .

Methods
In this section, we propose a novel approach called PPLasso (Predictive Prognostic 
Lasso) which consists in writing the identification of predictive and prognostic biomark-
ers as a variable selection problem in an ANCOVA (Analysis of Covariance) type model 
mentioned for instance in [12].

Statistical modeling

Let y be a continuous response or endpoint and t1 , t2 two treatments. Let also X1 (resp. 
X2 ) denote the design matrix for the n1 (resp. n2 ) patients with treatment t1 (resp. t2 ), 
each containing measurements on p candidate biomarkers:

 To take into account the potential correlation that may exist between the biomarkers in 
the different treatments, we shall assume that the rows of X1 (resp. X2 ) are independent 
centered Gaussian random vectors with a covariance matrice equal to �1 (resp. �2).

To model the link that exists between y and the different types of biomarkers we pro-
pose using the following model:
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where (yi1, . . . , yini) corresponds to the response of patients with treatment ti , i being 
equal to 1 or 2,

with α1 (resp. α2 ) corresponding to the effects of treatment t1 (resp. t2 ). Moreover, 
β1 = (β11,β12, . . . ,β1p)

′ (resp. β2 = (β21,β22, . . . ,β2p)
′ ) are the coefficients associated 

to each of the p biomarkers in treatment t1 (resp. t2 ) group, ′  denoting the matrix trans-
position and ǫ11, . . . , ǫ2n2 are standard independent Gaussian random variables inde-
pendent of X1 and X2 . When t1 stands for the standard treatment or placebo, prognostic 
biomarkers are defined as those having non-zero coefficients in β1 . According to the 
definition of prognostic biomarkers, their effect should indeed be demonstrated in the 
absence of therapy or with a standard therapy that patients are likely to receive. On the 
other hand, predictive biomarkers are defined as those having non-zero coefficients in 
β2 − β1 because they aim to highlight different effects between two different treatments.

Model (2) can be written as:

with γ = (α1,α2,β
′
1,β

′
2)

′ . The Lasso penalty is a well-known approach to estimate coef-
ficients with a sparsity enforcing constraint allowing variable selection by estimating 
some coefficients by zero. It consists in minimizing the following penalized least-squares 
criterion [30]:

where �u�22 =
∑n

i=1 u
2
i  and �u�1 =

∑n
i=1 |ui| for u = (u1, . . . ,un) . A different sparsity 

constraint was applied to β1 and β2 − β1 to allow different sparsity levels. Hence we pro-
pose to replace the penalty �‖γ ‖1 in (4) by
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Thus, a first estimator of γ could be found by minimizing the following criterion with 
respect to γ:

where D1 = [Idp, 0p,p] and D2 = [−Idp, Idp] , with Idp denoting the identity matrix of 
size p and 0i,j denoting a matrix having i rows and j columns and containing only zeros. 
However, since the inconsistency of Lasso biomarker selection is originated from the 
correlations between the biomarkers, we propose to remove the correlation by “whiten-
ing” the matrix X . More precisely, we consider X̃ = X�−1/2 , where

and define �−1/2 by replacing in (7) �i by �−1/2
i  , where �−1/2

i = UiD
−1/2
i UT

i  , Ui and Di 
being the matrices involved in the spectral decomposition of �i for i = 1 or 2. With such 
a transformation the columns of X̃ are decorrelated and Model (3) can be rewritten as 
follows:

where γ̃ = �1/2γ . The objective function (6) thus becomes:

Estimation of γ̃

Let us define a first estimator of γ̃ = (α̃1, α̃2, β̃
′

1, β̃
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2) as follows:
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 Note that the corrections are only performed on ̂̃β0 , the estimators ̂̃α1 and ̂̃α2 were not 
modified. The choice of K1 and K2 will be explained in “Choice of the parameters K1,K2 , 
M1 and M2” section.

To illustrate the interest of using a thresholding step, we generated a dataset 
based on Model  3 with parameters described in “Simulation setting” section   and 
p = 500 . Moreover, to simplify the graphical illustrations, we focus on the case where 
�1 = �2 = � . Figure 1 displays the estimation error associated to the estimators of β̃(�) 
before and after the thresholding. We can see from this figure that the estimation of 
β̃(�) is less biased after the correction. Moreover, we observed that this thresholding 
strongly improves the final estimation of γ and the variable selection performance of 
our method.

Estimation of γ

With ̂̃β = (
̂̃
β
′

1,
̂̃
β
′

2) , the estimators of β1 and β2 − β1 can be obtained by β̂10 = �
−1/2
1

̂̃
β1 

and (β̂20 − β̂10) = �
−1/2
2

̂̃
β2 − �

−1/2
1

̂̃
β1 . As previously, another thresholding was 

applied to β̂10 and β̂20 : for i = 1 or 2,

for each fixed �1 and �2 . The biomarkers with non-zero coefficients in β̂1 = β̂
(M1)

1  (resp. 
β̂
(M2)

2 − β̂
(M1)

1  ) are considered as prognostic (resp. predictive) biomarkers, where the 
choice of M1 and M2 is explained in in “Choice of the parameters K1,K2 , M1 and M2” 
section .

To illustrate the benefits of using an additional thresholding step, we used the data-
set described in “Estimation of γ̃ ” section. Moreover, to simplify the graphical illus-
trations, we also focus on the case where �1 = �2 = � . Additional file  1: Figure S1  
displays the number of True Positive (TP) and False Positive (FP) in prognostic and 
predictive biomarker identification with and without the second thresholding. We 
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can see from this figure that the thresholding stage limits the number of false posi-
tives. Note that α1 and α2 are estimated by ̂̃α1 and ̂̃α2 defined in (10).

Choice of the parameters K1,K2 , M1 and M2

For each (�1, �2) and each K1 , we computed:

where ̂̃γ
(K1,K2)

(�1, �2) = (̂̃α1, ̂̃α2,
̂̃
β
(K1)

′

1 ,
̂̃
β
(K2)

′

2 ) defined in (10) and in (11). It is displayed 
in the left part of Fig. 2.

For each �1 , �2 and a given δ ∈ (0, 1) , the parameter K̂2 is then chosen as follows for each 
K1:

The K̂2 associated to each K1 are displayed with ’*’ in the left part of Fig. 2. Then K̂1 is 
chosen by using a similar criterion:

The values of M̃SE
(K1,K̂2)

(�1, �2) are displayed in the right part of Fig. 2 in the particular 

case where �1 = �2 = � , δ = 0.95 and with the same dataset as the one used in “Esti-
mation of γ̃” section. K̂1 is displayed with a red star. This value of δ will be used in the 
following sections. However, choosing δ in the range (0.9,0.99) does not have a strong 
impact on the variable selection performance of our approach.

The parameters M̂1 and M̂2 are chosen in a similar way except that M̃SEK1,K2(�1, �2) is 
replaced by M̂SEM1,M2(�1, �2) where:

(13)M̃SEK1,K2(�1, �2) = �y − X̃̂̃γ
(K1,K2)

(�1, �2)�
2
2,

K̂2(�1, �2) = Argmin

{
K2 ≥ 1 s.t.

M̃SE(K1,K2+1)(�1, �2)

M̃SE(K1,K2)(�1, �2)
≥ δ

}
.

�K1(�1, �2) = Argmin



K1 ≥ 1 s.t.

M̃SE
(K1+1,�K2

)(�1, �2)

M̃SE
(K1,�K2)

(�1, �2)
≥ δ



.

M̂SEM1,M2(�1, �2) = �y − Xγ̂ (M1,M2)(�1, �2)�
2
2,

Fig. 2  Illustration of how to choose K1 and K2 ( δ = 0.95 ), final choice is marked with ’*’
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with γ̂ (M1,M2)(�1, �2) = (̂̃α1, ̂̃α2, β̂
(M1)

′

1 , β̂
(M2)

′

2 ) defined in (10) and (12). In the following, 

γ̂ (�1, �2) = γ̂
(M̂1,M̂2)(�1, �2).

Estimation of �1 and �2

As the empirical correlation matrix is known to be a non accurate estimator of � when 
p is larger than n, a new estimator has to be used. Thus, for estimating � we adopted 
a cross-validation based method designed by [5] and implemented in the cvCovEst 
R package [6]. This method chooses the estimator having the smallest estimation error 
among several compared methods (sample correlation matrix, POET [11] and Tapering 
[7] as examples). Since the samples in treatments t1 and t2 are assumed to be collected 
from the same population, �1 and �2 are assumed to be equal.

Choice of the parameters �1 and �2
For the sake of simplicity, we limit ourselves to the case where �1 = �2 = � . For choos-
ing � we used BIC (Bayesian information criterion) which is widely used in the variable 
selection field and which consists in minimizing the following criterion with respect to �:

where n is the total number of samples, MSE(�) = �y − Xγ̂ (�)�22 and k(�) is the number 
of non null coefficients in the OLS estimator γ̂  obtained by re-estimating only the non 
null components of β̂1 and β̂2 − β̂1 . The values of the BIC criterion as well as those of 
the MSE obtained from the dataset described in “Estimation of γ̃” section are displayed 
in Fig. 3.

Additional file  1: Table  S1 provides the True Positive Rate (TPR) and False Positive 
Rate (FPR) when � is chosen either by minimizing the MSE or the BIC criterion for this 
dataset. We can see from this table that both of them have TPR=1 (all true positives 
are identified). However, the FPR based on the BIC criterion is smaller than the one 
obtained by using the MSE.

Note that additional results using two different parameters �1 and �2 in the BIC crite-
rion are provided in “Two parameters �1 and �2 v.s. � in the BIC Criterion” section.

Numerical experiments
This section presents a comprehensive numerical study by comparing the performance 
of our method with other regularized approaches in terms of prognostic and predictive 
biomarker selection. Besides the Lasso, we also compared with Elastic Net, Adaptive 
Lasso and WLasso [40] since they also take into account the correlations. For these com-
pared methods, in order to directly estimate prognostic and predictive effects, X and γ in 
Model (3) were replaced by

and γ ∗ = (α1,α2,β
∗
1,β

∗
2) , respectively, where X1 and X2 are defined in (1), 0i,j (resp. 1i,j ) 

denotes a matrix having i rows and j columns and containing only zeros (resp. ones). 
Note that this is the modeling proposed by [21]. The sparsity enforcing constraint was 

(14)BIC(�) = n log(MSE(�)/n)+ k(�) log(n),

X∗ =

[
1n1,1 0n1,1 X1 0n1,p
0n2,1 1n2,1 X2 X2

]
,
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put on the coefficients β∗
1 and β∗

2 which boils down to putting a sparsity enforcing con-
straint on β1 and β2 − β1.

Simulation setting

All simulated datasets were generated from Model (3) where the n1 ( n2 ) rows of X1 ( X2 ) 
are assumed to be independent Gaussian random vectors with a covariance matrix 
�1 = �2 = �bm , and ǫ is a standard Gaussian random vector independent of X1 and X2 . 
We defined �bm as:

where �11 (resp. �22 ) are the correlation matrix of prognostic (resp. non-prognostic) 
biomarkers with off-diagonal entries equal to a1 (resp. a3 ). Morever, �12 is the correla-
tion matrix between prognostic and non-prognostic variables with entries equal to a2 . 
In our simulations (a1, a2, a3) = (0.3, 0.5, 0.7) , which is a framework proposed by [37]. 
We checked that the Irrepresentable Condition (IC) of [39] is violated and thus the 
standard Lasso cannot recover the positions of the null and non null variables. For each 
dataset we assumed randomized treatment allocation between standard and experi-
mental arm with a 1:1 ratio, i.e. n1 = n2 = 50 . We further assume a relative treatment 
effect of 1 ( α1 = 0 and α2 = 1 ). The number of biomarkers p varies from 200 to 2000. 
The number of active biomarkers was set to 10 (i.e. 5 purely prognostic biomarkers with 
β1j = β2j = b1 = 1 (j = 1, ..., 5) and 5 biomarkers both prognostic and predictive with 
β1j = b1 and β2j = b2 = 2 (j = 6, ..., 10)).

Evaluation criteria

We considered several evaluation criteria to assess the performance of the methods in 
selecting the prognostic and predictive biomarkers: the TPRprog as the true positive rate 
(i.e. rate of active biomarkers selected) and FPRprog the false positive rate (i.e. rate of 
inactive biomarkers selected) of the selection of prognostic biomarkers, and similarly for 
predictive biomarkers with TPRpred and FPRpred . We further note TPRall and FPRall the 
criterion of overall selection among all candidate biomarkers regardless their prognostic 

(15)�bm =

[
�11 �12

�T
12 �22

]

Fig. 3  MSE and BIC for all � . The � minimizing each criterion is displayed with a vertical line
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or predictive effect. The objective of the selection is to maximize the TPRall and mini-
mize the FPRall . All metrics were calculated by averaging the results of 100 replications 
for each scenario.

Two parameters �1 and �2 v.s. � in the BIC Criterion

In this section, we compare the results obtained by choosing �1 = �2 = � as the mini-
mizer of the BIC criterion described in (14) with those obtained by choosing the values 
of �1 and �2 as those minimizing the criterion (16):

Different results are presented in Fig.  4. PPLasso� (resp. PPLasso ) corresponds to the 
results of the method by using the true (resp. estimated) matrix �bm . For estimating �bm , 
we used the approach explained in “Estimation of �1 and �2” section . Different choices 
of parameters are also given: “optimal”, “ min(bic(�)) ” and “ min(bic(�1, �2)) ”. The first one 
uses as a value of the parameters the one maximizing (TPRall − FPRall) , the second one 
uses the approach presented in (14) and the last one uses the approach described in (16).

We observed that the results with two tuning parameters (�1, �2) were slightly better 
than those with a single parameter � . However, the gap is very small and almost invisible 
when p increases. For this reason, we limited ourselves to a single tuning parameter � in 
the following.

Biomarker selection results

In order to compare the performance of our approach to the best performance that could 
be reached by Elastic Net, Lasso, Adaptive Lasso and WLasso, we used for these meth-
ods the “optimal” parameters namely those maximizing (TPRall − FPRall) . The first three 
methods were implemented with the glmnet R package, the best parameter α involved 
in Elastic Net was chosen in the set {0.1, 0.2, . . . , 0.9} . WLasso was implemented with 
the WLasso R package. The choice of “min(bic)” is only applied to our method and cor-
responds to a choice of � that could be used in practical situations. For ease of presenta-
tion, the abbreviation EN (resp. AdLasso) refers to Elastic Net (resp. Adaptive Lasso) in 
the following.

Figure  5 shows the selection performance of PPLasso and other compared meth-
ods in the simulation scenario presented in “Simulation setting” section. PPLasso 
achieved to select all prognostic biomarkers ( TPRprog almost 1) even for large p, with 
limited false positive prognostic biomarkers selected. As compared to the optimal 
� maximizing (TPRall − FPRall) , the one selected with the BIC tends to select some 
false positives (average: 33 ( FPRprog = 0.17 ) for p = 200 and 10 ( FPRprog = 0.005 ) for 
p = 2000 ). The results obtained from the oracle and estimated �bm are comparable. 
Selection performance of predictive biomarkers is slightly lowered as compared to 
prognostic biomarkers. Even if the false positive selection is quite similar between 
prognostic and predictive biomarkers, PPLasso missed some true predictive bio-
markers when � is selected with the BIC criterion (average TPRpred = 0.98 and 0.80 
for oracle and estimated �bm , respectively, with p = 2000 ). In this scenario where 
the IC is violated, PPLasso globally outperforms Lasso, Elastic Net, Adaptive Lasso 
and WLasso. Thanks to the whitening technique used in WLasso, it achieved higher 

(16)BIC(�1, �2) = n log(MSE(�1, �2)/n)+ k(�1, �2) log(n).
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selection accuracy than the other three methods. Although Elastic Net showed higher 
TPR than Lasso and Adaptive Lasso, they all failed in selecting all truly prognostic 
and predictive biomarkers, and the number of missed active biomarkers increased 
with the dimension p. For example, for Elastic Net, TPRprog = 0.85 and 0.53, TPRpred 
= 0.81 and 0.61 for p = 200 and 2000, respectively.

Impact of the correlation matrix �

To evaluate the impact of the correlation matrix on the selection performance of the 
methods, additional scenarios are presented where the IC is satisfied: 

1.	 Compound symmetry structure where all biomarkers are equally correlated with a 
correlation ρ = 0.5;

2.	 Independent setting where �bm is the identity matrix.

Fig. 4  Average of (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for 
prognostic (left) and predictive (right) biomarkers. Two parameters �1 and �2 v.s. �
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For the scenario with compound symmetry structure displayed in Fig. 6, all the meth-
ods successfully identified the true prognostic biomarkers ( TPRprog close to 1 even 
for large p) with limited false positive selection. On the other hand, the compared 
methods (Lasso, ELastic Net, Adaptive Lasso and WLasso) missed some predictive 
biomarkers especially when p increases.

On the contrary, PPLasso successfully identified almost all predictive biomarkers 
with the optimal choice of � . Moreover, even when � is selected by minimizing the 
BIC criterion (min(bic)), PPLassoest outperformed Lasso and Adaptive Lasso when 
p > 500 with relatively stable TPRpred and FPRpred as p increases.

For the independent setting, as displayed in Fig.  7, prognostic biomarkers were 
globally well identified by all the compared methods with a slightly higher TPRprog for 
Lasso and ELastic Net as compared to PPLasso but also with a slightly higher FPRprog . 

Fig. 5  Average of (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for 
prognostic (left) and predictive (right) biomarkers
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With regards to predictive biomarkers, PPLasso using �bm (oracle) performed also 
similarly to the Lasso, which is reasonable since no transformation has been used 
in PPLasso. On the other hand, even if PPLasso with � selected with “min(bic)” per-
formed similarly with PPLasso with optimal � for relatively small p, the selection per-
formance is altered for large p and even if the performance is higher than Lasso and 
Adaptive Lasso, it is smaller than the one of Elastic Net.

Impact of the effect size of active biomarkers

To evaluate the impact of the effect size on biomarker selection performance, the sce-
nario presented in “Simulation setting” section  was considered with different values 
of b2 : 1.5, 2 and 2.5.

Fig. 6  Average of (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for 
prognostic (left) and predictive (right) biomarkers for the compound symmetry correlation structure
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Since the effect size of prognostic biomarkers did not change, the comparison 
focused on predictive biomarkers. As expected, the reduction of the effect size makes 
the biomarker selection harder, especially for Lasso, Elastic Net and Adaptive Lasso 
where the predictive biomarker selection is limited when b2 = 1.5 : for Lasso when 
p = 2000 , TPRpred = 0.45 (resp. 0.22) for b2 = 2 (resp. 1.5), see Fig.  5 and Addi-
tional file 1: Figure S2. The selection performance of PPLasso when � is selected with 
min(bic) is also reduced by decreasing b2 , especially when �bm is also estimated. Nev-
ertheless, the selection performance of PPLasso remains better than for most of the 
other compared methods for which the performance displayed are associated to the 
optimal value of � . Surprisingly, WLasso performed better than PPLasso with esti-
mated � in this scenario. On the other hand, even with limited effect size, PPLasso 

Fig. 7  Average of (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for 
prognostic (left) and predictive (right) biomarkers (independent setting)
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with optimal � identified all predictive biomarkers with very limited false positive 
selection. When b2 was increased to 2.5, the selection performance for all methods is 
improved and the results for PPLasso with estimated � was close to the ones with the 
optimal � as displayed in Additional file 1: Figure S3. As compared with PPLasso, for 
which the selection performance remained stable as p increased, Lasso, Elastic Net, 
Adaptive Lasso and WLasso were more impacted by the value of p since the true pos-
itive selection decreased as p increased. As an example, for the Lasso, TPRpred =0.95 
(resp. 0.65) for p = 200 (resp. 2000).

Impact of the number of predictive biomarkers

The impact of the number of true predictive biomarkers was assessed by increasing the 
number of predictive biomarkers from 5 to 10 in the scenario presented in “Simulation 
setting” section. When the number of predictive biomarkers increased, the impact on 
PPLasso is almost negligible, especially for prognostic biomarker identification. How-
ever, for the other methods, we can see from Additional file 1: Figure S4 that it became 
even harder to identify predictive biomarkers. The impact on WLasso was less obvious, 
while for the other methods, TPRpred decreased compared to Fig. 5, especially for large 
p (e.g. TPRpred = 0.12, 0.18, and 0.02 for Lasso, Elastic Net and Adaptive Lasso respec-
tively when p = 2000).

Impact of the dimension of the dataset

In this section, we studied a different sample size: n = 50 with n1 = n2 = 25 and a differ-
ent number of biomarkers: p = 5000.

We can see from Additional file 1: Figure S5 that for p = 5000 , the selection perfor-
mance of PPLasso is not altered as compared with p = 2000 while the compared meth-
ods have more difficulties to identify both prognostic and predictive biomarkers.

When the sample size is smaller (n = 50), we can see from Additional file 1: Figure 
S6 that the ability to identify prognostic and predictive biomarkers decreased for all 
the methods. However, PPLasso still outperformed the others with higher TPRprog and 
TPRpred and lower FPRprog and FPRpred.

Application to transcriptomic and proteomic data
Application to the RV144 clinical trial transcriptomic data

We applied the previously described methods to publicly available transcriptomic data 
from the RV144 vaccine trial [24]. This trial showed reduced risk of HIV-1 acquisition 
by 31.2% with vaccination with ALVAC and AIDSVAX as compared to placebo. Tran-
scriptomic profiles of in vitro HIV-1 Env-stimulated peripheral blood mononuclear cells 
(PBMCs) obtained pre-immunization and 15 days after the immunization (D15) from 
both 40 vaccinees and 10 placebo recipients were generated to better understand under-
lying biological mechanisms.

For illustration purpose, the absolute change at D15 in gene mTOR was considered 
as the continuous endpoint (response). mTOR plays a key role in mTORC1 signaling 
pathway which has been shown to be associated with risk of HIV-1 acquisition [14, 1]. 
The gene expression has been normalized as in the original publication of [14]. After 
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removing non-annotated genes (LOCxxxx and HS.xxxx), the top 2000 genes with the 
highest empirical variances were included as candidate biomarkers for prognostic and 
predictive identification from PPLasso and the compared methods. The penalty param-
eter � for the Lasso and Adaptive Lasso, the parameters � and α for Elastic Net were 
selected through the classical cross-validation approach. For PPLasso, � was selected 
based on the criterion described in “Choice of the parameters �1 and �2” section .

The estimation of � was obtained by comparing several candidate estimators from 
the cvCovEst R package and by selecting the estimator having the smallest estima-
tion error. In this application, the combination of the sample covariance matrix and a 
dense target matrix (denseLinearShrinkEst) derived by [18] provides the smallest estima-
tion error. Figure 8 (left) displays the estimated � and highlights the strong correlation 
between the genes. Additional file 1: Table S2 gives details on the compared estimators.

Prognostic and predictive genes selected by PPLasso, Lasso, Elastic Net and Adaptive 
Lasso are listed in Table 1. The number of genes selected are similar for all the compared 
methods, except for a slightly higher number of predictive genes selected by PPLasso. 
Lasso, Elastic Net and Adaptive Lasso selected very similar sets of prognostic and pre-
dictive genes. The intersection between PPLasso and others is moderate (2 prognostic 
genes (SLAMF7 and TNFRSF6B), 3 predictive genes (YTHDC1, MS4A7 and RPL21)).

To have a better overview of the prognostic and predictive genes selected by the 
different methods and their associated roles, pathway analysis was carried out via the 
REACTOME tool (https://​react​ome.​org/), where over-representation analysis (ORA) 
was performed. ORA is used to determine if a set of genes shares more genes with 
a pathway than we would expect by chance, evaluated by a p-value. Table S3 (prog-
nostic biomarkers) and Additional file  1: Table  S4 (predictive biomarkers) showed 
the identified pathways with a p-value smaller than 0.01. For prognostic biomarkers, 
there was no pathway identified by WLasso. Most of the pathways identified by Adap-
tive Lasso were also identified by Elastic Net. Lasso identified a large number of path-
ways, but some of them may not be related to HIV. PPLasso identified three pathways 
(also identified by Elastic Net and Lasso). Interestingly, TNFR2 non-canonical NF-kB 
pathway that was already identified by Fourati et al. [14], is associated with the risk of 
HIV acquisition in the placebo group; the implication of regulatory T-cells on HIV-1 
has also been widely discussed in the literature (e.g., [17]). For predictive biomark-
ers identified by different methods, Lasso, Elastic Net, and Adaptive Lasso identified 
comparable pathways, while PPLasso and WLasso share similar ones and differ-
ent from the other methods. Among the pathways identified by PPLasso, NOD1/2 
Signaling Pathway and Toll-like Receptor Cascades pathway are reported as potential 
targeted adjuvants for HIV-1 vaccines [22]. In addition, RIPK1-mediated regulated 
necrosis pathway has also been investigated as targets for HIV-1 protease activity 
during infection [33].

Application to the NCT01241591 clinical trial proteomic data

Baseline blood samples of 173 samples ( n = 81 and 92) were taken from patients 
included in a randomized phase 3 clinical trial comparing the efficacy and safety of tofac-
itinib and etanercept in moderate-to-severe chronic plaque psoriasis (https://​clini​caltr​
ials.​gov/​ct2/​show/​NCT01​241591) [2]. From these samples, 92 inflammation-associated 

https://reactome.org/
https://clinicaltrials.gov/ct2/show/NCT01241591
https://clinicaltrials.gov/ct2/show/NCT01241591
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proteins and 65 cardiovascular disease-associated proteins were measured. Response to 
treatment was evaluated on the change in PASI score from baseline to week 12. The aim 
of this application is to identify potential prognostic (proteins associated with the clini-
cal endpoint under standard therapy: etanercept) and predictive biomarkers (proteins 
differentially associated with the clinical endpoint between etanercept and tofacitinib, 
aiming to identify patients more likely to benefit from a specific treatment). Figure  8 
(right) displays the estimated � and shows positive correlations between the proteins 
after standardization. Prognostic and predictive proteins selected by different methods 
are listed in Table 2. Among the identified prognostic proteins, IL-8 (identified by PPL-
asso and WLasso) and IL-17C (identified by Elastic Net and WLasso) both contribute 
to the IL-17 pathway of psoriasis pathogenesis mechanism [4]. For predictive proteins, 

Fig. 8  Heatmaps of the correlation matrices estimated by the cvCovEst R package. Left: transcriptomic 
data from clinical trial RV144. Right: proteomic data from clinical trial NCT01241591

Table 1  Selected genes from PPLasso, Lasso, Elastic Net, Adaptive Lasso and WLasso

Commonly selected genes are in bold

Prognostic genes Predictive genes

PPLasso HAPLN3, SLAMF7, GTF3C5,
FAM46A, SH3PXD2B, TM4SF1,
TNFRSF6B, TNFRSF18, TRPM2

TLR8, YTHDC1, NUCKS1,
BIRC3, SLAMF7, NFATC2IP,
BOK, MGRN1, KIAA0492,
SLC25A36, HMGN2, P2RY5,
RPL21, MS4A7, RPL12P6

Lasso  DKFZp434K191, NUCKS1, MAFF,
SLAMF7, HIST2H2AC, HIST1H4C,
IL8, TNFRSF6B,
TNFRSF18, SCAND1

DKFZp434K191, YTHDC1,
VMO1, BOLA2, HIST1H4C,
RPL21, MS4A7

Elastic Net DKFZp434K191, NUCKS1,SNURF,
MAFF, SLAMF7, IL8,
ZBP1, TNFRSF6B, ZAK,
TNFRSF18, SCAND1, NME1-NME2,
DNM1L, RNF146, NPEPL1

DKFZp434K191, YTHDC1, PMP22,
VMO1, BOLA2, HIST1H4C,
RPL21, MS4A7,RAB11FIP1

Adaptive Lasso  NUCKS1,SNURF, MAFF,
SLAMF7, IL8, ZBP1,
TNFRSF6B, NME1-NME2,
DNM1L, RNF146

YTHDC1, PMP22, VMO1,
BOLA2, HIST1H4C, MS4A7,
RPL21

WLasso SLAMF7, EEF1A1P22, RPL21P87,
LRRN3, MYOM2 RPS2P5,
NME1-NME2, DNM1L, RNF14

YTHDC1, SCARA2, KSP37, BIRC3
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CSF-1, identified by PPLasso, has been shown to be in the core signatures to predict 
tofacitinib treatment response developed by Tomalin et al. [32]. Lasso selected no pro-
teins. Adaptive Lasso selected only one predictive protein.

Conclusion
We propose a new method named PPLasso to simultaneously identify prognostic and 
predictive biomarkers. PPLasso is particularly interesting for dealing with high dimen-
sional omics data when the biomarkers are highly correlated, which is a framework that 
has not been thoroughly investigated yet. From various numerical studies with or whith-
out strong correlation between biomarkers, we highlighted the strength of PPLasso in 
well identifying both prognostic and predictive biomarkers with limited false positive 
selection. The current method is only dedicated to the analysis of continuous responses 
through ANCOVA type models. However, it will be the subject of a future work to 
extend it to other challenging contexts, such as classification or survival analysis.
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