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Abstract 

Background:  Nanopore sequencing allows selective sequencing, the ability to 
programmatically reject unwanted reads in a sample. Selective sequencing has many 
present and future applications in genomics research and the classification of species 
from a pool of species is an example. Existing methods for selective sequencing for 
species classification are still immature and the accuracy highly varies depending on 
the datasets. For the five datasets we tested, the accuracy of existing methods varied in 
the range of ∼ 77 to 97% (average accuracy < 89%). Here we present DeepSelectNet, 
an accurate deep-learning-based method that can directly classify nanopore current 
signals belonging to a particular species. DeepSelectNet utilizes novel data preprocess-
ing techniques and improved neural network architecture for regularization.

Results:  For the five datasets tested, DeepSelectNet’s accuracy varied between ∼ 91 
and 99% (average accuracy ∼ 95%). At its best performance, DeepSelectNet achieved a 
nearly 12% accuracy increase compared to its deep learning-based predecessor Squig-
gleNet. Furthermore, precision and recall evaluated for DeepSelectNet on average were 
always > 89% (average ∼ 95%). In terms of execution performance, DeepSelectNet 
outperformed SquiggleNet by ∼ 13% on average. Thus, DeepSelectNet is a practically 
viable method to improve the effectiveness of selective sequencing.

Conclusions:  Compared to base alignment and deep learning predecessors, DeepSe-
lectNet can significantly improve the accuracy to enable real-time species classification 
using selective sequencing. The source code of DeepSelectNet is available at https://​
github.​com/​Anjan​aSena​nayake/​DeepS​elect​Net.
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Background
Problem

Oxford Nanopore Technologies (ONT) introduced MinION, the first portable commer-
cial sequencer of its kind in 2014 [1–3]. MinION, being a small handheld device, revo-
lutionized genomics research through its superiority in portability [4–7]. The capability 
of nanopore sequencers to produce ultra-long reads is another advantage, especially 
in achieving better genome assemblies [8–11]. Nanopore sequencers provide access to 
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real-time current signals when a DNA strand traverses through the pore [12]. This real-
time streaming capability foster an exciting opportunity called selective sequencing [13] 
(also known as targeted sequencing, adaptive sampling), which has many current and 
promising future applications [14–19].

ONT’s ReadUntil API enables real-time bi-directional communication with an ONT 
sequencer: to obtain the current signals of the DNA strands being sequenced and to 
send back signals such as accept/reject. A rejection signal reverses the voltage differ-
ence across the pore so that the DNA strand is ejected from the pore. This can be used 
to quickly free a pore from sequencing an unwanted DNA strand and allow a new DNA 
strand to be sequenced. This can also be used to sequence selected DNA strands from a 
pool of different DNA species.

Successful selective sequencing is in many ways beneficial given its effective flow-cell 
utilization and reduced cost for sequencing. Efficient and accurate real-time analysis 
of the current signals streamed from the nanopore sequencer is the key to successful 
selective sequencing. However, existing methods used in selective sequencing to accu-
rately compare the current signal to a target reference genome are still computationally 
expensive. They hence would negate the true real-time sequencing capability. Selective 
sequencing being relatively new, potential improvements to the performance of selective 
sequencing in many areas are yet to be discovered. In this paper, we investigate methods 
to improve the accuracy and speed of selective sequencing compared to current meth-
odologies and present a deep neural network-based method called DeepSelectNet.

Related works

The very first attempt to realize the concept of selective sequencing used the Dynamic 
Time Warping (DTW) algorithm to align the raw current signal directly to a synthetic 
signal generated from the reference sequence [13]. However, due to the high computa-
tional complexity of DTW, this method could not scale beyond references that are longer 
than a few mega bases. Then, a method called RUBRIC was introduced by Edwards 
et al. [20], which performed real-time basecalling using Nanonet basecaller, followed by 
read alignment to the conventional nucleic acid references. RUBRIC delivered signifi-
cant benefits in speed, scalability, and flexibility over the DTW [13] approach. Similar to 
RUBRIC, Readfish [21] is another basecalling based approach for selective sequencing. 
Readfish [21] utilizes the GPU-accelerated Guppy basecaller from ONT and Minimap2 
mapper [22]. Readfish [21] is flexible and scales well to larger genomes when a powerful 
GPU is available.

UNCALLED [23] is a recent method that revitalises the raw signal alignment in the 
signal space for selective sequencing. UNCALLED probabilistically derive k-mers that 
can be presented in a signal and performs a comparison with a reference encoded using 
a FM-index [24]. Raw signals are first converted to events and the probability of each 
event is matched with a possible k-mer in a probabilistic k-mer model provided by ONT. 
UNCALLED [23] scaled much better than the DTW-based method [13], however, does 
not support large (> 1 Gbase) or highly repetitive references.

In recent years, researchers increasingly turned their direction to deep learn-
ing approaches to improve basecalling accuracy. DeepNano [25], Chiron [26], Base-
cRAWller [27], Nanonet, RODAN [28], Radian [29], Albacore, Guppy, Bonito and 
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Dorado are such examples. According to Wick et al. [30], modern basecalling tools were 
able to achieve a significant improvement in basecalling with the introduction of deep 
learning approaches (from ∼ 85 to 90%). Deep Neural Networks based methods are also 
now being increasingly used for improved variant calling [31, 32].

Recently, deep learning-based methods for selective sequencing started to emerge. 
SquiggleNet [33] is the first deep learning-based tool to classify reads based on elec-
trical signals to perform selective sequencing. SquiggleNet adopts the convolution 
architecture from ResNet [34], modified to perform convolution in one dimension. It 
claims 90% accuracy in classifying human DNA over bacterial DNA. Also, considering 
the computational resources, SquiggleNet outperforms alignment-based approaches 
with much lesser memory consumption. However, when we benchmarked SquiggleNet 
across several viral and bacterial datasets, we observed that on some dataset combina-
tions, SquiggleNet performed worse than base alignment-based methods. For instance, 
on datasets comprised of Corona Virus & Zymo metagenome and Corona Virus & Yeast, 
SquiggleNet classification accuracy could not go beyond 79%, where alignment-based 
approaches reached 90% (discussed under Results).

Another deep learning-based approach for selective sequencing is discussed in Dani-
levsky et  al. [35]. The mentioned work applies deep learning models to classify mito-
chondrial DNA against human genomic DNA, with no reliance on labelled data to 
classify between the two DNA groups. However, the applicability of the mentioned 
method for complex inter-species classification is yet to be explored. The recent work 
named baseLess is also a deep learning approach that relies on features of salient k-mers 
rather than reads as a whole, explicitly designed to work with MinION [36]. The authors 
have reported a performance similar to SquiggleNet, which does not surpass the perfor-
mance of Guppy+Minimap2. Another very recent work is RISER [37], a deep learning-
based adaptive sampling method for nanopore direct RNA.

Our contribution

The existing techniques for selective sequencing have room to improve effectiveness and 
efficiency. We introduce DeepSelectNet, a far superior deep learning-based method, 
which utilizes an improved deep neural network. Also, improved techniques of raw data 
preprocessing enable better feature extraction with limited training data. DeepSelectNet 
was able to achieve over 90%(on average ∼ 95%) classification accuracy for five datasets 
that we tested.

Results
DeepSelectNet is a deep neural network-based method capable of classifying spe-
cies DNA directly using nanopore current signals with superior classification accu-
racy. DeepSelectNet is built on a convolutional architecture based on ResNet’s residual 
blocks [34]. The ResNet neural network architecture has been shown to perform bet-
ter in feature extraction and semantic segmentation compared to Multilayer Percep-
tions (MLP), Fully Convolutional Networks (FCN), and Recurrent Neural Networks 
(RNN) [38]. ResNet-based neural networks are efficient and address the degradation 
problem by maintaining a low error rate in much deeper layers in the network [34]. Fur-
thermore, SquiggleNet’s exploratory work in different neural network architectures has 
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demonstrated that ResNet is higher in accuracy and faster in training compared to other 
architectures such as RNN [34]. Similar to SquiggleNet, DeepSelectNet also utilizes one-
dimensional convolutional layers to perform 1D convolution over nanopore current sig-
nals in the time domain. Additionally, DeepSelectNet relies on neural net regularization 
to minimise model complexity thereby reducing the overfitting of data (see Methods and 
Materials).

Experiments details

Four publicly available datasets sequenced on ONT MinION/GridION, namely, SARS-
CoV-2 virus (Cov), Zymo bacterial mixture (Zymo), Saccharomyces cerevisiae (Yeast), 
and Chlamydomonas algae (Chlamy) were used for evaluation. We prepared five com-
binations out of these datasets to measure the performance of DeepSelectNet: Cov 
&Zymo, Cov &Yeast, Cov &Chlamy, Zymo &Chlamy, and Yeast &Chlamy (detailed in 
Materials and methods). For each combination, training of DeepSelectNet was done 
using 20000 reads from each species (thus a balanced dataset). Before training, reads 
were preprocessed by trimming each read’s first 1500 signal samples to eliminate the 
adaptor sequence (also, stall and barcodes if present; Additional file 1: Fig. S1). This 1500 
value that corresponds to ∼ 160 bases is an overestimation for certain reads, however, 
it is a safe approach to eliminate unwanted portions from most of the reads [33]. Out of 
the remaining signal, 3000 signal samples were normalized and taken for the training. 
Therefore, a read to qualify for the training should have at least 4500 signal samples. The 
labels of the reads—from which species a given signal segment is from—were fed to the 
training algorithm.

Accuracy comparison of DeepSelectNet against existing methods

DeepSelectNet outperformed SquiggleNet in terms of test accuracy (defined in Materi-
als and methods) for all the dataset combinations (Fig.  1, Additional file  1: Table  S1). 
The best accuracy for DeepSelectNet was observed for Cov &Chlamy (98.65%), while 
the best improvement compared to SquiggleNet was observed for Cov &Zymo (accuracy 
improvement by ∼ 12%) as depicted in Fig. 1A. For all dataset combinations, DeepSe-
lectNet achieved a test accuracy above 90%.

Similar to Accuracy, DeepSelectNet shows scores > 89% on other performance met-
rics: precision, recall, and F1 as depicted in Fig. 1B (Additional file 1: Table S4, Additional 

Fig. 1  A Test Accuracy comparison of SquiggleNet vs DeepSelectNet across five dataset combinations. B 
DeepSelectNet’s performance metrics across five dataset combinations
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file  1: Fig. S4). Given all the datasets used for training and testing are balanced as 
explained earlier, being able to observe both high precision and recall demonstrates that 
the classification is not biased1 towards a certain species in a dataset combination while 
also having a low variance2 of predictions (Additional file 1: Fig. S4).

In addition to the comparison with SquiggleNet, DeepSelectNet’s performance was 
then compared against: Guppy super accuracy basecalling on complete reads followed 
by Minimap2 [22] mapping (baseline); Guppy high accuracy basecalling on the first 4500 
signal samples of each read3 followed by Minimap2 mapping (Guppy_hac+Minimap2); 
and, Guppy fast basecalling on the first 4500 signal samples of each read followed by 
Minimap2 mapping (Guppy_fast+Minimap2). Accuracy results are shown in Fig. 2. The 
baseline (Fig. 2) that uses the complete read (impractical for selective sequencing) was 
to get an estimate of the upper margin accuracy a certain computational method could 
potentially achieve. Guppy_hac+Minimap2 mirrors a real-time scenario as in DeepSe-
lectNet’s intended use, where the whole read is not available for classification. Guppy_
fast+Minimap2 follows the approach used in Readfish [21]. While we expected the 
accuracy of DeepSelectNet to be lower than the baseline, interestingly, DeepSelectNet 
outperformed the baseline method in three (Zymo &Chlamy, Cov &Chlamy and Yeast 
&Chlamy) out of five dataset combinations (Fig.  2, Additional file  1: Table  S2). Com-
pared to Guppy_hac+Minimap2 that considers the realtime scenario (unlike the base-
line method that uses complete reads), DeepSelectNet was performing better in four 
out of five dataset combinations (except Cov &Zymo; Fig.  2). Guppy_fast+Minimap2 
accuracy was somewhat in close proximity to Guppy_hac+Minimap2, yet lower 

Fig. 2  Test Accuracy comparison of DeepSelectNet against existing alignment methods across five dataset 
combinations

1  The difference between the average prediction of the model and the actual target—high bias means under-fitting.
2  The variability between the actual target and predicted target—high variance means over-fitting.
3  translates to ∼ 300 bases when the adaptor and barcode are removed.
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than DeepSelectNet in all dataset combinations. Also, it was observed that Guppy_
fast+Minimap2 has the worst performance in three out of five dataset combinations. 
As the predecessor of DeepSelectNet, the SquiggleNet performed as the second-best 
method in three out of five dataset combinations, when considering real-time scenarios.

Runtime performance comparison

In addition to accuracy benchmarking, we also benchmarked the execution time for 
inference (see Fig.  3 where the per-read execution time is plotted, Additional file  1: 
Table S3). A setup similar to that discussed earlier (previous subsection) was used for 
these experiments. Among the methods experimented with, Guppy_fast+Minimap2 
had the best execution time throughout all datasets. Guppy_hac+Minimap2 was the 
slowest (Fig. 3). This drastic difference can be accounted for by the guppy configuration 
of the model being used in the two methods. Compared to SquiggleNet, DeepSelectNet 
has the best runtime performance in four out of five datasets, except Cov &Zymo where 
SquiggleNet was faster compared to DeepSelectNet. Even though DeepSelectNet is not 
as fast as Guppy_fast+Minimap2, DeepSelectNet’s superior accuracy must be noted 
(Additional file 1: Fig. S7). Also, note that Guppy which is the ONT’s production base-
caller written in C/C++ is likely to be well-optimised for execution performance, unlike 
DeepSelectNet which was a prototype developed using Python. While it is not in the 
scope of this work to optimise DeepSelectNet for execution performance, it is logical to 
believe that reimplementing using C/C++ and performing optimisations could lead to 
improved execution time.

Additionally, we also benchmarked against Guppy super accuracy base-calling on 
the first 4500 signal samples of each read followed by Minimap2 mapping (Guppy_
sup+Minimap2; Additional file  1: Fig.  S6). The prediction time for super accuracy 
basecalling was impractical to be used in selective sampling (more then 4X slower 
than Guppy_hac+Minimap2 that is already slow; Additional file  1: Fig. S8). However, 

Fig. 3  Inference runtime comparison of DeepSelectNet against other methods across five dataset 
combinations
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the accuracy was better when using Guppy_sup than Guppy_hac (Additional file 1: Fig. 
S5). DeepSelectNet was still performing better in three out of five dataset combina-
tions (except Cov &Zymo and Cov &Yeast, Additional file 1: Fig. S6). These observations 
denote that, DeepSelectNet has performed closely equal or better, against the bench-
mark methods, irrespective of the basecaller types that were used.

Discussion
DeepSelectNet shows promising improvements in accuracy compared to existing deep 
learning-based and alignment-based approaches for selective sequencing. DeepSe-
lectNet is a result of observing that the existing deep learning-based methods, such as 
SquiggleNet, had room to improve further. The model’s ability to classify at higher accu-
racy, precision, and recall demonstrates that the classification is unbiased for a particular 
species. Table  1, summarises the accuracy and inference time comparison of DeepSe-
lectNet with existing methods. As it is evident, DeepSelectNet stands out to be the best 
in terms of accuracy. In contrast, the Guppy_fast+Minimap2 (the approach used in 
Readfish [21]) stands to be the best in speed. However, DeepSelectNet’s high accuracy 
could offer more benefits and the speed could be potentially improved through re-engi-
neering (e.g., rewriting in C/C++), enabling a better realization of selective sequencing.

Impact of number of reads and segment size on accuracy

We measured the model accuracy while increasing the number of reads used for train-
ing. We observed that the number of reads used for training improves the classification 
accuracy (Fig. 4). It is likely that the increase in accuracy is due to the increased genome 
coverage when the number of reads is increased (coverage is defined in Methods and 
Materials). When the coverage of the genome by a dataset is high, the model will have 
more features to learn about the species (and also the effect due to noise is diminished) 
and classify them better against the other species.

We also measured the model accuracy against different signal segment lengths (no. 
of signal samples in each read) and noticed that the accuracy improves with longer seg-
ments (Fig. 5). However, the improvement becomes less significant after ∼ 4000 signal 
samples (Fig. 5). We selected a segment size of 3000 signal samples for our experiments 
above ( ∼  330 bases), considering the time to train, real-time inference requirement 
and fair comparison with SquiggleNet [33] (SquiggleNet also used 3000 as the seg-
ment length). A longer signal segment means having a larger k-mer size that allows 

Table 1  Comparison of performance of DeepSelectNet against other methods in related works

Dataset Accuracy (%) Inference Time (milliseconds)

DeepSelect
Net

Squiggle
Net

Guppy_fast+
Minimap2

DeepSelect
Net

Squiggle
Net

Guppy_fast+
Minimap2

Covid & Zymo 91.28 79.69 90.95 1.75 1.33 0.38

Covid & Chlamy 98.65 96.82 86.79 3.00 3.55 0.20

Covid & Yeast 90.90 79.83 77.83 1.98 4.03 0.28

Zymo & Chlamy 97.31 94.81 91.46 3.18 3.85 0.37

Yeast & Chlamy 96.93 92.69 78.49 3.45 3.95 0.45
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distinguishing species better, thereby the model may classify better with longer seg-
ments. Having a longer segment increases the genome coverage, which also may 
improve the model performance as discussed before.

DeepSelectNet with human datasets

Inter-species experiments we performed with Human &Zymo and Human &Covid, 
produced 92.26% and 96.27% test accuracies, respectively (Additional file 1: Table S9). 
Human data were from the publicly available NA12878 reference Genome [39]. For 
these experiments, 20,000 reads from each species were used (relates to 0.008× , 400× , 

Fig. 4  Accuracy of DeepSelectNet against varying number of reads for Cov &Zymo dataset. The segment size 
(excluding the 1500 samples trimmed at the beginning) was kept constant at 3000 samples. Refer Additional 
file 1: Table S14 for details Genome Coverage in each case

Fig. 5  Accuracy of DeepSelectNet agianst the signal segment length for Cov &Zymo dataset. The number 
of reads used for training was kept constant at 20,000. Note that the segment length excludes the first 1500 
signal samples that are trimmed. Refer Additional file 1: Table S13 for details Genome Coverage in each case
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and 0.4× genome coverage for human, covid and zymo respectively, Materials and 
methods, Additional file 1: Table S12). Interestingly, even without seeing the complete 
genome (coverage < 0.008× for human), the model could classify accurately. This could 
be because, even though the coverage is less, still the features are sufficiently different 
(an analogy would be k-mers distribution between humans and bacteria/viruses being 
different). However, it also raised a concern if the model is picking some other differ-
ence amongst the datasets than the species (for instance, differences in library prepara-
tion method and/or minor differences in the flowcells in the publicly available datasets 
sequenced by different labs at different times). To eliminate this concern, we simulated 
synthetic nanopore raw signal data for the two species Yeast and Chlamydomonas using 
Squigulator [40] that relies on a pore-model indicating the expected current level for 
each k-mer. When this simulated data was used for training and testing, DeepSelect-
Net could achieve a test accuracy of 97.10% (Additional file  1: Table  S11). Therefore, 
this experiment demonstrates that DeepSelectNet actually classifies based on features 
of species, rather than being misled by any other non-species related difference. To sup-
port this further, an experiment against two species present in Zymo dataset, the Bacil-
lus subtilis & Saccharomyces cerevisiae was performed. The experiment achieved 82.51% 
of test accuracy (Additional file  1: Table  S15), which is sufficient to demonstrate that 
DeepSelectNet can distinguish different species in the same sample. Note that we relied 
on Guppy+Minimap2 results to generate the truth set for DeepSelectNet (as there is no 
other way to isolate the reads from the zymo mix), which could have negatively affected 
the accuracy.

Though the DeepSelectNet performed great for inter-species classification as 
explained throughout the paper (accuracy ∼ 95% on average), its performance was not as 
great for intra-species classification (that is, classifying reads based on a genomic region 
of the same species). For example, when chromosome 21 and chromosome 22 from the 
human genome (publicly available NA12878 data available under [41]) were used to 
train DeepSelectNet (chr21 as the positive dataset and chr22 as the negative dataset), 
the training accuracy was below 60% in all cross folds. Increasing the number of reads 
for each chromosome from 20,000 to 100,000 (signal segment length of 3000 samples), 
improved the training accuracy by a small margin up to 64%. With 35,000 reads from 
each chromosome at a signal segment length of 10,000 ( ∼ 1100 bases), the training accu-
racy improved to 73%. It is possible that DeepSelectNet is reaching its performance 
limitations to learn fine features among different chromosomes or different regions of 
a species. Unfortunately, our computational infrastructure restricted us from exploring 
further on larger datasets than this.

Materials and methods
DeepSelectNet model architecture

The first layer in DeepSelectNet is a one-dimensional Convolutional Neural Network 
(CNN) with 20 channels. The rest of the residual blocks (Similar to ResNet) are imple-
mented additionally with dropout layers [42] to effectively regularize any over-fitting 
effects that the layer complexity might introduce. This helps to mitigate the effect of the 
model picking up on statistical noise in the training data, which could result in poor 
performance when the model is evaluated on unseen data. During training, 10% layer 
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outputs are randomly ignored so that the layer will be treated like a layer with a differ-
ent number of nodes and edges than the layer before. Therefore, each update to a layer 
during training is performed differently in comparison to the updated layer. The four 
residual layers, which include two bottleneck blocks, are stacked together following a 
mean pooling layer and lastly, a fully-connected layer activated with a sigmoid function 
that flattens the output for classification.

DeepSelectNet implementation

DeepSelectNet was developed in Python programming language using the Keras frame-
work.4 Core functionalities of DeepSelectNet are distributed among three scripts:

•	 preproccesor.py that pre-processes datasets prior to training (read filtering, signal 
trimming, signal segmentation, signal normalization and splitting to batches).

•	 trainer.py that trains the pre-processed data (change hyperparameters of the model 
including classifier network, loss function, train to validation split ratio, number of 
cross folds, epochs, data batch size, etc.).

•	 inference.py that inferences test data using a trained model (data preprocessing simi-
lar to preproccessor.py is done in this script before the inference).

Data Pre‑processing

Four publicly available datasets sequenced on ONT MinION/GridION were used for 
the experiments (Table 2). These datasets contained raw signal data in single-FAST5 for-
mat (one file per each read), which we converted to SLOW5 format using slow5tools 
[41] to enable convenient and efficient file manipulation. Then, 40,000 reads contain-
ing at least 4500 signal samples were extracted from each dataset. Using these extracted 
reads, five dataset combinations were created, namely Cov &Zymo, Cov &Chlamy, Cov 
&Yeast, Yeast &Chlamy and Zymo &Chlamy. Each dataset combination was partitioned 
equally for training and testing. For instance, the Cov &Yeast dataset combination which 
contains 40,000 from Cov and 40,000 from Yeast is partitioned such that 20,000 Cov 
reads and 20,000 Yeast reads are for training, and the rest for testing. Thus, the created 
datasets were balanced datasets where a species’ contribution to each dataset combi-
nation was equal. Note that this count of 20000 reads was a value that we empirically 

Table 2  Datasets and their sources

Species Dataset Source

SARS-CoV-2 Cov https://​commu​nity.​artic.​netwo​rk/t/​links-​to-​raw-​fast5-​fastq-​data-​for-​artic-​
proto​col/​17

Zymo Metagenome Zymo https://​github.​com/​Loman​Lab/​mockc​ommun​ity

Chlamydomonas Chlamy https://​sra-​downl​oad.​ncbi.​nlm.​nih.​gov/​traces/​era20/​ERZ/​003237/​ERR32​
37140/​Chlam​ydomo​nas_0.​tar.​gz

Saccharomyces cerevisiae Yeast https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​PRJNA​510813

4  Keras is a high-level API built up on Tensorflow to develop deep neural networks.

https://community.artic.network/t/links-to-raw-fast5-fastq-data-for-artic-protocol/17
https://community.artic.network/t/links-to-raw-fast5-fastq-data-for-artic-protocol/17
https://github.com/LomanLab/mockcommunity
https://sra-download.ncbi.nlm.nih.gov/traces/era20/ERZ/003237/ERR3237140/Chlamydomonas_0.tar.gz
https://sra-download.ncbi.nlm.nih.gov/traces/era20/ERZ/003237/ERR3237140/Chlamydomonas_0.tar.gz
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA510813
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determined to adequately provide genome-wide coverage for these dataset combinations 
(See the Discussion for more information).

Each read from the dataset is first trimmed by removing the initial 1500 signal sam-
ples. As discussed earlier, trimming is essential to get rid of the read adaptor (and bar-
code if exists, Additional file 1: Fig. S1). Then, the raw signal samples (16-bit integers) are 
converted to pico-amperes using the equation: 
pA_signal = (

range
digitization

)× (raw_signal + offset) . Next, four random segments (where 
each segment is 3000 signal samples) are obtained from this converted pico-ampere sig-
nal.5 Taking multiple signal segments from a single long read provides more feature 
space than taking a single segment and directly affects on model performance. This tech-
nique helped DeepSelectNet to increase its accuracy to a great extent (Additional file 1: 
Table S10). Value four as the number of segments was derived empirically, considering 
the model accuracy, the average length of the reads and the time to train.

Each such segment is then normalized with modified version of z-score that 
uses median absolute deviation (MAD): Modified_Z_Score =

0.6745×(Xi−X̃)
MAD  ; where 

MAD = median(�Xi − X̃�) and X̃ = median(X) . The median absolute deviation used 
in the modified z-score is tolerant to extreme outliers (Additional file 1: Fig. S2) present 
in the data. The threshold used for MAD in data preprocessing had an effect on model 
training (Fig. 6, Additional file 1: Table S7). The MAD threshold affects the number of 
outliers being filtered, producing a differently performing model. Therefore, the bet-
ter the outliers are filtered, the better the model trains. The best MAD threshold could 
depend on many factors such as the species, sequencing device and sample purity and 
thus we determined this threshold empirically (Additional file 1: Fig. S3). For this, We 

Fig. 6  Impact of Median Absolute Deviations(MAD) on DeepSelectNet’s Test Accuracy

5  there could be overlaps when randomly taking these segments; if the remaining signal length is only 3000 samples, all 
the four segments will be identical.
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conducted experiments with MAD = 3, 5, and 10 as the thresholds and picked the value 
that produced the best accuracy for a given dataset combination (Fig. 6).

Training

In a given dataset combination, the training data partition (explained above) was again 
partitioned in 7:3 ratio, where 70% of training data was used for training and the rest for 
validation. As an example, Cov &Yeast dataset combination containing 20,000 training 
reads from Cov and 20,000 training reads from Yeast is partitioned such that 14,000 Cov 
reads and 14,000 Yeast reads are for training, and the rest for validation.

Additionally, cross-fold validation was used to generalise training to ensure a mini-
mally biased model. The training accuracy of trained models in each of the 5 folds lies 
in close proximity (Fig. 7, Additional file 1: Table S8), demonstrating that training has 
generalised. The training data was fed to the model in batches of 1000 reads at a time. 
The full dataset was trained for a maximum of 200 epochs in one cross-fold. Learning 
Rate (LR) factor for the training was 0.5. The LR patience factor was 20 epochs and was 
monitored against the binary accuracy metric. To avoid over-fitting, an Early Stopping 
Monitor was used with an Early Stopping Patience of 30 epochs.

Evaluation

The best performing model of the five training cross folds was selected for the evalua-
tion. All evaluations were done with previously unseen test data created in the preproc-
essing step. The Test data is also first preprocessed: the first 1500 signal samples in each 
read are trimmed off; the next 3000 signal samples are taken (note that only the first 
segment that represents the beginning of the read is taken for testing; we do not take 4 
segments as in training); converted to pA and normalized using the modified z-score as 
done for training.

Fig. 7  Training Accuracy of DeepSelectNet’s across five cross folds
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The inference was performed in batches of 1000 reads to ensure higher GPU occu-
pancy and also indicates a scenario where reads are being sequenced in parallel on a 
nanopore sequencer with 1000 channels. The model training and the accuracy-related 
benchmarks were conducted on a system powered by an Intel Xeon CPU E5-1630 v3 @ 
3.70GHz CPU, 32 GB of RAM, 2TB of HDD storage, and an Nvidia Quadro K40 GPU. 
As this was a shared workstation unsuitable for reliable timing measurements, runtime 
benchmarks were performed on another dedicated workstation powered by an Intel 
Xeon Silver 4114 CPU @ 2.20GHz CPU, 384 GB RAM, 6TB NVME SSD storage and a 
Tesla V100-16 G GPU.

Modifications to SquiggleNet for comparison against DeepSelectNet

We modified SquiggleNet to accept SLOW5 file format [41] as an input (SquiggleNet 
only accepted single-FAST5 files and manipulation of those files is inefficient and incon-
venient). This modification does not affect the model classification accuracy as the 
underlying raw signal data is identical despite the file format used. The modified source 
code of SquiggleNet is available in the link provided under Availability of data and 
materials.

Baseline, Guppy_hac+Minimap2 and Guppy_fast+Minimap2

The baseline approach uses complete reads whereas Guppy_hac+Minimap2 and Guppy_
fast+Minimap2 uses only the first 4500 signal samples in a read (see Results). Guppy 
version 6.1.3 and Minimap2 version 2.20 were used for the experiments. For baseline 
and Guppy_hac+Minimap2, the high-accuracy basecalling mode dna_r9.4.1_450bps_
hac was used for Guppy and Minimap2 was executed with base alignment enables (with 
-c option). For Guppy_fast+Minimap2, fast basecalling mode was used with Guppy and 
Minimap2 was executed without base alignment to mirror the approach used in Read-
fish [21].

Genome coverage computation

Genome Coverage denotes the ratio between the number of bases appearing in the given 
dataset to the actual number of bases in its reference genome. The formula we used to 
compute the genome coverage seen by the model during training for a given dataset is 
given below.

The signal segment length is the number of samples in each signal segment used for 
training (excluding the samples trimmed at the beginning of the read). Samples per base 
refer to the number of signal samples that correspond to a single base, which is deter-
mined by the translocation speed of the DNA strand through the pore and the sampling 
rate of data acquisition. For DNA on R9.4.1, 450 bases/s at 4000 Hz gives ∼ 8–10 Sam-
ples per base.

Genome Coverage =
signal segment length× No. of reads

samples per base × reference genome length
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Accuracy metrics

Accuracy metrics and related terms used for evaluating the classification performance 
of the models in this work are defined below.

An outcome where the model predicts a read as positive when the read is actu-
ally from the targeted (positive) dataset/species is considered a True Positive (TP). 
An outcome where the model predicts a read as negative when the read is actually 
from the non-targeted (negative) dataset/species is considered a True Negative (TN). 
An outcome where the model predicts a read as positive when the read is actually 
from the non-targeted (negative) dataset/species is considered a False Positive (FP). 
An outcome where the model predicts read as negative when the read is actually from 
the targeted (positive) dataset/species is considered a False Negative (FN). Accuracy 
that denotes the overall accuracy of the model with correct predictions over total 
predictions is computed as TP+TN

TP+TN+FP+FN  ; precision is computed as TP
TP+FP ; Recall is 

computed as TP
TP+FN  ; and F1 score 2×(Precision×Recall)

Precision+Recall  . However, in experiments from 
baseline method, Guppy_hac+Minimap2 and Guppy_fast+Minimap2, the unmapped 
reads accounted neither as false positives nor false negatives. Therefore in such cases, 
Precision, Recall and F1 Score are approximations with available prediction statistics.

Conclusion
Nanopore selective sequencing is an emerging area of genome sequencing that is 
gaining popularity due to its efficiency and low cost. There have been several attempts 
to realize selective sequencing with better accuracy and speed. In this paper, we 
presented DeepSelectNet, a deep learning-based approach for species classification 
using selective sequencing that outperforms existing methods. Amongst five inter-
species datasets evaluated, DeepSelectNet achieved >  90% accuracy (on average 
∼  95%) for all datasets. DeepSelectNet was bench-marked against existing methods 
(both deep-learning and non-deep-learning methods) and produced exceedingly top 
performances across the vast majority of the datasets. In some cases, DeepSelectNet 
on partial reads (4500 signal samples at the beginning of each read) outperformed the 
alignment-based approach (high accuracy basecalling + alignment) done on complete 
reads. DeepSelectNet also performed well in classifying human DNA from bacteria/
viral data (>  90% accuracy). However, DeepSelectNet could only achieve <  70% for 
intra-species classification such as classifying based on different regions of the same 
species. Thus, the architecture of DeepSelectNet is more suitable for inter-species 
classification. In terms of execution time, DeepSelectNet outperformed the existing 
deep-learning-based method. However, DeepSelectNet being a Python-based pro-
totype was several times slower than the C/C++-based Guppy (fast basecalling) + 
Minimap2 combination. Re-implementation of DeepSelectNet in C/C++ followed by 
performance tuning would potentially achieve comparable runtime performance.
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