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Abstract 

Background:  Long non-coding RNAs (lncRNAs) have been reported to have a crucial 
impact on the pathogenesis of acute myeloid leukemia (AML). Cuproptosis, a copper-
triggered modality of mitochondrial cell death, might serve as a promising therapeutic 
target for cancer treatment and clinical outcome prediction. Nevertheless, the role of 
cuproptosis-related lncRNAs in AML is not fully understood.

Methods:  The RNA sequencing data and demographic characteristics of AML patients 
were downloaded from The Cancer Genome Atlas database. Pearson correlation analy-
sis, the least absolute shrinkage and selection operator algorithm, and univariable and 
multivariable Cox regression analyses were applied to identify the cuproptosis-related 
lncRNA signature and determine its feasibility for AML prognosis prediction. The per-
formance of the proposed signature was evaluated via Kaplan–Meier survival analysis, 
receiver operating characteristic curves, and principal component analysis. Functional 
analysis was implemented to uncover the potential prognostic mechanisms. Addition-
ally, quantitative real-time PCR (qRT-PCR) was employed to validate the expression of 
the prognostic lncRNAs in AML samples.

Results:  A signature consisting of seven cuproptosis-related lncRNAs (namely NFE4, 
LINC00989, LINC02062, AC006460.2, AL353796.1, PSMB8-AS1, and AC000120.1) was 
proposed. Multivariable cox regression analysis revealed that the proposed signature 
was an independent prognostic factor for AML. Notably, the nomogram based on this 
signature showed excellent accuracy in predicting the 1-, 3-, and 5-year survival (area 
under curve = 0.846, 0.801, and 0.895, respectively). Functional analysis results sug-
gested the existence of a significant association between the prognostic signature and 
immune-related pathways. The expression pattern of the lncRNAs was validated in AML 
samples.

Conclusion:  Collectively, we constructed a prediction model based on seven 
cuproptosis-related lncRNAs for AML prognosis. The obtained risk score may reveal the 
immunotherapy response in patients with this disease.
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Introduction
Acute myeloid leukemia (AML) is a malignant clonal disease of the hematopoietic 
system, which is characterized by the accumulation of abnormal primitive cells and 
impaired production of normal blood cells [1]. In 2022, 20,050 newly diagnosed cases 
and 11,540 deaths of patients with this disease were estimated to occur in the United 
States [2]. Although induction therapy has achieved complete remission in most patients 
[3], relapses are still common. In previous publications, a five-year overall survival 
(OS) of 35–40% was reported in AML patients under 60  years of age, whereas it was 
only 10–15% for older patients [4, 5]. It is noteworthy that the combination of targeted 
therapy and chemotherapy may bring breakthrough in the treatment of AML, but such 
combined treatments are still under exploration and optimization [6]. Therefore, novel 
prognostic biomarkers are highly needed for the improvement of AML prognosis and 
treatment.

Copper is among the trace elements essential to the human body, but it can also be 
harmful if its level reaches beyond a certain threshold concentration [7]. Recently, a 
copper-triggered modality of mitochondrial cell death was reported, which was termed 
“cuproptosis” [8]. The functional role of cuproptosis in cancer development has been 
previously reported. For example, cuproptosis was used to predict clinical outcomes 
and immune response in bladder cancer [9], breast cancer [10], colorectal cancer [11], 
and prostate cancer [12]. A more recent study suggested that cuproptosis-related genes 
might be critically involved in the 2-year AML prognosis and the immune response to 
treatment [13]. However, the role of cuproptosis in the pathogenesis and the long-term 
prognosis of AML has not yet been fully elucidated.

Accumulating evidence has suggested that long non-coding RNAs (lncRNAs), a type 
of non-coding transcripts, exert a functional role at almost all stages of gene expression 
and are involved in the development of different solid cancer types [15, 16]. In addition 
to its participation in the pathogenesis of solid cancers, lncRNAs also play critical roles 
in the development of leukemia, including AML. For instance, the downregulation of 
lncRNA DLEU7-AS1 was recently found to be a favorable prognostic factor for AML 
[17]. Additionally, lncRNA-LOC100506453 was indicated as a noninvasive biomarker 
for acute promyelocytic leukemia (APL, a subtype for AML) treatment surveillance [18]. 
Furthermore, in a previous study, lncRNA H22954 inhibited AML angiogenesis [19]. In 
recent years, increasingly more studies have suggested that lncRNAs are potential bio-
markers for the prognosis of complex diseases and clinical outcome prediction [16]. The 
application of lncRNA signatures for AML prognosis prediction has also been reported. 
Several recent studies confirmed that N6-methyadenosine-related lncRNAs predicted 
AML prognosis and the immune landscape [20–22]. Moreover, it is worth mentioning 
that cuproptosis-related lncRNA signature also showed promising prognosis prediction 
potential in carcinomas, including hepatocellular carcinoma [23], lung adenocarcinoma 
[24], colon adenocarcinoma [25], and colorectal cancer [26]. However, whether cuprop-
tosis-related lncRNA signature could be utilized for the prediction of AML prognosis 
and immune response is largely unknown.

This study aimed to identify cuproptosis-related lncRNAs associated with AML prog-
nosis and to evaluate their prognosis prediction value. Based on the identified lncRNAs, 
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a prediction model was constructed and the expression of the lncRNAs was validated by 
quantitative real-time PCR (qRT-PCR) in clinical AML samples.

Materials and methods
Data collection

The RNA sequencing (RNA-seq) and clinical characteristics data of AML patients were 
obtained from The Cancer Genome Atlas (TCGA) database [27]. Patients with incom-
plete data and pediatric AML were excluded from the subsequent analysis. Based on 
literature review [7, 14, 28–31], a total number of 19 cuproptosis-related genes were 
subjected to analysis (Additional file 1: Table S1).

Correlation evaluation

The GENCODE annotation file [32] was used to identify the obtained lncRNAs. The co-
expression relationship between cuproptosis-related genes and lncRNAs in AML sam-
ples was established via Pearson correlation analysis. Correlation coefficients (|Pearson 
R|) > 0.6 and P-values < 0.001 were employed as criteria to indicate lncRNAs that were 
closely related to cuproptosis.

Construction and validation of the prognostic model

The cases were randomized at a ratio of 1:1 into a training cohort and a validation cohort. 
Cuproptosis-related lncRNAs that correlated with the prognosis of AML were screened 
using univariable Cox regression analysis at P-value < 0.05. The least absolute shrinkage 
and selection operator (LASSO) regression was adopted to identify the optimal panel of 
prognostic lncRNAs. Then, multivariable Cox regression analysis was applied to develop 
a risk model based on the obtained lncRNAs extracted by the LASSO method. The sur-
vival risk score was next calculated using the following formula:

Further, based on their median risk scores, the samples were separated into two 
groups: a high- and a low-risk group. Kaplan–Meier curves were implemented to eval-
uate the survival discrepancy, and the obtained data were analyzed statistically by the 
log-rank test. Univariable and multivariable Cox regression analyses were performed 
to evaluate the value of the clinical characteristics and risk score for prognosis predic-
tion. Receiver operating characteristic (ROC) and C-index curves were constructed to 
investigate the accuracy and specificity of the proposed model. Stratified survival analy-
sis based on the clinical characteristics was conducted to evaluate the applicability of 
the cuproptosis-related signature. These measurements were analyzed and visualized 
by “survival”, “caret”, “limma”, “glmnet”, “survminer”, “timeROC”, “pheatmap”, “rms”, and 
“pec” packages in R software (version 4.1.3; http://​www.r-​proje​ct.​org).

Risk Score = [Exp (lncRNA)× coef (lncRNA)]

http://www.r-project.org
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Principal component analysis (PCA) and nomogram development

PCA was utilized to visualize the high-dimensional data of the whole genes, cupropto-
sis-related genes, cuproptosis-related lncRNAs, and the lncRNAs involved in the risk 
model construction. Then, to forecast the 1-, 3-, and 5-year OS, a nomogram was devel-
oped, which consisted of the risk score and the clinical features. The calibration curve 
was utilized to examine the predictive ability of the established model. These analyses 
were performed and visualized by “limma”, “scatterplot3d”, “survival”, “regplot”, and “rms” 
packages.

Functional enrichment analysis

To investigate the possible mechanisms, Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genome (KEGG) analyses were performed based on the identified 
differentially expressed genes. In addition, the gene set enrichment analysis (GSEA) 
software [33] was utilized to identify the significantly enriched pathways between the 
low- and high-risk groups. The single sample gene set enrichment analysis (ssGSEA) 
score was used to discriminate the enrichment levels of immune-related functions and 
cells between the high- and low-risk groups. The data were evaluated and visualized by 
“limma”, “clusterProfiler”, “enrichplot”, “DOSE”, “pheatmap”, “GSVA”, “GSEABase”, and 
“reshape2” packages.

qRT‑PCR

Peripheral blood samples from 10 AML patients and 10 healthy volunteers were col-
lected, and mononuclear cells were isolated to validate the expression pattern of the 
identified prognostic lncRNAs. The samples of the AML patients should meet the cri-
terion of a percentage of peripheral blood archaeocytes > 20%. Total RNA was extracted 
from mononuclear cells using the Trizol (Takara, Japan) and was then reverse tran-
scribed to cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scien-
tific, USA). PCR was performed using SsoFastTM EvaGreen Supermix (Bio-Rad, USA) 
according to the manufacturer’s instructions. The gene expression was normalized to 
GAPDH using the 2−ΔΔCt method. The primers utilized for qRT-PCR are presented in 
Table 1. This study was approved by the Ethics Committee of Shanghai Tenth People’s 
Hospital (22K159). Informed consent was obtained from all subjects.

Statistical analysis

Data analysis was performed using R software (version 4.1.3) and GraphPad Prism (ver-
sion 8.0.1, GraphPad Software, San Diego, CA, USA). Wilcoxon test was performed to 
compare two independent groups, and chi-square analysis was conducted to assess cat-
egorical variables. Two-sided P < 0.05 was considered to indicate statistically significant 
differences.

Results
Identification of cuproptosis‑related lncRNAs

The flowchart including the identification of the lncRNA signature, the nomogram con-
struction, and the subsequent analyses is displayed in Fig. 1. The RNA-seq data of 151 
AML samples were obtained from the TCGA database, and 12 samples with incomplete 
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data were excluded. Finally, 139 samples with unabridged clinical data were subjected to 
analysis. Based on the GENCODE annotation file, 16,876 lncRNAs were identified. Using 
the identified 19 cuproptosis-related genes, a total number of 454 cuproptosis-related 

Table 1  Primers used for qRT-PCR

Gene name Strand 5’–3’

NFE4 Forward TTG​GGG​AAT​GGA​TGC​CAC​AA

Reverse GCC​GCA​CAC​AGT​TGC​TTA​AA

LINC00989 Forward GAG​TTT​TCA​GTG​GCA​AGC​CG

Reverse GAC​AGG​ATT​TAG​CGC​TGG​GA

LINC02062 Forward GAG​GCT​GTC​GGA​CTC​TGA​CT

Reverse GAT​GCT​CTG​GGA​TGC​TGG​TA

AC006460.2 Forward CCC​AAA​GGA​GAG​CAG​TGA​GG

Reverse GCT​CTA​GCC​TGC​TGG​AAG​AG

AL353796.1 Forward ACT​CAT​ACT​CCA​AGC​ACG​GC

Reverse TTT​TTG​CAC​ACC​CAC​ACA​GC

PSMB8-AS1 Forward CCT​CTA​AAC​CCC​GCC​TCT​TC

Reverse AGT​GCT​TCT​CAT​CAC​CCA​GC

AC000120.1 Forward ATG​GAG​GTT​TCA​GCC​ATG​CA

Reverse ACA​CCT​GAT​GTC​CTG​GAG​GA

Fig. 1  Study flowchart
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lncRNAs with a co-expression relationship in AML were identified (Fig. 2A, Additional 
file 2: Table S2).

Construction and validation of the prognostic model

The patients were randomly divided into a training cohort (n = 70) and a valida-
tion cohort (n = 69). No statistical difference in clinical features was established 
between the two cohorts (Table 2). A total number of 75 cuproptosis-related lncR-
NAs were significantly correlated with OS of AML patients, which were identified 
by univariable Cox regression analysis (Fig. 2B). Next, LASSO analysis was imple-
mented to extract potential cuproptosis-related lncRNA signatures for prognostic 
prediction in AML patients, resulting in the identification of 12 lncRNAs (Fig. 2C, 

Fig. 2  Identification of cuproptosis-related lncRNA signatures. A Sankey diagram of the correlation between 
the cuproptosis-related genes and lncRNAs; B The forest map of the cuproptosis-related lncRNAs correlated 
with OS; C, D The LASSO analysis of the prognosis-linked lncRNAs; E Correlational heatmap for the lncRNAs 
involved in the model construction and cuproptosis-related genes
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D). Afterwards, multivariable Cox regression analysis revealed that seven cuprop-
tosis-related lncRNAs (NFE4, LINC00989, LINC02062, AC006460.2, AL353796.1, 
PSMB8-AS1, and AC000120.1) were independent risk factors for AML prognosis 
(Fig. 2E, Additional file 3: Table S3). The risk score was calculated using the follow-
ing formula:

Table 2  Demographical characteristics

Variables Whole cohort Training cohort Validation cohort P-value

Age  ≤ 65 99 (71.22%) 49 (70%) 50 (72.46%) 0.89

 > 65 40 (28.78%) 21 (30%) 19 (27.54%)

Gender Female 62 (44.60%) 30 (42.86%) 32 (46.38%) 0.81

Male 77 (55.40%) 40 (57.14%) 37 (53.62%)

Fig. 3  Prognosis based on the seven cuproptosis-related lncRNA signatures. A–C Kaplan–Meier survival 
curves of overall survival of AML samples in the training (A), validation (B), and whole cohorts (C); D–F Risk 
scores of the AML samples in the training (D), validation (E), and whole cohorts (F). G–I Survival status of the 
AML samples in the training (G), validation (H), and whole cohorts (I); J–L Heatmaps of the expression levels 
of the seven cuproptosis-related lncRNAs in the training (J), validation (K), and whole cohorts (L)
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The Kaplan–Meier curves revealed that the OS ratio of the AML samples in the low-
risk group was significantly higher than that in the high-risk group in the training, valida-
tion, and whole cohorts (Fig. 3A–C). The risk plots indicated that an increased number 
of death cases was associated with the higher risk score in the training, validation, and 
whole cohorts (Fig. 3D–I). The heatmaps illustrated the expression of the seven cuprop-
tosis-related lncRNA signatures in the high- and low-risk groups (Fig.  3J–L). Among 
them, LINC00989, NFE4, PSMB8-AS1, and AC006460.2 were significantly upregulated, 
whereas AL353796.1, LINC02062, and AC000120.1 were significantly downregulated in 
the high-risk group.

The univariable and multivariable Cox regression analyses showed that both age and 
risk score were significantly associated with the OS of AML patients and served as inde-
pendent prognostic factors (Fig. 4A, B). The AUC values of the 1-, 3-, and 5-year survival 
were 0.846, 0.801, and 0.895, respectively (Fig. 4C). Furthermore, the constructed ROC 
curves (Fig. 4D) and C-index curves (Fig. 4E) revealed that the risk score performed bet-
ter in predicting the AML prognosis than the other clinical features. Then, the patients 
were stratified by age and gender to evaluate the application of the risk score in progno-
sis prediction. The low-risk group had significantly higher OS than the high-risk group 
regardless of age (≤ 60 or > 60) (Fig. 4F–G) or gender (Fig. 4H–I). These findings indi-
cated that the signature composed of seven cuproptosis-related lncRNAs successfully 
predicted the prognostic risk of AML.

PCA and nomogram development

PCA was employed to visualize the distribution of the model-constructed lncRNAs 
(Fig.  5A), cuproptosis‐related lncRNAs (Fig.  5B), cuproptosis‐related genes (Fig.  5C), 
and all genes (Fig. 5D). Among them, the lncRNAs involved in the risk model construc-
tion had the most obvious distribution. Next, a nomogram based on the risk score and 
clinical features was created to predict the 1-, 3-, and 5-year OS (Fig. 5E). The calibra-
tion curves indicated the optimal concordance between the practical observation and 
the predicted survival rates (Fig. 5F). These results suggest a good performance of the 
nomogram model in AML prognosis prediction.

Functional enrichment analysis

Functional enrichment analysis was conducted to explore the possible mechanisms by 
which lncRNA signatures were involved in prognosis prediction. The differential genes 
between the high- and low-risk groups were identified and subjected to further analysis 
(Additional file 4: Table S4). GO function analysis indicated that the biological processes 

Risk Score = (0.6578× NFE4 expression)

+ (0.4613× LINC00989 expression)

+ (−1.2572× LINC02062 expression)

+ (2.0024 × AC006460.2 expression)

+ (−1.2640 × AL353796.1 expression)

+ (0.7749× PSMB8− AS1 expression)

+ (−0.9596× AC000120.1 expression).
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included mainly positive regulation of cytokine production, response to lipopolysaccha-
rides, and response to molecules of bacterial origin (Fig. 6A). The KEGG analysis results 
revealed predominantly cytokine-cytokine receptor interactions, osteoclast differentia-
tion, and phagosome formation (Fig. 6B). GSEA showed that the pathways enriched in 
the high-risk group were highly correlated with immunity, such as natural killer cell-
mediated cytotoxicity and antigen processing and presentation, whereas metabolism-
related pathways, for instance, alanine, aspartate, and glutamate metabolism, as well 
as ascorbate and aldarate metabolism, were critical pathways in the low-risk group 

Fig. 4  Further verification of the risk model. A, B Univariable Cox (A) and multivariable Cox regression 
analysis (B); C The ROC curves of the risk model at 1, 3, and 5 years; D The ROC curves of the clinical features 
and risk score; E The C-index curves of the clinical features and risk score; F–I Kaplan–Meier survival curves of 
the risk model classified by age and gender, respectively
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(Fig.  6C). Furthermore, ssGSEA analysis disclosed that all immune-related functions 
and 13 of 16 immune-related cells differed significantly between the high- and low-risk 
groups (Fig. 6D, E).

Validation of the expression of prognostic lncRNAs

Next, qRT-PCR was applied to validate the expression of the prognostic lncR-
NAs in AML patients and healthy volunteers. Within expectation, compared with 
healthy volunteers, the expression levels of AC006460.2, AC000120.1, AL353796.1, 

Fig. 5  PCA and nomogram development. A–D PCA distributed by model-constructed lncRNAs (A), 
cuproptosis‐related lncRNAs (B), cuproptosis‐related genes (C), and all genes (D); E The nomogram used for 
the prediction of the 1-, 3-, and 5-year overall survival; (F) Calibration curves
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and LINC02062 were significantly lower in AML patients, whereas those of NFE4, 
LINC00989 and PSMB8-AS1 were significantly higher (Fig. 7).

Discussion
The primary finding of the present study is the construction of a prediction model for 
short- and long-term prognosis in AML patients based on a signature of seven cuprop-
tosis-related lncRNAs. The construction of the prognosis prediction model might 

Fig. 6  Functional enrichment analysis. A The bubble diagram of the Gene Ontology (GO) analysis; B The 
bubble diagram of the Kyoto Encyclopedia of Genes and Genome (KEGG) analysis; C Enrichment plot of 
GSEA; D The boxplot of the immune-related functions; E The boxplot of the immune-related cells
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facilitate clinical decision making in the implementation of AML treatment and follow-
up strategies.

It should be noted that the use of cuproptosis-related lncRNAs for prognostic pre-
diction has been reported in various cancers, including osteosarcoma [34], colon 
cancer [25], gastric cancer [35], hepatocellular carcinoma [23], and head and neck 
squamous carcinoma [36]. A recent study identified four cuproptosis-related lncR-
NAs involved in the prediction of the 2-year OS outcomes in AML patients [13]. In 
the present study, seven cuproptosis-related lncRNAs were utilized in the construc-
tion of a prognostic model for 1-, 3-, and 5-year AML prognosis prediction, which 
showed good prediction performance (all AUC > 0.8). The constructed model may 
serve as a powerful tool for AML prognosis prediction. Of the identified lncRNAs, 
PSMB8-AS1 was previously found to regulate cell proliferation, apoptosis, and radio-
resistance in glioblastoma [37]. In another earlier study, the modulation of miR-
574-5p/RAB10 expression by PSMB8-AS1 promoted the proliferation of glioma cells 
[38]. Moreover, the preferential expression of the gamma-globin genes was regulated 
by NFE4, which was an indispensable component in the prognostic model of clear-cell 
renal-cell carcinoma [39, 40]. LINC00989 was confirmed to be associated with the OS 
prognosis of patients with breast cancer and hepatocellular carcinoma [41, 42]. These 
findings suggest that these lncRNAs play biological roles in the pathogenesis of solid 
tumors, but their functional role in AML needs further investigation. It is noteworthy 
that the functional roles of LINC02062, AC006460.2, AL353796.1, and AC000120.1 in 
the development of complex diseases have not been previously reported. Therefore, 
our findings provide novel insights into the pathogenesis of AML.

To validate the clinical significance of the proposed signature, the AML patients 
were divided into a high- and a low-risk group. The low-risk group had a better 

Fig. 7  qPCR analysis. A NFE4; B LINC00989; C LINC02062; D AC006460.2; E AL353796.1; F PSMB8-AS1; G, 
AC000120.1. *p < 0.05; ***p < 0.001
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prognosis than the high-risk group in all cohorts. A previous study established that 
the long-term survival of AML patients declined with age [5], which is in agreement 
with the findings of the present investigation. The AUC values of the risk scores for 
the 1-, 3-, and 5-year prognosis predictions were all above 0.846, indicating a good 
predicting performance. In addition, the stratified survival analysis revealed that 
the established model had good performance in different age and gender subgroups, 
and can thus have a wide clinical application. To further validate the performance of 
the model, we performed PCA, whose results showed that the lncRNAs in the con-
structed model had the highest distinction, indicating that they could be used to dis-
criminate among patients from different risk groups. These findings suggested that 
the model established by the seven cuproptosis-related lncRNAs was reliable for 
AML prognosis prediction.

To determine the possible mechanism involved in AML survival, several functional 
enrichment analyses were performed. GSEA demonstrated that the immune-associated 
pathways were enriched in the high-risk group. Interestingly, the ssGSEA analysis results 
revealed that all the immune-related functions and 13 of the 16 immune-related cells 
were significantly enriched. Notably, all immune-related functions and cells were over-
expressed in the high-risk group. T-cell co-inhibition was found to be a vital element 
contributing to immune function suppression by providing inhibitory signals to acti-
vated T cells [43, 44]. Furthermore, immune-linked processes, including T-cell co-stim-
ulation and antigen presentation, were significantly correlated with post-transplantation 
relapses in AML [45]. In the present study, macrophages and Tregs were significantly 
upregulated in the high-risk group. Tregs are highly immune-suppressive and consid-
ered as pivotal regulators of immune escape for inhibiting the proliferation and function 
of immune killer cells through cellular contact and inhibitory cytokine production [46]. 
Macrophages that reside within the tumor microenvironment are known as tumor-asso-
ciated macrophages, which cause immune suppression through enhanced angiogenesis, 
metastasis, and chemoresistance [47]. The increase in Treg and macrophage levels is 
associated with a poorer survival in AML [48, 49]. Furthermore, T- and NK-cell exhaus-
tion and dysfunction, which contribute to immune disorder and tumor immune escape 
[50], were correlated with therapeutic reactivity, high risk for relapse, and unfavorable 
prognosis of AML [51]. Therefore, we speculated that cuproptosis-related lncRNAs may 
modulate the tumor microenvironment and promote tumor immune evasion through 
inhibitory immune cells, resulting in favor of leukemia cell survival. Therefore, it could 
be reasonable to infer that a possible tight connection might also exist between cuprop-
tosis and tumor immunity in AML.

Beyond lncRNAs, it should be noted that microRNAs (miRNAs) and circular RNAs 
(circRNAs) have been used for clinical outcomes prediction and disease treatment in 
complex diseases [52–54]. The prediction model in this study was constructed using 
lncRNAs, but miRNAs or circRNAs were not utilized. Although the 5-year prediction 
performance reached a value of 0.895, model prediction ability improvement is still 
needed. A mixed model containing miRNAs, lncRNAs, circRNAs, and other non-coding 
RNAs may be included in a future computational model for complex diseases progno-
sis and immune response prediction. In addition, in the present investigation, we used 
conventional strategies for model development, and some lncRNAs that have impact on 
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prognosis might have been excluded from our analysis. Therefore, machine learning-
based or other models of computational strategies (such as a network algorithm-based 
approach) may be recommended for comparative assessments.

In the present study, seven cuproptosis-related lncRNAs were identified. Of them, 
four lncRNAs have not been previously reported in the literature. Therefore, lncRNA 
research in AML has been insufficient, and our findings provide novel insights into 
the pathogenesis of this disease. Moreover, it could be observed that the AUC value 
for 5-year prediction was near 0.9, which suggested a robust and high potential of 
the prognosis prediction model and the possibility for its effective implementation 
in clinical practice. Moreover, the newly developed model performed well in all 
age subgroups, which indicated a wide clinical application. Nevertheless, this study 
is not without limitations. The performance of this model was confirmed by a vali-
dation cohort derived from only one database, which needed an external valida-
tion. Although the differential expression of the prognostic lncRNAs was validated 
by qRT-PCR, more prospective investigations are needed to confirm its predictive 
performance.

Conclusion
In conclusion, the model based on the seven newly identified cuproptosis-related lncR-
NAs has a good prognostic value for clinical outcomes in AML patients. Immune-related 
pathways might be involved in the lncRNA signature-associated survival. However, 
future research is needed to confirm the performance of this prediction model and the 
potential for its application in clinical practice.
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The related data analysis was provided in the Additional file 5. Experimental data of our study is available from the cor-
responding author on reasonable request.
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