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Abstract 

Background:  The experimental verification of a drug discovery process is expensive 
and time-consuming. Therefore, efficiently and effectively identifying drug–target 
interactions (DTIs) has been the focus of research. At present, many machine learning 
algorithms are used for predicting DTIs. The key idea is to train the classifier using an 
existing DTI to predict a new or unknown DTI. However, there are various challenges, 
such as class imbalance and the parameter optimization of many classifiers, that need 
to be solved before an optimal DTI model is developed.

Methods:  In this study, we propose a framework called SSELM-neg for DTI predic-
tion, in which we use a screening approach to choose high-quality negative samples 
and a spherical search approach to optimize the parameters of the extreme learning 
machine.

Results:  The results demonstrated that the proposed technique outperformed other 
state-of-the-art methods in 10-fold cross-validation experiments in terms of the area 
under the receiver operating characteristic curve (0.986, 0.993, 0.988, and 0.969) and 
AUPR (0.982, 0.991, 0.982, and 0.946) for the enzyme dataset, G-protein coupled recep-
tor dataset, ion channel dataset, and nuclear receptor dataset, respectively.

Conclusion:  The screening approach produced high-quality negative samples with 
the same number of positive samples, which solved the class imbalance problem. We 
optimized an extreme learning machine using a spherical search approach to identify 
DTIs. Therefore, our models performed better than other state-of-the-art methods.

Keywords:  Drug–target interactions, Drug discovery, Extreme learning machine, 
Spherical search, Class imbalance

Introduction
Drug–target interaction (DTI) prediction is an important way to reposition drugs [1–4] 
that not only plays a crucial role in the development of new drugs [5] but is also essential 
for studying the adverse reactions of drugs [6, 7]. However, it is time-consuming and 
expensive to verify DTIs using wet experimental methods [8, 9]. An important issue 
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is how to reduce the cost of drug development. Thus, the in silico approach becomes 
essential because it improves the accuracy of finding drug–target relationships and saves 
time [10]. With the increasing number of public databases [11], different computational 
strategies can be more effectively applied for DTI prediction [12].

Generally, computational methods for DTI identification can be divided into three cat-
egories: ligand-based methods [13], docking-based methods [13], and chemogenomic 
methods [14]. These methods have played an important role in predicting DTIs; how-
ever, docking methods that use the three-dimensional (3D) structures of drugs and pro-
teins, and then perform simulations to determine whether they interact, because of the 
limited 3D crystal structure of known targets, so there are limitations [15–17]. Ligand-
based methods are based on the fact that similar molecules tend to have similar proper-
ties and usually bind similar proteins [18], which means that when the number of known 
ligands per protein is insufficient, the prediction results of ligand-based methods may 
become unreliable [19].

Chemogenomic methods use both drug and target information to integrate the chemi-
cal space of the drug and the protein space of the target into a pharmacological space to 
predict DTIs. An advantage of chemogenomic approaches is that they can work with 
widely abundant biological data to perform prediction [14]. We classify the chemog-
enomic methods into four types: machine learning methods, matrix factorization meth-
ods, network-based methods, and hybrid methods.

There are three branches of machine learning methods for predicting DTIs: similar-
ity-based methods, deep learning methods, and feature selection methods. Similar-
ity/distance-based methods mainly use inter-sample similarity or distance [20–22]. 
Yamanishi et al. [23] developed a bipartite graph model to predict DTIs using a super-
vised approach to learn known drug–target relationships [24, 25]. Buza et al. proposed 
ECkNN/HLM, which is a K-nearest neighbor (KNN) method (hub-aware regression 
technique) with error correction, to mitigate the harmful effects of bad hubs [26–28]. 
Mei et al. proposed BLM-NII, which is an inference integrated into a BLM approach, 
to solve a new candidate problem for pure BLM [29]. However, the main disadvantage 
of this set of methods is that only a few drugs and their interactions are known, and 
there is a large amount of unlabeled data in the dataset [30]. The application of deep 
learning methods in drug discovery has been increasing because of their excellent 
performance [31, 32]. Wen et al. proposed DeepDTIs, using DBN [33] to extract raw 
input vectors and predict new DTIs between FDA-approved drugs and targets [34]. 
Lee et al. proposed DeepConv-DTI, which is a deep learning method, to obtain local 
residue patterns of proteins involved in DTI [35]. You et al. proposed LASSO-DNN, 
which is a deep learning method based on features extracted from LASSO regres-
sion models using protein-specific features and drug-specific features for fitting [36]. 
The disadvantage of such methods is how to select truly non-interacting drug–target 
pairs [37]. Feature-based methods are currently the vast majority of machine learn-
ing methods that perform DTI prediction. They comprise a broad range of methods, 
including the support vector machine (SVM), tree-based methods, and other kernel-
based methods. SVM, KSVM, MH-SVM, and other methods have been proposed. The 
main principle is that an SVM constructs one or a set of hyperplanes, which can be 
used to predict whether there is an interaction between a drug and target [19, 38–42]. 
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Xia et  al. proposed NetLapRLS, which is an improved version of LapRLS, by incor-
porating new kernels built from known DTI networks [43]. However, the problem 
encountered by such methods is that the lack of 3D structure of membrane proteins 
hinders the extraction of key features.

Matrix factorization methods have achieved better results in DTI prediction. 
GRMF-WGRMF is a two-manifold learner for extracting low-dimensional nonlinear 
manifolds of DTI bipartite graphs proposed by Ezzat et al. [44]. Gönen et al. proposed 
a method to decompose the interaction score matrix into a kernel matrix (similarity 
matrix), which can be used as DTI predictors for the new drug and protein KBMF2K 
[45]. The disadvantage of this type of approach is that the rapid growth in the amount 
and variety of data related to a drug and/or target far exceeds the capabilities of 
matrix-based data representations and many current analysis algorithms. The net-
work-based approach uses graph-based techniques to perform DTI prediction, which 
has the advantage of being simple and reliable. Luo et al. proposed DTINet, which is a 
computational network integration pipeline for DTI prediction [46]. Chen et al. pro-
posed NRRRH, which is a latent DTI inference method for bipartite graph networks 
based on the random walk with restart (RWR) framework [47]. The RWR proposed by 
Seal et al. is a method that requires matrix inversion and provides a good correlation 
score between two nodes in a DTI-weighted graph [48].

Hybrid methods refer to all methods that use any combination of feature-based 
methods, matrix factorization, deep learning, and network-based methods. Domain 
tuned-hybrid proposed by Alaimo et  al. is an extended NBI technique that com-
bines domain-based knowledge, such as drug similarity and target similarity [49]. By 
reviewing the above methods, we found that a key problem is how to select nega-
tive samples; hence, the first problem we solve in this study is to establish a highly 
reliable negative sample dataset to overcome the shortcomings of previous methods. 
The number of negative samples is much larger than the number of positive samples. 
There will be a class imbalance problem, which will affect the prediction accuracy of 
the final DTI. Therefore, in this study, we choose a screening method to build a highly 
reliable negative sample dataset to solve the class imbalance problem.

Additionally, we propose a new classifier for predicting DTIs: an extreme learn-
ing machine (ELM) based on spherical search (SS) optimization. An ELM is a pop-
ular machine learning method that has been widely applied to real-world problems 
because of its fast training speed and good generalization performance [50]. Previ-
ously, scholars have used an ELM to predict the new relationship between drugs and 
targets. However, the network parameters are randomly generated, which reduces the 
prediction performance of the ELM model. Therefore, using the swarm intelligence 
algorithm to optimize the network parameters of the ELM is necessary. SS is a swarm 
intelligence algorithm that has few adjustment parameters; its accuracy, convergence 
rate, proficiency, and effectiveness are at an advanced level; and it has projection 
characteristics, which can eliminate stagnation during the search process, which is 
conducive to eliminating sticky in local minima.

Therefore, we propose a framework called SSELM-neg for predicting the DTI. The 
innovations in this study are as follows: 
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1	 We propose a DTI prediction framework using the screening approach and SS-based 
ELM.

2	 We form a high-confidence negative sample dataset using a screening approach 
based on the principle that dissimilarity between a new drug and a drug with a 
known (predicted) protein precludes its possible correlation with the protein.

3	 We propose an SS-based ELM. We optimize the parameters of the ELM using SS to 
improve the classification performance of DTIs.

Related work
In this study, we focus on machine learning methods to predict DTIs. Currently, this 
has three main problems: (1) complexity of training sample generation; (2) generation of 
credible negative samples; and (3) performance of the classifier.

The method used to train sample generation for machine learning is divided into a 
raw data generation method (feature-based method) and data integrated method using 
similarity scores (similarity-based method). The feature-based method requires fea-
ture selection; hence, it requires the drug–target pairs to be explicitly represented as 
fixed-length feature vectors, which can lead to a large number of complex calculations. 
By contrast, similarity-based methods do not require feature extraction or selection 
and are simpler to compute than that. The principle of the similarity-based DTI pre-
diction method is to generate the similarity matrix of drugs by calculating the chemical 
structure of drugs and the similarity matrix of targets by calculating the characteristic 
of proteins, and finally, these two similarity matrices are used in various classification 
methods, such as [51].

However, whether feature-based methods or similarity-based methods are used to 
generate training sets, the number of negative samples far exceeds the number of posi-
tive samples because generally, unrecognized DTIs are considered as negative samples. 
This leads to data imbalance, which greatly reduces the accuracy of the classifier. The 
traditional method is to extract negative samples randomly. In recent years, some meth-
ods (not more) for extracting negative samples have been proposed. Mohammad et al. 
proposed the BRNS algorithm to extract balanced and reliable negative samples [52]. 
Jiaying You et al. [53] proposed a novel method to select the most likely negative DTIs. 
The assumption of this method is based on “guilt-by-association,” which indicates that 
similar drugs may share similar targets and vice versa. However, these methods are often 
more complex to calculate. Therefore, in this study, we use a simpler screening method 
to extract a more credible negative sample based on the study of Liu et al. [42].

Additionally, the performance of the classifier is particularly important in machine learn-
ing-based methods for predicting DTIs, and more classical classifiers, such as SVMs [54–
56], KNN [57, 58], and random forest [59, 60], have been used. The ELM has received a 
great amount of attention because of its excellent performance, and is also used in many 
areas [61–63], such as power and finance. Xin et al. [64] used ELMs for drug-drug interac-
tion prediction, and An et al. [65] used kernel ELMs to identify DTIs based on drug fin-
gerprints and protein evolutionary information. To date, few studies have been conducted 
in which researchers have used ELMs for the prediction of DTIs. One important reason is 
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that the configuration of the hidden layer parameters of an ELM network requires better 
optimization methods.

Preliminaries
ELM is an algorithm proposed by Huang et al. [66] for solving a single hidden layer feedfor-
ward neural network. It initializes and randomly generates input weights and hidden layer 
biases, and uses a nonlinear activation function to map the input data to the new feature 
space. Its advantages are that it can minimize the training error, obtain the smallest weight 
norm and best generalization performance, and the learning speed is fast.

The number of input samples is N and the samples are (xi, ti) , where 
xi = [xi1, xi2, . . . , xin]

T ∈ Rn and ti = [ti1, ti2, . . . , tin]
T ∈ Rm . The weights of the output 

layer are represented by the generalized inverse of the output matrix of the hidden layer. 
Hence, the ELM is expressed as

where L is the number of hidden layer nodes, wi = [wi1,wi2, . . . ,win]
T is the weight vec-

tor that connects the input layer and hidden layer, bi = [bi1, bi2, . . . , bin]
T is the bias vec-

tor of the hidden layer, and βi = [βi1,βi2, . . . ,βim]
T is the weight vector that connects 

the hidden layer and output layer. G(x) = [g(x,w1, b1), g(x,w2, b2), . . . , g(x,wn, bn)] rep-
resents the activation of the hidden layer function.

The learning goal of the single hidden layer neural network is to minimize the error of the 
output. When the error between the output result and sample N is zero, the above formula 
can be abbreviated as

where

where H is the output of the hidden layer node, β is the output weight, and T is the 
expected output. After applying the Moore–Penrose generalized inverse operation, we 
obtain

where H † is the generalized inverse of matrix H.
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Methods
Problem description

Our problem is based on the assumption that there is a drug set D ∈ {d1, d2, . . . , dn} and 
protein set P ∈ {p1, p2, . . . , pn} , where D contains n drugs and P contains m proteins. The 
relationship between the drug and target protein is defined as an m× n binary matrix Y, 
where the drug interacts with protein pj , yij = 1 ; when drug di does not interact with 
target protein pj ; or the interaction is unknown. The similarity between drugs is repre-
sented by matrix Sd and the similarity between target proteins is represented by matrix 
SP . We calculated the prediction scores for each non-interacting drug–target pair and 
predicted new drug–target pairs.

Construct the negative sample set

The number of negative samples (unverified samples) in the drug–targeted interaction 
dataset was significantly higher than the number of positive samples (verified samples, 
as shown in Fig. 1a), which resulted in a decrease of the predictive performance of clas-
sification for drug–targeted interaction because of the data imbalance. To balance the 
dataset, in previous studies, researchers frequently used random selection methods 
to extract negative samples that were consistent with the size of the positive samples, 
as shown in Fig. 1b. However, this overlooks a critical issue: unlabeled DTIs may have 
interactions that have not been discovered or argued for. The random selection of nega-
tive samples may result in choosing some unlabeled DTI samples as negative samples; 
however, they are probably positive samples, which reduces the performance of the 
model. The proposed screening approach is to extract high-quality negative samples. 
(These negative samples are far away from the positive samples, as shown in Fig. 1c.) We 
set all known DTI labels to 1 and all other chosen samples in the DTI space (drug–target 
pairs with no known interactions) to 0. We directly include all samples with labels of 1 in 
the dataset as positive samples and use all samples with labels of 0 as negative samples.

Positive(known 
interaction)

Randomly selected 
negative samples

Negative samples 
from scoring

Negative(unknown/no 
interaction)

(a)

(b) (c)
Fig. 1  Visual of the negative samples selected
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Building the assembly K of the known/predicted DTIs as mentioned above, and 
using the protein dissimilarity rule and drug dissimilarity rule [42], we integrate 
similarities between drugs into a drug composite similarity score, as is the case for 
similarities between proteins. This can be represented by (ck , pj , dkj) , where ck repre-
sents drug k, pj represents protein j, and dkj represents the interaction between drug 
ck and protein pj . For any protein pl targeted by ck in K, we compute the weighted 
score spcjkl = wkl ∗ PSjl that indicates the possibility that protein pj and each known/
predicted protein pl are targeted by drug ck , that is, (ck , pl ,wkl ∈ K ) . We calculate 
the combined score by summing the weighted scores spcjkl with respect to l and thus 
obtain

Similarly, we compute the weighted score scpkj = wij ∗ CSik that represents the possibil-
ity that drug ck targets pj in consideration of the similarity between ck and each known/
predicted drug ci that targets protein pj , that is, (ci, pj ,wkl) ∈ K  . We calculate the com-
bined score by summing the weighted scores spckji with respect to i and thus obtain

where pkj is the interaction value between protein pj and drug ck , andscpkji is the similar-
ity between drug ck and all others.

For target drug ck and protein pj , the average weighted score is defined as

We choose the potential negative samples according to the sorted scores obtained from 
Eq.  (8), and those with the lowest scores form the negative sample candidate set. We 
combine the positive samples and negative samples to obtain the train dataset and test 
dataset. We conducted the experiments in this study on this dataset. The dataset (DTI 
pairs) are represented as

where Ci denotes the drug, Pi denotes the protein, and Dij denotes the classification label 
(0 or 1) between drug Ci and protein Pi.

In Fig.  1a, yellow circles represent known drug target pairs and gray triangles 
represent unknown or unrelated drug target pairs. The closer the gray triangles 
to the y-axis, the greater the likelihood of inter-relationships. Figure  1b shows the 
randomly selected negative samples, which are represented by black triangles. The 
black triangles close to the left of the red line probably have DTI and they are prob-
ably positive samples, but they were chosen as negative samples. Figure 1c shows the 
negative samples selected using the screening approach, and the black triangles are 
far from the red line.

(6)SPCjk =

∑

l pjk × spcjkl
∑

l spcjkl
.

(7)SCPkj =

∑

i pkj × scpkji
∑

i scpkji
,

(8)Skj =
SPCk + SCPj

2
.

(9)DTIi,G = [Pi1,Pi2, . . . ,Pin;Cj1,Cj2, . . . ,Cjm;Di,j],
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Extreme learning machine based on spherical search

The evolutionary algorithm is an optimization method that can be used to solve general 
optimization problems because it is simple and flexible, has no derivatives, and avoids 
falling into a local optimum [67]. The SS is an evolutionary algorithm for solving non-
linear bounded constrained global optimization problems [67]. To date, it has not been 
used to solve the parameter optimization problem of an ELM. In this study, we use it to 
optimize the network parameters of an ELM. First, we initialize the population of the SS 
algorithm using random selection. We define the population in the Gth iteration as Qx , 
which is expressed as

where xi,G is the solution in the population, xij is the jth element of the ith solution, 
and xij is a parameter of the ELM. xi,G is a vector in the D-dimensional search space. D 
denotes the number of parameters in the ELM.

Initialization of the solution:  Choose a random distribution between the upper and 
lower dimensions of the jth element to initialize the solution as

where xuj and xlj are the upper and lower dimensional boundaries of the jth element, 
respectively. rand(0, 1] represents the generation of uniformly distributed random num-
bers in (0, 1].

Generation of trial solutions:  Trial solutions are new potential solutions generated 
through iteration and competition:

where mi,G is a projection matrix that determines the value of yi,G on the D − 1 dimen-
sional spherical boundary; different pi,G result in different yi,G values:

where A is an orthogonal matrix,

where b is a binary vector, and

The position of yi,G determines the spherical boundary of dimension D − 1 , and xi,G is 
a specific solution. ci,G represents the step size control vector, which is randomly calcu-
lated in [0.5, 0.7].
zi,G represents the search direction. In optimization algorithms, the quality of new solu-

tions is highly dependent on the balance between the exploration and utilization of the 
search space. We use two search operations: towards − best and towards − rand . We use 
the towards − rand method in the half of the population with a better solution because it 
has a better search ability, and use the towards − best method in the other half because it 
has a better search ability. The combination of the two search directions provides a balance 

(10)Qx,G = [x1,G , x2,G , . . . , xi,G , . . . , xN ,G],

(11)xij,0 = (xuj − xlj)× rand(0, 1] + xlj ,

(12)yi,G = xi,G + vi,G ×mi,G × zi,G ,

(13)m = A′diag(b)A,

(14)AA′ = I ,

(15)0 < rank(diag(bi)) < 1.
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for the exploration and utilization of the search space, which not only improves the diver-
sity of better solutions but also forces poor solutions to improve fitness:

where pi , qi , and ri are the index numbers randomly selected from 1 to N, and xpbesti,G is 
a randomly selected individual using the top p optimal solutions. xpbesti,G and xpi,G rep-
resent target points. (xq − rr) is the difference term, and xq and rr are randomly selected 
individuals from the current solution set; hence, the actual search direction may deviate 
from the target search direction, to a certain extent.

We use Success History-based-control Parameter Adaptation (SHPA) [68] to adapt two 
control parameters during the search: rank and ci . SHPA creates a history matrix L of size 
(2×H) to hold H entries for the two control parameters, that is, the learning values lr and lc 
for parameters rank and c, respectively, in the last H iterations.
ranki,g and ci,g are calculated as

where Binornd represents the binomial distribution, j is chosen independently from the 
columns of matrix L, and each i is random. Cauchyrand represents the Cauchy distribu-
tion, j is chosen independently from the columns of matrix L, and each i is random.

The performance of SS is highly dependent on the control parameters ci , and the rank and 
size of population N [67]. In this study, we use the exponential population size reduction 
method to dynamically adjust the population size during the iterative process. We expo-
nentially reduce the population as a function of the number of iterations by continuously 
reducing the population to match the exponential function. The population size is Ninit at 
the first iteration and Nmin at the final iteration. We use the following formula to calculate 
the size of the population for iteration NG+1:

where Nmin = 4 , nfesmax is the maximum number of function evaluations allowed. 
Whenever NG+1 < nG , we remove the (NG − NG+1) worst-ranked individual from the 
population.

The calculation formulas of lr and lc are

(16)towards− rand zi,G = xpi,G + xqi,G − rri,G − xi,G

(17)towards− best zi,G = xpbesti,G + xqi,G − rri,G − xi,G ,

(18)ranki,g = Binornd(D, L1,j)

(19)ci,g = Cauchyrand(L(2,j , 0.1),

(20)NG+1 = round(Ninit(1−
Ninit − Nmin

nfesmax
))G ,

(21)lr,g =

∑|Sr,g |
h=1

wh,g r
2
h,g

∑|Sr,g |
h=1

wh,g rh,g
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Vectors Sr and Sc denote the rank and c containing successful trials, respectively. 
∣

∣Sr,g
∣

∣ 
and 

∣

∣Sc,g
∣

∣ represent the lengths of Sr,g and Sc,g , respectively.
Selection of a new population for the next iteration:

We use greedy selection to update the new population set of the next generation. If the 
objective function value f (yi,g ) of the trial solution is not higher than the objective func-
tion value f (xi,g ) of the solution, then yi replaces xi.

Fitness function:

where L is the number of hidden layer nodes, xi = [xi1, xi2, . . . , xin]
T is the weight vector 

that connects the input layer and hidden layer, xb = [bi1, bi2, . . . , bin]
T is the bias vector 

of the hidden layer, and βi = [βi1,βi2, . . . ,βim]
T is the weight vector that connects the 

hidden layer and output layer. βi can be computed using Eq. (5).
G(x) = [g(DTIi, x1, xb1), g(DTIi, x2, xb2), . . . , g(DTIi, xn, xbn)] represents the activation 

of the hidden layer function:

AUCi is the area under the receiver operating characteristic (ROC) curve (AUC) 
obtained using the ELM and AUPRi is the area under the precision-recall curve 
(AUCPR) obtained using ELM.

In this study, a DTI pair is input into ELM, that is, drug similarity, protein similarity, 
and known (or unknown) DTIs are input into ELM, and the predicted new drug–target 
relationships are output. In SSELM-neg, the connection weight xj between the input layer 
and hidden layer, and the bias xb of the hidden layer are produced using the SS approach, 
and determine the connection weight between the hidden layer and output layer. The SS 
approach generates network parameters to enhance the prediction accuracy and generali-
zation ability of the network. In this study, we use 10-fold cross-validation to verify the pre-
diction performance of SSELM-neg.

Our proposed framework is shown in Fig.  2 and the pseudo-code is presented in 
Algorithm 1.

(22)lc,g =

∑|Sc,g |
h=1

wh,g c
2
h,g

∑|Sc,g |
h=1

wh,g ch,g

.

(23)xi,G+1 =

{

yi,G , iff (yi,g ) ≤ f (xi,g )

xi,G , otherwise .

(24)tj =

L
∑

i=1

βig (DTIi × xj + xb), j = 1, . . . ,N ,

(25)Fitness =

k
∑

i=1

(AUCi + AUPRi)

2
, k = 10.



Page 11 of 21Hu et al. BMC Bioinformatics           (2023) 24:38 	

Fig. 2  Drug–target interaction prediction framework for SSELM-neg
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Experimental evaluation
Dataset

We compared the performance of our model on the gold standard dataset compiled 
by Yamanishi [23] with previous excellent methods to demonstrate the effectiveness of 
our approach. These datasets, derived from databases such as DRUG BANK and Kyoto 
Encyclopedia of Genes and Genomes 8 (KEGG), correspond to the DTIs of four impor-
tant protein targets, that is, (i) enzyme (E); (ii) ion channel (IC); (iii) G-protein-coupled 
receptor (GPCR); and (iv) nuclear receptor (NR), and include 932 drugs, 989 target pro-
teins, and 5,127 mutual relationships between the drugs. In this gold standard dataset, 
the known DTIs are from multiple public databases, including DrugBank [69], Super-
Target [70], KEGG BRITE [71], and BRENDA [72]. We obtained the similarity between 
drugs by integrating the chemical structure similarity of the drugs. We downloaded the 
chemical structures of the drugs from the KEGG LIGAND [71] database, and calculated 
the similarity using SIMCOMP [73]. We obtained the similarity between proteins by 
integrating the protein amino acid sequence similarity, which we downloaded from the 
KEGG GENES database. We obtained the similarity between proteins by integrating the 
protein amino acid sequence similarity, which we downloaded from the KEGG GENES 
database [74]. Table 1 presents some statistics for this dataset, including the total num-
ber of drugs, total number of targets, and total number of interactions. On average, there 
are more interactions per drug and target in ICs and Es than in GPCRs and NRs. The 
details of the gold standard dataset are in Table 1.

After the previous step of establishing a high-confidence negative sample set, we trans-
formed the four interaction datasets into matrix form for the information description: (i) 
positive interaction and (ii) negative interaction.

Performance evaluation of DTIs

The proposed SSELM-neg model aims to enhance the predictive ability of DTI. In our 
experiments, we evaluated the predictive capability of the SSELM-neg model on Es, ICs, 
GPCR, and NRs on the gold standard dataset, and the SSELM-neg model achieved reli-
able predictive performance. To ensure fairness, we used 10 cross-validation tests to 
evaluate the performance of SSELM-neg. We divided the gold standard dataset into 10 
subsets of equal size. Next, we selected a subset as the test subset to evaluate the predic-
tion results, and used the remaining 9 subsets to train the model. We repeated this pro-
cess 10 times, each time using a different subset as the test subset. Finally, we obtained 
the average results from 10 folds. The evaluation metrics are the AUC and area under 
the precision-recall curve (AUPR). We calculated the ROC curves as shown in Fig. 3 and 
used AUC as the main quality measure. A precision-recall curve is a graph of the true 

Table 1  Gold standard dataset

Interaction Drug Target

E 2926 445 664

IC 1476 210 204

GPCR 635 223 95

NR 90 54 26
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positive rate (TPR) among all positive predictions for each given recall, and the AUPR 
value provides a quantitative estimate. The AUPR is suitable for assessing the perfor-
mance of each method and provides a better estimate of quality because it penalizes the 
presence of false positives more severely than AUC:

The ROC space defines the false positive rate (FPR) as the x-axis and the TPR as the 
y-axis. The TPR is the ratio of all samples that are actually positive that were correctly 
judged as positive. The FPR is the ratio of all samples that are actually negative that were 
wrongly judged as positive.

Comparison with other methods

To further illustrate the robustness and effectiveness of the proposed method, we 
selected four classical methods and four new methods from recent years for compari-
son: Bigram-PSSM [41], iDTI-ESBoost [75], NRLMF [76], BLM-NII [24], SELF-BLM 
[77], NetLapRLS [43], SPLCMF [78], and WNN-GIP [79]. To fairly compare DTI pre-
diction performance, we applied these methods to the same gold standard dataset. We 
also used a randomized setup with 10-fold cross-validation, the same evaluation criteria, 
and the best parameters for each method. For SSELM-neg, the maximum number of 
iterations MaxNfes = 10,000, greedy PbestRate = 0.11, population size PopSize = 100 , 
rd = 0.5 , c = 0.7 , Ar = 1.4 , and historical memory storage size Ms = 5 . The parameters 
used for the other methods are mentioned in their corresponding articles. For BLM-NII, 
g = max and α = 0.5 . For SELF-BLM, c = 1 and γ = 1 . For the details of specific param-
eters, please refer to the original articles.

Table 2 shows the AUC results for each method on the gold standard dataset and 
Table 3 shows the AUPR results. In these tables, the best results are shown in bold. As 
shown in Tables 2 and 3, SSELM-neg achieved significantly improved AUC and AUPR 
performance compared with previous work. The AUPRs for SSELM-neg on E, GPCR, 

(26)TPR =
TP

TP + FN ′

(27)FPR =
FP

TN + FP

′

.

Table 2  AUC results for interaction prediction under validation

The best results are shown in bold

Method Datasets
E GPCR IC NR

Bigram-PSSM 0.948 0.872 0.889 0.869

iDTI-ESBoost 0.969 0.932 0.937 0.929

NRLMF 0.987 0.969 0.989 0.950

BLM-NII 0.985 0.966 0.984 0.917

SPLCMF 0.970 0.942 0.981 0.828

WNN-GIP 0.964 0.944 0.959 0.901

NetLapRLS 0.969 0.904 0.956 0.844

SELF-BLM 0.860 0.894 0.925 0.773

SSELM-neg 0.986 0.993 0.988 0.969
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IC, and NR were 0.9652, 0.9906, 0.9762, and 0.9455, respectively, which were higher 
than those for other advanced algorithms.

Figure 3(left) shows that on GPCR, the AUCs for SSELM-neg were 12%, 6.1%, 2.4%, 
2.7%, 5.1%, 4.9%, 8.9%, and 9.9% higher than those for Bigram-PSSM, iDTI-ESBoot, 
NRLMF, BLM-NII, S PLCMF, WNN-GIP, NetLapRLS, and SELF-BLM, respectively 
(0.993 vs 0.872, 0.932, 0.969, 0.966, 0.942, 0.944, 0.904, and 0.894, respectively). On 
NR, the AUCs for SSELM-neg were 10%, 4%, 1.9%, 5.2%, 14.1%, 1.6%, 12.5%, and 
19.6% higher than those for Bigram-PSSM, iDTI-ESBoot, NRLMF, BLM-NII, SPL-
CMF, WNN-GIP, NetLapRLS, and SELF-BLM (0.969 vs 0.869, 0.929, 0.950, 0.917, 
0.828, 0.901, 0.844, and 0.773). On IC, the AUCs for SSELM-neg were slightly lower 
than that for NRLMF (0.988 vs 0.989), but still better than those for the other meth-
ods. They were 9.9%, 5.1%, 0.4%, 0.7%, 2.9%, 3.2%, and 6.3% higher than those for 
Bigram-PSSM, iDTI-ESBoot, BLM-NII, SPLCMF, WNN-GIP, NetLapRLS, and SELF-
BLM, respectively (0.988 vs 0.889, 0.937, 0.984, 0.981, 0.959, 0.956, and 0.925, respec-
tively). For Es, our model narrowly outperformed BLM-NII by 0.01% (0.986 vs 0.985), 
was slightly lower than NRLMF (0.986 vs 0.987), but still far outperformed other 
models; our model was 3.8%, 1.7%, 1.6%, 2.2%, 1.7%, and 12.6% higher than Bigram-
PSSM, iDTI-ESBoot, SPLCMF, WNN-GIP, NetLapRLS, and SELF-BLM, respectively 
(0.986 vs 0.948, 0.969, 0.970, 0.964, 0.969, and 0.860, respectively). Compared with 

Table 3  AUPR results for interaction prediction under validation

The best results are shown in bold

Method Datasets
E GPCR IC NR

Bigram-PSSM 0.546 0.282 0.390 0.411

iDTI-ESBoost 0.680 0.500 0.480 0.701

NRLMF 0.892 0.749 0.906 0.701

BLM-NII 0.869 0.709 0.909 0.701

SPLCMF 0.881 0.754 0.938 0.533

WNN-GIP [79] 0.706 0.520 0.717 0.589

NetLapRLS 0.786 0.617 0.820 0.463

SELF-BLM 0.639 0.599 0.744 0.457

SSELM-neg 0.982 0.991 0.982 0.946

Fig. 3  Comparison of the AUC and AUPR results for the six methods
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our model, the state-of-the-art algorithms all had higher AUCs on the E dataset, 
because it contains the largest number of known DTIs in Es.

Figure  3(right) shows that on the E dataset, the AUPR values for SSELM-neg were 
43.6%, 30.2%, 9%, 11.3%, 10.1%, 27.6%, 19.6%, and 34.3% better than those for Bigram-
PSSM, iDTI-ESBoot, NRLMF, BLM-NII, SPLCMF, WNN-GIP, NetLapRLS, and SELF-
BLM, respectively (0.982 vs 0.546, 0.680, 0.892, 0.869, 0.881, 0.706, 0.786, and 0.639, 
respectively). On GPCR, the AUPR values for SSELM-neg were 70.9%, 49.1%, 24.2%, 
28.2%, 23.7%, 47.1%, 37.4%, and 39.2% higher than those for Bigram-PSSM, iDTI-
ESBoot, NRLMF, BLM-NII, SPLCMF, WNN-GIP, NetLapRLS, and SELF-BLM, respec-
tively (0.991 vs 0.282, 0.500, 0.749, 0.709, 0.754, 0.520, 0.617, and 0.599, respectively). On 
IC, the AUPR values for SSELM-neg were 59.2%, 50.2%, 7.6%, 7.3%, 4.4%, 26.5%, 16.2%, 
and 23.8% higher than those for Bigram-PSSM, iDTI-ESBoot, NRLMF, BLM-NII, SPL-
CMF, WNN-GIP, NetLapRLS, and SELF-BLM, respectively (0.982 vs 0.390, 0.480, 0.906, 
0.909, 0.938, 0.717, 0.820, 0.744, respectively). On NR, the AUPR values for SSELM-
neg were 53.5%, 24.5%, 24.5%, 24.5%, 42.7%, 35.7%, 48.3%, and 48.9% higher than those 
for Bigram-PSSM, iDTI-ESBoot, NRLMF,BLM-NII, SPLCMF, WNN-GIP, NetLapRLS, 
and SELF-BLM, respectively (0.946 vs 0.411,0.701, 0.701, 0.701, 0.533, 0.589, 0.463, and 
0.457, respectively).

In the four datasets, the average number of interactions between each drug and target 
was largest in ICs and smallest in NRs. This indicates that the interaction network of 
ICs contains more information than the interaction network of NRs; hence, the network 
similarity of ICs is higher and more informative than the network similarity of NRs. NRs 
contain the largest proportion of ’new drug candidates,’ whereas ICs contain the smallest 
proportion.

Table 4 shows the results of comparing the AUCs for the different methods using the 
Friedman test, with our method performing the best. Table 5 shows that there was a sig-
nificant difference between the performance of the methods.

Table 4  Comparison of the AUC results for the methods

Order Method Averages rank

1 Bigram-PSSM 2.00

2 iDTI-ESBoost 4.63

3 NRLMF 8.50

4 BLM-NII 6.75

5 SPLCMF 4.75

6 WNN-GIP 4.75

7 NetLapRLS 3.63

8 SELF-BLM 1.50

9 SSELM-neg 8.50

Table 5  Friedman test for the AUCs for the methods

Method Chi-square Asymptotic significance

Friedman test 27.240 0.001
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Table 6 shows the results of the comparison of the AUPRs for the methods using the 
Friedman test, with our method also performing best. Table 7 shows that there was a 
significant difference between the performance of the methods.

According to the comparative results of the Friedman test, SSELM-neg was the best 
(as shown in Tables 4 and 6).

Predicting novel interactions

To further demonstrate the ability of SSELM-neg to predict a new DTI, we input all 
the negative samples into SSELM-neg as a test set to predict possible new DTIs. There 
were no known interactions in the test dataset; hence, we ranked the predicted high DTI 
scores (possibly positive interactions, but not validated yet) according to their scores, 
and placed the predicted high scoring interactions in medical biological databases and 
scientific literature for manual ranking, including DrugBank, KEGG, PubChem, and 
STITCH. The ROC results of the interaction prediction on the dataset are shown in 
Fig. 4, the prediction results with interaction after validation are listed in Table 8, and 
the validation method is marked in the evidence column.

The dataset that we used was compiled by Yamanishi. The drug–target interactions 
contained in the E, IC, GPCR, and NR datasets were extracted from KEGG several years 
ago, and to allow for a comparison of prediction techniques, they have not been changed 
[26].

However, with the development of technology, increasing numbers of DTIs have 
been validated experimentally and their results updated in various biological databases. 
Therefore, we can compare predicted new interactions in various international public 
databases. If the predicted new interaction is included in KEGG, DrugBank, or other 
databases, then we consider the interaction to be valid.

Table 8 shows that our method found many valid interactions, such as Interaction of 
Aripiprazole (D01164) with 5-hydroxytryptamine receptor 1B(hsa3351); Interaction of 

Table 6  Comparison of the AUPR results for the methods

Order Method Averages rank

1 Bigram-PSSM 1.00

2 iDTI-ESBoost 3.50

3 NRLMF 7.00

4 BLM-NII 6.50

5 SPLCMF 6.75

6 WNN-GIP 3.75

7 NetLapRLS 4.50

8 SELF-BLM 3.00

9 SSELM-neg 9.00

Table 7  Friedman test for the AUPRs for the methods

Method Chi-square Asymptotic significance

Friedman test 26.555 0.001
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Diazoxide with calcium voltage-gated channel subunit alpha1 I; Interaction of Diazox-
ide with calcium voltage-gated channel subunit alpha1 G; and Progesterone (D00066), 
Norethindrone (D00182), Levonorgestrel (D00950), and Norgestrel (D00954) all target 
androgen receptor (hsa367).

The synthetic progestins used to date for contraception and menopausal hormone 
therapy are derived either from testosterone (19-nortestosterone derivatives) or proges-
terone (17-OH progesterone derivatives and 19-norprogesterone derivatives). Among 
the 19-nortestosterone derivatives, the estrane group includes norethisterone and 
its metabolites, and the gonane group includes levonorgestrel and its derivatives [80]. 

Fig. 4  ROC results for interaction prediction for the dataset

Table 8  Prediction results for new drug–target interactions

Drug ID Drug name KEGG ID Target name Database

D01164 Aripiprazole hsa3351 5-hydroxytryptamine DrugBank

receptor 1B

D00066 Progesterone hsa367 Androgen receptor DrugBank

D00182 Norethindrone hsa367 Androgen receptor DrugBank

D00950 Levonorgestrel hsa367 Androgen receptor DrugBank

D00954 Norgestrel hsa367 Androgen receptor DrugBank

D00294 Diazoxide hsa8911 Calcium voltage-gated DrugBank

Channel subunit alpha1 I

D00294 Diazoxide hsa8913 Calcium voltage-gated DrugBank

Channel subunit alpha1 G
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Aripiprazole (OPC-14597) is a novel atypical antipsychotic drug that is reported to be a 
high-affinity D2-dopamine receptor partial agonist [81]. It has moderate affinity for the 
5-hydroxytryptamine receptor 1B receptor, 6 < pKi < 7 [82].

Discussion and conclusion
In this study, we proposed a swarm intelligence algorithm-based method for optimizing 
ELMs called SSELM-neg by integrating drug-drug similarity, protein-protein similarity, 
and the drug-protein interaction relationship for novel drug-protein interaction predic-
tions. We established a highly credible negative sample dataset, which effectively solved 
the class imbalance problem between positive and negative samples. We also demon-
strated the superior performance of SSELM-neg using results obtained by predicting 
human DTI networks involving Es, ICs, GPCRs, and NRs.

A small molecule is a type of low molecular weight organic compound with a variety 
of biological functions. In recent years, mounting evidence has demonstrated the sig-
nificance of taking microRNAs (miRNAs) as the target of small molecule (SM) drugs for 
disease treatment [4]. Chen et al. built a computing model of Bounded Nuclear Norm 
Regularization for SM–miRNA Associations prediction, in which a heterogeneous SM–
miRNA network was constructed using miRNA similarity, and a matrix representing 
the heterogeneous network was defined. Wang et al. [83, 84] proposed a novel method 
called Dual-Network Collaborative Matrix Factorization for predicting potential SM–
miRNA associations [85]. These methods use the similarity matrix of miRNAs, and our 
method uses the similarity matrix of coding proteins; hence, we believe that it is feasi-
ble to improve our method to apply the theory of miRNAs. Drug–target binding affinity 
prediction is also a research direction for our future work. CHEN et al. proposed a new 
model called molecular representation block-based drug–target binding affinity predic-
tion (MRBDTA) [86], which showed superior performance in predicting the binding 
affinity between replication-associated proteins of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). In future work, we will focus on predicting the relation-
ship between miRNAs and drugs and on predicting drug target binding affinity.

Machine learning-based methods are used to identify novel DTIs. However, the per-
formance and robustness of this method is data-dependent; hence, inherent knowl-
edge and limited negative samples severely limit the performance of this computational 
method. In our study, we used drug dissimilarity rules and protein dissimilarity rules to 
score negative samples, and excluded negative samples with low scores, that is, negative 
samples that may have interactions between drugs and proteins but have not been veri-
fied. Thus, we built a high-confidence and class-balanced train dataset for our SS-ELM 
model. An ELM is a popular machine learning method that has been widely used in real-
world problems because of its fast training speed and good generalization performance. 
However, in an ELM, randomly assigned input weights and hidden biases often degrade 
generalization performance. In this study, we assigned input weights and hidden biases 
using the SS approach to provide the optimized parameters of an ELM. Therefore, it is 
very suitable to find the optimal network parameters of ELM.

Finally, we input the negative samples that were selected by applying rules to the train-
ing set into SSELM-neg. The experimental results verified that our method performed 
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best in terms of identifying DTIs. In the future, we will focus on swarm intelligence opti-
mization for the classifier for the prediction of DTIs.
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