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Abstract

Background: Long non-coding RNAs (IncRNAs) have been reported to have a crucial
impact on the pathogenesis of acute myeloid leukemia (AML). Cuproptosis, a copper-
triggered modality of mitochondrial cell death, might serve as a promising therapeutic
target for cancer treatment and clinical outcome prediction. Nevertheless, the role of
cuproptosis-related INcRNAs in AML is not fully understood.

Methods: The RNA sequencing data and demographic characteristics of AML patients
were downloaded from The Cancer Genome Atlas database. Pearson correlation analy-
sis, the least absolute shrinkage and selection operator algorithm, and univariable and
multivariable Cox regression analyses were applied to identify the cuproptosis-related
INncRNA signature and determine its feasibility for AML prognosis prediction. The per-
formance of the proposed signature was evaluated via Kaplan—Meier survival analysis,
receiver operating characteristic curves, and principal component analysis. Functional
analysis was implemented to uncover the potential prognostic mechanisms. Addition-
ally, quantitative real-time PCR (gRT-PCR) was employed to validate the expression of
the prognostic INcRNAs in AML samples.

Results: A signature consisting of seven cuproptosis-related INcRNAs (namely NFE4,
LINC00989, LINC02062, AC006460.2, AL353796.1, PSMB8-AS1, and AC000120.1) was
proposed. Multivariable cox regression analysis revealed that the proposed signature
was an independent prognostic factor for AML. Notably, the nomogram based on this
signature showed excellent accuracy in predicting the 1-, 3-, and 5-year survival (area
under curve =0.846, 0.801, and 0.895, respectively). Functional analysis results sug-
gested the existence of a significant association between the prognostic signature and
immune-related pathways. The expression pattern of the INcRNAs was validated in AML
samples.

Conclusion: Collectively, we constructed a prediction model based on seven
cuproptosis-related IncRNAs for AML prognosis. The obtained risk score may reveal the
immunotherapy response in patients with this disease.

Keywords: Cuproptosis, INcRNA signature, Acute myeloid leukemia, Prognostic
prediction, Tumor immunity
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Introduction

Acute myeloid leukemia (AML) is a malignant clonal disease of the hematopoietic
system, which is characterized by the accumulation of abnormal primitive cells and
impaired production of normal blood cells [1]. In 2022, 20,050 newly diagnosed cases
and 11,540 deaths of patients with this disease were estimated to occur in the United
States [2]. Although induction therapy has achieved complete remission in most patients
[3], relapses are still common. In previous publications, a five-year overall survival
(OS) of 35-40% was reported in AML patients under 60 years of age, whereas it was
only 10-15% for older patients [4, 5]. It is noteworthy that the combination of targeted
therapy and chemotherapy may bring breakthrough in the treatment of AML, but such
combined treatments are still under exploration and optimization [6]. Therefore, novel
prognostic biomarkers are highly needed for the improvement of AML prognosis and
treatment.

Copper is among the trace elements essential to the human body, but it can also be
harmful if its level reaches beyond a certain threshold concentration [7]. Recently, a
copper-triggered modality of mitochondrial cell death was reported, which was termed
“cuproptosis” [8]. The functional role of cuproptosis in cancer development has been
previously reported. For example, cuproptosis was used to predict clinical outcomes
and immune response in bladder cancer [9], breast cancer [10], colorectal cancer [11],
and prostate cancer [12]. A more recent study suggested that cuproptosis-related genes
might be critically involved in the 2-year AML prognosis and the immune response to
treatment [13]. However, the role of cuproptosis in the pathogenesis and the long-term
prognosis of AML has not yet been fully elucidated.

Accumulating evidence has suggested that long non-coding RNAs (IncRNAs), a type
of non-coding transcripts, exert a functional role at almost all stages of gene expression
and are involved in the development of different solid cancer types [15, 16]. In addition
to its participation in the pathogenesis of solid cancers, IncRNAs also play critical roles
in the development of leukemia, including AML. For instance, the downregulation of
IncRNA DLEU7-AS1 was recently found to be a favorable prognostic factor for AML
[17]. Additionally, IncRNA-LOC100506453 was indicated as a noninvasive biomarker
for acute promyelocytic leukemia (APL, a subtype for AML) treatment surveillance [18].
Furthermore, in a previous study, IncRNA H22954 inhibited AML angiogenesis [19]. In
recent years, increasingly more studies have suggested that IncRNAs are potential bio-
markers for the prognosis of complex diseases and clinical outcome prediction [16]. The
application of IncRNA signatures for AML prognosis prediction has also been reported.
Several recent studies confirmed that N6-methyadenosine-related IncRNAs predicted
AML prognosis and the immune landscape [20-22]. Moreover, it is worth mentioning
that cuproptosis-related IncRNA signature also showed promising prognosis prediction
potential in carcinomas, including hepatocellular carcinoma [23], lung adenocarcinoma
[24], colon adenocarcinoma [25], and colorectal cancer [26]. However, whether cuprop-
tosis-related IncRNA signature could be utilized for the prediction of AML prognosis
and immune response is largely unknown.

This study aimed to identify cuproptosis-related IncRNAs associated with AML prog-
nosis and to evaluate their prognosis prediction value. Based on the identified IncRNAs,
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a prediction model was constructed and the expression of the IncRNAs was validated by
quantitative real-time PCR (qRT-PCR) in clinical AML samples.

Materials and methods

Data collection

The RNA sequencing (RNA-seq) and clinical characteristics data of AML patients were
obtained from The Cancer Genome Atlas (TCGA) database [27]. Patients with incom-
plete data and pediatric AML were excluded from the subsequent analysis. Based on
literature review [7, 14, 28-31], a total number of 19 cuproptosis-related genes were
subjected to analysis (Additional file 1: Table S1).

Correlation evaluation

The GENCODE annotation file [32] was used to identify the obtained IncRNAs. The co-
expression relationship between cuproptosis-related genes and IncRNAs in AML sam-
ples was established via Pearson correlation analysis. Correlation coefficients (|Pearson
R|)>0.6 and P-values<0.001 were employed as criteria to indicate IncRNAs that were
closely related to cuproptosis.

Construction and validation of the prognostic model

The cases were randomized at a ratio of 1:1 into a training cohort and a validation cohort.
Cuproptosis-related IncRNAs that correlated with the prognosis of AML were screened
using univariable Cox regression analysis at P-value <0.05. The least absolute shrinkage
and selection operator (LASSO) regression was adopted to identify the optimal panel of
prognostic IncRNAs. Then, multivariable Cox regression analysis was applied to develop
a risk model based on the obtained IncRNAs extracted by the LASSO method. The sur-
vival risk score was next calculated using the following formula:

Risk Score = Z [Exp (IncRNA) x coef (IncRNA)]

Further, based on their median risk scores, the samples were separated into two
groups: a high- and a low-risk group. Kaplan—Meier curves were implemented to eval-
uate the survival discrepancy, and the obtained data were analyzed statistically by the
log-rank test. Univariable and multivariable Cox regression analyses were performed
to evaluate the value of the clinical characteristics and risk score for prognosis predic-
tion. Receiver operating characteristic (ROC) and C-index curves were constructed to
investigate the accuracy and specificity of the proposed model. Stratified survival analy-
sis based on the clinical characteristics was conducted to evaluate the applicability of
the cuproptosis-related signature. These measurements were analyzed and visualized
by “survival’, “caret’, “limma’, “glmnet’, “survminer’, “timeROC”, “pheatmap’; “rms’, and

“pec” packages in R software (version 4.1.3; http://www.r-project.org).
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Principal component analysis (PCA) and nomogram development

PCA was utilized to visualize the high-dimensional data of the whole genes, cupropto-
sis-related genes, cuproptosis-related IncRNAs, and the IncRNAs involved in the risk
model construction. Then, to forecast the 1-, 3-, and 5-year OS, a nomogram was devel-
oped, which consisted of the risk score and the clinical features. The calibration curve
was utilized to examine the predictive ability of the established model. These analyses

were performed and visualized by “limma’, “scatterplot3d’, “survival’, “regplot’, and “rms”
packages.

Functional enrichment analysis

To investigate the possible mechanisms, Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genome (KEGG) analyses were performed based on the identified
differentially expressed genes. In addition, the gene set enrichment analysis (GSEA)
software [33] was utilized to identify the significantly enriched pathways between the
low- and high-risk groups. The single sample gene set enrichment analysis (ssGSEA)
score was used to discriminate the enrichment levels of immune-related functions and
cells between the high- and low-risk groups. The data were evaluated and visualized by

“limma’, “clusterProfiler”, “enrichplot’, “DOSE’, “pheatmap’, “GSVA’, “GSEABase’, and
“reshape2” packages.

gRT-PCR

Peripheral blood samples from 10 AML patients and 10 healthy volunteers were col-
lected, and mononuclear cells were isolated to validate the expression pattern of the
identified prognostic IncRNAs. The samples of the AML patients should meet the cri-
terion of a percentage of peripheral blood archaeocytes >20%. Total RNA was extracted
from mononuclear cells using the Trizol (Takara, Japan) and was then reverse tran-
scribed to cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scien-
tific, USA). PCR was performed using SsoFastTM EvaGreen Supermix (Bio-Rad, USA)
according to the manufacturer’s instructions. The gene expression was normalized to
GAPDH using the 2722t method. The primers utilized for qRT-PCR are presented in
Table 1. This study was approved by the Ethics Committee of Shanghai Tenth People’s
Hospital (22K159). Informed consent was obtained from all subjects.

Statistical analysis

Data analysis was performed using R software (version 4.1.3) and GraphPad Prism (ver-
sion 8.0.1, GraphPad Software, San Diego, CA, USA). Wilcoxon test was performed to
compare two independent groups, and chi-square analysis was conducted to assess cat-
egorical variables. Two-sided P<0.05 was considered to indicate statistically significant
differences.

Results

Identification of cuproptosis-related IncRNAs

The flowchart including the identification of the IncRNA signature, the nomogram con-
struction, and the subsequent analyses is displayed in Fig. 1. The RNA-seq data of 151
AML samples were obtained from the TCGA database, and 12 samples with incomplete
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Table 1 Primers used for gRT-PCR

Gene name Strand 5'-3’
NFE4 Forward TTGGGGAATGGATGCCACAA
Reverse GCCGCACACAGTTGCTTAAA
LINC00989 Forward GAGTTTTCAGTGGCAAGCCG
Reverse GACAGGATTTAGCGCTGGGA
LINC02062 Forward GAGGCTGTCGGACTCTGACT
Reverse GATGCTCTGGGATGCTGGTA
AC006460.2 Forward CCCAAAGGAGAGCAGTGAGG
Reverse GCTCTAGCCTGCTGGAAGAG
AL353796.1 Forward ACTCATACTCCAAGCACGGC
Reverse TTTTTGCACACCCACACAGC
PSMB8-AST Forward CCTCTAAACCCCGCCTCTTC
Reverse AGTGCTTCTCATCACCCAGC
AC000120.1 Forward ATGGAGGTTTCAGCCATGCA
Reverse ACACCTGATGTCCTGGAGGA
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Fig. 1 Study flowchart

data were excluded. Finally, 139 samples with unabridged clinical data were subjected to
analysis. Based on the GENCODE annotation file, 16,876 IncRNAs were identified. Using
the identified 19 cuproptosis-related genes, a total number of 454 cuproptosis-related
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IncRNAs with a co-expression relationship in AML were identified (Fig. 2A, Additional

file 2: Table S2).

Construction and validation of the prognostic model

The patients were randomly divided into a training cohort (#="70) and a valida-
tion cohort (#=69). No statistical difference in clinical features was established
between the two cohorts (Table 2). A total number of 75 cuproptosis-related IncR-
NAs were significantly correlated with OS of AML patients, which were identified
by univariable Cox regression analysis (Fig. 2B). Next, LASSO analysis was imple-
mented to extract potential cuproptosis-related IncRNA signatures for prognostic
prediction in AML patients, resulting in the identification of 12 IncRNAs (Fig. 2C,
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Table 2 Demographical characteristics

Page 7 of 17

Variables Whole cohort Training cohort Validation cohort P-value
Age <65 9 (71.22%) 49 (70%) 50 (72.46%) 0.89
>65 40 (28.78%) (30% 19 (27.54%)
Gender Female 2 (44.60%) 0 (42.86%) 32 (46.38%) 0.81
Male 7 (55.40%) 40 (57.14%) 37 (53.62%)
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Fig. 3 Prognosis based on the seven cupropt05|s—related INncRNA signatures. A—C Kaplan—Me|er survival
curves of overall survival of AML samples in the training (A), validation (B), and whole cohorts (C); D-F Risk
scores of the AML samples in the training (D), validation (E), and whole cohorts (F). G-I Survival status of the
AML samples in the training (G), validation (H), and whole cohorts (I); J-L Heatmaps of the expression levels
of the seven cuproptosis-related IncRNAs in the training (J), validation (K), and whole cohorts (L)

D). Afterwards, multivariable Cox regression analysis revealed that seven cuprop-
tosis-related IncRNAs (NFE4, LINC00989, LINC02062, AC006460.2, AL353796.1,
PSMB8-AS1, and AC000120.1) were independent risk factors for AML prognosis
(Fig. 2E, Additional file 3: Table S3). The risk score was calculated using the follow-

ing formula:
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Risk Score = (0.6578 x NFE4 expression)
+ (0.4613 x LINCO00989 expression)
+ (—1.2572 x LINC02062 expression)
+ (2.0024 x AC006460.2 expression)
+ (—1.2640 x AL353796.1 expression)
+ (0.7749 x PSMB8 — AS1 expression)
+ (—0.9596 x AC000120.1 expression).

The Kaplan—Meier curves revealed that the OS ratio of the AML samples in the low-
risk group was significantly higher than that in the high-risk group in the training, valida-
tion, and whole cohorts (Fig. 3A—C). The risk plots indicated that an increased number
of death cases was associated with the higher risk score in the training, validation, and
whole cohorts (Fig. 3D-I). The heatmaps illustrated the expression of the seven cuprop-
tosis-related IncRNA signatures in the high- and low-risk groups (Fig. 3]-L). Among
them, LINC00989, NFE4, PSMB8-AS1, and AC006460.2 were significantly upregulated,
whereas AL353796.1, LINC02062, and AC000120.1 were significantly downregulated in
the high-risk group.

The univariable and multivariable Cox regression analyses showed that both age and
risk score were significantly associated with the OS of AML patients and served as inde-
pendent prognostic factors (Fig. 4A, B). The AUC values of the 1-, 3-, and 5-year survival
were 0.846, 0.801, and 0.895, respectively (Fig. 4C). Furthermore, the constructed ROC
curves (Fig. 4D) and C-index curves (Fig. 4E) revealed that the risk score performed bet-
ter in predicting the AML prognosis than the other clinical features. Then, the patients
were stratified by age and gender to evaluate the application of the risk score in progno-
sis prediction. The low-risk group had significantly higher OS than the high-risk group
regardless of age (<60 or>60) (Fig. 4F-G) or gender (Fig. 4H-I). These findings indi-
cated that the signature composed of seven cuproptosis-related IncRNAs successfully
predicted the prognostic risk of AML.

PCA and nomogram development

PCA was employed to visualize the distribution of the model-constructed IncRNAs
(Fig. 5A), cuproptosis-related IncRNAs (Fig. 5B), cuproptosis-related genes (Fig. 5C),
and all genes (Fig. 5D). Among them, the IncRNAs involved in the risk model construc-
tion had the most obvious distribution. Next, a nomogram based on the risk score and
clinical features was created to predict the 1-, 3-, and 5-year OS (Fig. 5E). The calibra-
tion curves indicated the optimal concordance between the practical observation and
the predicted survival rates (Fig. 5F). These results suggest a good performance of the

nomogram model in AML prognosis prediction.

Functional enrichment analysis

Functional enrichment analysis was conducted to explore the possible mechanisms by
which IncRNA signatures were involved in prognosis prediction. The differential genes
between the high- and low-risk groups were identified and subjected to further analysis
(Additional file 4: Table S4). GO function analysis indicated that the biological processes
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included mainly positive regulation of cytokine production, response to lipopolysaccha-
rides, and response to molecules of bacterial origin (Fig. 6A). The KEGG analysis results
revealed predominantly cytokine-cytokine receptor interactions, osteoclast differentia-
tion, and phagosome formation (Fig. 6B). GSEA showed that the pathways enriched in
the high-risk group were highly correlated with immunity, such as natural killer cell-
mediated cytotoxicity and antigen processing and presentation, whereas metabolism-
related pathways, for instance, alanine, aspartate, and glutamate metabolism, as well
as ascorbate and aldarate metabolism, were critical pathways in the low-risk group
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(Fig. 6C). Furthermore, ssGSEA analysis disclosed that all immune-related functions

and 13 of 16 immune-related cells differed significantly between the high- and low-risk

groups (Fig. 6D, E).

Validation of the expression of prognostic IncRNAs

Next, qRT-PCR was applied to validate the expression of the prognostic IncR-

NAs in AML patients and healthy volunteers. Within expectation, compared with
healthy volunteers, the expression levels of AC006460.2, AC000120.1, AL353796.1,
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and LINCO02062 were significantly lower in AML patients, whereas those of NFE4,

LINC00989 and PSMB8-AS1 were significantly higher (Fig. 7).

Discussion

The primary finding of the present study is the construction of a prediction model for
short- and long-term prognosis in AML patients based on a signature of seven cuprop-
tosis-related IncRNAs. The construction of the prognosis prediction model might
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facilitate clinical decision making in the implementation of AML treatment and follow-
up strategies.

It should be noted that the use of cuproptosis-related IncRNAs for prognostic pre-
diction has been reported in various cancers, including osteosarcoma [34], colon
cancer [25], gastric cancer [35], hepatocellular carcinoma [23], and head and neck
squamous carcinoma [36]. A recent study identified four cuproptosis-related IncR-
NAs involved in the prediction of the 2-year OS outcomes in AML patients [13]. In
the present study, seven cuproptosis-related IncRNAs were utilized in the construc-
tion of a prognostic model for 1-, 3-, and 5-year AML prognosis prediction, which
showed good prediction performance (all AUC>0.8). The constructed model may
serve as a powerful tool for AML prognosis prediction. Of the identified IncRNAs,
PSMB8-AS1 was previously found to regulate cell proliferation, apoptosis, and radio-
resistance in glioblastoma [37]. In another earlier study, the modulation of miR-
574-5p/RAB10 expression by PSMB8-AS1 promoted the proliferation of glioma cells
[38]. Moreover, the preferential expression of the gamma-globin genes was regulated
by NFE4, which was an indispensable component in the prognostic model of clear-cell
renal-cell carcinoma [39, 40]. LINC00989 was confirmed to be associated with the OS
prognosis of patients with breast cancer and hepatocellular carcinoma [41, 42]. These
findings suggest that these IncRNAs play biological roles in the pathogenesis of solid
tumors, but their functional role in AML needs further investigation. It is noteworthy
that the functional roles of LINC02062, AC006460.2, AL353796.1, and AC000120.1 in
the development of complex diseases have not been previously reported. Therefore,
our findings provide novel insights into the pathogenesis of AML.

To validate the clinical significance of the proposed signature, the AML patients
were divided into a high- and a low-risk group. The low-risk group had a better
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prognosis than the high-risk group in all cohorts. A previous study established that
the long-term survival of AML patients declined with age [5], which is in agreement
with the findings of the present investigation. The AUC values of the risk scores for
the 1-, 3-, and 5-year prognosis predictions were all above 0.846, indicating a good
predicting performance. In addition, the stratified survival analysis revealed that
the established model had good performance in different age and gender subgroups,
and can thus have a wide clinical application. To further validate the performance of
the model, we performed PCA, whose results showed that the IncRNAs in the con-
structed model had the highest distinction, indicating that they could be used to dis-
criminate among patients from different risk groups. These findings suggested that
the model established by the seven cuproptosis-related IncRNAs was reliable for
AML prognosis prediction.

To determine the possible mechanism involved in AML survival, several functional
enrichment analyses were performed. GSEA demonstrated that the immune-associated
pathways were enriched in the high-risk group. Interestingly, the ssGSEA analysis results
revealed that all the immune-related functions and 13 of the 16 immune-related cells
were significantly enriched. Notably, all immune-related functions and cells were over-
expressed in the high-risk group. T-cell co-inhibition was found to be a vital element
contributing to immune function suppression by providing inhibitory signals to acti-
vated T cells [43, 44]. Furthermore, immune-linked processes, including T-cell co-stim-
ulation and antigen presentation, were significantly correlated with post-transplantation
relapses in AML [45]. In the present study, macrophages and Tregs were significantly
upregulated in the high-risk group. Tregs are highly immune-suppressive and consid-
ered as pivotal regulators of immune escape for inhibiting the proliferation and function
of immune killer cells through cellular contact and inhibitory cytokine production [46].
Macrophages that reside within the tumor microenvironment are known as tumor-asso-
ciated macrophages, which cause immune suppression through enhanced angiogenesis,
metastasis, and chemoresistance [47]. The increase in Treg and macrophage levels is
associated with a poorer survival in AML [48, 49]. Furthermore, T- and NK-cell exhaus-
tion and dysfunction, which contribute to immune disorder and tumor immune escape
[50], were correlated with therapeutic reactivity, high risk for relapse, and unfavorable
prognosis of AML [51]. Therefore, we speculated that cuproptosis-related IncRNAs may
modulate the tumor microenvironment and promote tumor immune evasion through
inhibitory immune cells, resulting in favor of leukemia cell survival. Therefore, it could
be reasonable to infer that a possible tight connection might also exist between cuprop-
tosis and tumor immunity in AML.

Beyond IncRNAs, it should be noted that microRNAs (miRNAs) and circular RNAs
(circRNAs) have been used for clinical outcomes prediction and disease treatment in
complex diseases [52—54]. The prediction model in this study was constructed using
IncRNAs, but miRNAs or circRNAs were not utilized. Although the 5-year prediction
performance reached a value of 0.895, model prediction ability improvement is still
needed. A mixed model containing miRNAs, IncRNAs, circRNAs, and other non-coding
RNAs may be included in a future computational model for complex diseases progno-
sis and immune response prediction. In addition, in the present investigation, we used
conventional strategies for model development, and some IncRNAs that have impact on
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prognosis might have been excluded from our analysis. Therefore, machine learning-
based or other models of computational strategies (such as a network algorithm-based
approach) may be recommended for comparative assessments.

In the present study, seven cuproptosis-related IncRNAs were identified. Of them,
four IncRNAs have not been previously reported in the literature. Therefore, IncRNA
research in AML has been insufficient, and our findings provide novel insights into
the pathogenesis of this disease. Moreover, it could be observed that the AUC value
for 5-year prediction was near 0.9, which suggested a robust and high potential of
the prognosis prediction model and the possibility for its effective implementation
in clinical practice. Moreover, the newly developed model performed well in all
age subgroups, which indicated a wide clinical application. Nevertheless, this study
is not without limitations. The performance of this model was confirmed by a vali-
dation cohort derived from only one database, which needed an external valida-
tion. Although the differential expression of the prognostic IncRNAs was validated
by qRT-PCR, more prospective investigations are needed to confirm its predictive
performance.

Conclusion

In conclusion, the model based on the seven newly identified cuproptosis-related IncR-
NAs has a good prognostic value for clinical outcomes in AML patients. Immune-related
pathways might be involved in the IncRNA signature-associated survival. However,
future research is needed to confirm the performance of this prediction model and the
potential for its application in clinical practice.
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22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%220p%
22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_format%22%2C%22value%22%3A%5B%
22t5v%22%50%7D%7D%2C%7B%220p%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data
type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%50%7D) database.
The related data analysis was provided in the Additional file 5. Experimental data of our study is available from the cor-
responding author on reasonable request.
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