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Abstract 

Background:  In the global effort to discover biomarkers for cancer prognosis, predic‑
tion tools have become essential resources. TCR (T cell receptor) repertoires contain 
important features that differentiate healthy controls from cancer patients or differenti‑
ate outcomes for patients being treated with different drugs. Considering, tools that 
can easily and quickly generate and identify important features out of TCR repertoire 
data and build accurate classifiers to predict future outcomes are essential.

Results:  This paper introduces GENTLE (GENerator of T cell receptor repertoire features 
for machine LEarning): an open-source, user-friendly web-application tool that allows 
TCR repertoire researchers to discover important features; to create classifier models 
and evaluate them with metrics; and to quickly generate visualizations for data inter‑
pretations. We performed a case study with repertoires of TRegs (regulatory T cells) and 
TConvs (conventional T cells) from healthy controls versus patients with breast cancer. 
We showed that diversity features were able to distinguish between the groups. More‑
over, the classifiers built with these features could correctly classify samples (‘Healthy’ or 
‘Breast Cancer’)from the TRegs repertoire when trained with the TConvs repertoire, and 
from the TConvs repertoire when trained with the TRegs repertoire.

Conclusion:  The paper walks through installing and using GENTLE and presents a case 
study and results to demonstrate the application’s utility. GENTLE is geared towards any 
researcher working with TCR repertoire data and aims to discover predictive features 
from these data and build accurate classifiers. GENTLE is available on https://​github.​
com/​dhieg​o22/​gentle and https://​share.​strea​mlit.​io/​dhieg​o22/​gentle/​main/​gentle.​py.
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Background
Identifying high-quality biomarkers in cancer data is a formidable challenge, but TCR 
repertoires have shown to be a useful source in surmounting this obstacle [1, 2]. TCRs 
are generated by a VDJ (variable, diversity, joining) recombination process that can gen-
erate a potential diversity of 1019 unique TCRs [3]. This process yields two protein chains 
consisting primarily of alpha and beta chains; in approximately 10 percent of cases, they 
consist of gamma and delta chains [4]. The beta chain uniquely contains the diversity 
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(D) gene segment, which includes greater diversity–specifically in the CDR3 (Comple-
mentarity Determining Region 3) region where the D gene segment is located. Despite 
its complexity, a sample of these TCR repertoires generates substantial insights into 
immune system behavior, thus providing important information regarding the choice of 
therapy [5].

Many features of the repertoire, such as diversity, clonality, motifs, and network pres-
entation, are often used as metrics to distinguish between cancer patients who may 
respond to a certain drug or simply between sick and healthy individuals [6–8]. Table 1 
provides additional information about the terms introduced above. Originally used in 
ecology, diversity metrics can be adapted to characterize the TCR repertoire. The Shan-
non and Simpson indices are the most commonly used metrics [9], although other 
metrics, including Hill numbers, Pielou, and Gini, also serve as strategies [6, 9]. We pre-
viously identified [10] significant differences of 1 minus Pielou (referred to as clonality in 
the article; see their supplemental information file) and Simpson indices between con-
trol and mice with mammary tumors after immunotherapy. Network-based approaches 
may consider each TCR as a node and utilize distance metrics to build edges between 
the nodes. In another work [11], we demonstrated that a network representation could 
stratify control and transgenic mice blood samples. A longitudinal analysis of TCR rep-
ertoire networks showed variations in the density index of the network. The Levenshtein 
metric was employed to represent the editing distances used to build the networks. 
Using physicochemical motifs, Ostmeyer and collaborators [12] distinguished tumor tis-
sue from patient-matched healthy tissue in the same organ by extracting 4-mers from 
CDR3 sequences and using their frequencies to build high-accuracy classifiers for breast 
cancer and colorectal cancer. Additionally, Wang and colleagues [13] identified 11 struc-
tural motifs to distinguish long-term survivors from short-term survivors with naso-
pharyngeal carcinoma.

Recent technological breakthroughs have advanced the entire field [17]. In tan-
dem with progress in immunotherapy, great improvements in NGS (Next Genera-
tion Sequencing) options now allow the sequencing of longer reads in large quantities 
and at an affordable price [17]. These improvements have contributed to the gradually 
increasing availability of TCR-based data, while data analysis tools are still limited. TCR 
repertoire-oriented tools can be used in two types of analysis: low-level or high-level. 

Table 1  Summary of main TCR repertoire metrics

Term Definition Biological significance Reference

Diversity The richness of the repertoire; the number 
of different receptors in the population

Important to the immune system given 
its ability to mount protective immune 
responses

[14]

Clonality The frequency of each T cell in the reper‑
toire based on its receptor

Serves as evidence–a form of molecular 
fingerprint–to identify the origin of certain 
disorders

[15]

Motif Short sequence of amino acids which 
may determine the affinity of a TCR to an 
antigen

Critical for recognition of certain antigens [16]

Network A visual representation in which clones 
are associated with vertices and edges 
are associated with a distance measure 
between two clones

It captures the relationships between the 
clones and offers a visualization of the 
repertoire’s structure

[11]
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Low-level tasks involve raw data processing, while high-level tasks extract information 
from processed data [18]. IMGT/HighV-QUEST [19], IgBLAST [20], MiXCR [21], and 
MiTCR [22] are some of the most cited tools for low-level tasks, while Table 2 summa-
rizes the most cited tools for high-level tasks and depicts their main features. The exper-
imental design should guide the adequate tool selection according to a specific purpose. 
GENTLE generates features and allows users to create classifiers and evaluate their pre-
dictive power on experimental samples, thus meeting the need for fast and easy-to-use 
data analysis tools developed using–and based on–easily accessible sources [23].

Table 2  Summary of high-level computational tools for TCR analysis

Tools Input data Implementation Open-source Analysis

GENTLE AIRR-seq data that are 
labeled on the reper‑
toire level

Python
Streamlit library

Yes Diversity, network, motif, 
dimensionality reduction, 
Normalizations, feature 
selection, and classifier 
methods

ImmuneML [24] AIRR-seq data that are 
labeled on the repertoire 
level or sequence level

Python
Command line
Galaxy web app

Yes Data simulation, classifiers, 
and parameter tune

Scirpy [25] scRNA Python package Yes Diversity, clonotype 
analysis, spectratype, 
dimensionality reduction 
and query epitope

Immunarch [26] scRNA/bulk R package Yes Diversity estimation, 
dimensionality reduction, 
and clustering methods

ImmunoSEQ [27] Assay to be sequenced Service web tool No Classifiers and data 
sharing

Immcantation [28, 29] Various data formats Python
R packages

Yes Clonal lineage, clonal clus‑
tering, repertoire diversity, 
VDJ gene usage and 
phylogenetic analysis

VDJtools [30] Various data formats Java Yes Diversity analysis, reper‑
toire overlap, repertoire 
clustering, clonality filter‑
ing and annotation, and 
visualization

CoNGA [31] Various data formats Python package Yes Expression and TCR by a 
graph-based approach, 
dimensionality reduction 
and visualization

scRepertoire [32] Contig outputs from 
the 10 × Genomics Cell 
Ranger

R package Yes Clonotypes analysis, 
visualizing contigs, clonal 
space homeostasis, pro‑
portion, overlap analysis, 
diversity, clustering, 
dimensionality reduc‑
tion, alluvial and chord 
diagrams

ImmuneRef
[33]

AIRR-seq data R package Yes Analysis of repertoire 
similarity across repertoire 
features, calculates over‑
lap, analyzes repertoire 
global and local similari‑
ties, and visualizes results 
with clustered heatmaps 
for each layer and a mul‑
tidimensional similarity 
network
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In summary, we have developed GENTLE, the first tool to offer a machine learning 
pipeline for TCR repertoire cancer data: it enables the generation of features, normaliza-
tion methods, feature selection algorithms, classifiers construction, and evaluation met-
rics for internal and external validation.

Implementation
Architecture

The code for GENTLE was written in Python 3 and can be run on version 3.9 or higher. 
We used Streamlit to construct the GUI (Graphical User Interface), Pandas for data 
manipulation, Plotly for data visualization, and scikit-learn for many machine learning 
algorithms [34]. Streamlit was chosen for its speed and simplicity in implementing an 
application front-end and for easily and freely deploying and sharing the application with 
the community. Streamlit also makes available some functions that do not run unless a 
specific parameter has changed. In light of this, we incorporated these functions to avoid 
redundant calculations and to keep the program running fast. The source code of GEN-
TLE is available on https://​github.​com/​dhieg​o22/​gentle; the README documentation is 
succinct and clear for users, and the program can be easily installed with virtualenv or 
docker.

General flow

The input into GENTLE is a.csv file format. For files that surpass the maximum size 
supported (200 MB), the.csv file can be zipped and uploaded in a zip format. The file 
must be a dataframe in which the rows represent the samples of the experiment, and the 
columns represent the TCRs with one additional column representing the label of each 
sample (e.g., case/control). The values should represent the counts of the TCRs in the 
samples. We provide examples of the input data in the Github repository.

After uploading the data, four options will appear in the sidebar; these options 
are the feature dimensions to be analyzed. It is important to emphasize that when 
uploading a different dataframe, one should always erase the cache from the options 
menu in the top-right corner of the screen. The Diversity metric calculates popular 
diversity measurements widely used in ecology such as richness, Shannon, Simpson, 
inverse Simpson, Pielou, one minus Pielou, hill numbers and Gini indices. The Net-
work metric will use the TCR sequences as nodes and calculate a Levenshtein dis-
tance of two, according to [11], to create edges between the nodes. After creating 
the networks, features like the number of nodes and edges, density, clustering coef-
ficient, transitivity and connected components are calculated. The Motif metric cal-
culates the frequency of contiguous letters specifically, 2-mers, 3-mers and 4-mers. 
Finally, GENTLE gives the option to use six different dimensionality reduction 
methods: PCA (Principal Component Analysis) [35], t-SNE (t-distributed Stochas-
tic Neighbor Embedding) [36], UMAP (Uniform Manifold Approximation and Pro-
jection) [37], ICA (Independent Component Analysis) [38], SVD (Singular Value 
Decomposition) [39], and ISOMAP (Isometric Mapping) [40]. In addition, when 
exporting the features as a dataframe, GENTLE offers three normalizing options in 
the sidebar. The first option is standard normalization, which converts the data to an 
average value of 0.0 and a standard deviation of 1.0. The second option is min–max 

https://github.com/dhiego22/gentle
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normalization, which linearly converts the data such that the minimum value is 
−  1.0 and the maximum value is 1.0. The third option is robust scaler, which sub-
tracts the median value and linearly scales the data based on the interquartile range. 
Normalization is optional, but it can significantly impact the algorithmic perfor-
mance [41].

GENTLE provides four feature selection methods: Pearson’s correlation, Ridge, 
XGBoost, and mRMR. Upon selecting the methods, a dataframe will be created with 
a rank of the features with the greatest predictive power, according to each method, 
where zero means the feature was not selected by the method; one means the feature 
was selected as the most predictive; two, the second-most predictive; and so on. It is 
important to emphasize that Pearson’s method considers only one feature at a time 
when defining its predictive power; this way, the two most predictive features can be 
so correlated that their combination may not improve a classifier’s predictive power 
when trained together. In contrast, the other methods will consider the combination 
of the features, which means the two most predictive features are the combination 
of two features that will produce the most predictive classifier if trained together. 
In addition, for visualization purposes, one can choose two featuresto display a 2D 
scatter plot, or three featuresto display a rotating 3D scatter plot.

For the next step, one can perform the classification and validate the predictive 
power of the selected features. Four classifiers can be chosen: GNB (Gaussian Naive 
Bayes), LDA (Linear Discriminant Analysis), LR (Logistic Regression), and DT 
(Decision tree). A radar plot will be generated, representing the five main scoring 
methods for classifiers: accuracy, precision, recall, F1, and AUC (Area Under Curve) 
ROC (Receiver Operating Characteristics) curve.

Finally, one can upload another dataset for external validation purposes. This ulti-
mate step produces a confusion matrix and a radar plot with accuracy, precision, 
recall, F1-score and AUC ROC scoring methods as explained above.

Each dataframe generated can be downloaded (in.csv file format), along with the 
networks, the charts (in.png image format), and the classifier model (in pickle for-
mat). The networks created can also be visualized. GENTLE can be used for edu-
cational purposes due to its user-friendly interface and simplicity. This tool is 
particularly useful in providing fast feedback when analyzing a TCR repertoire and 
its features. Figure 1 summarizes the main steps for using GENTLE and understand-
ing its capabilities. There is also a concise walkthrough with screenshots in 11 steps 
available in the Additional file 1—A Walkthrough of GENTLE and the methods from 
GENTLE’s flow are summarized in the Additional file 2—Diversity metrics, network 
metrics, dimensionality reduction, classifiers and scoring metrics.

Algorithms for feature selection and classification

Pearson’s correlation is a widely applied strategy to find the features most related to a 
target and to eliminate any redundancies between features [42]. It provides a rank of the 
most correlated features according to a given target; it does not consider a set of features 
for prediction but rather considers features independently. For example, if feature A 
and feature B have the highest correlation values but are alike, we can achieve the same 
results with only one. mRMR (minimum redundancy maximum relevance) circumvents 
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this issue by selecting features with high predictive power which are simultaneously dif-
ferent from one another; i.e., it selects the smallest relevant subset of features [43]. Ridge 
regression (also known as L2 regularization) is the ideal method to tackle the overfitting 
issue, given its regularization use. This method determines variables with zero effect on 
the data without wasting predictive information. XGBoost (Extreme Gradient Boosting) 
uses ensembles of decision tree methods, like gradient boosting, to estimate the impor-
tance of the features when training a predictive model. It is an appropriate method when 
working with large datasets; moreover, it can reflect complex interactions between the 
features [44]. Here, we adopt algorithms belonging to the three main classes of feature 

Fig. 1  GENTLE Workflow
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selection methods: filter-based represented by Pearson’s correlation, embedded repre-
sented by Ridge and XGBoost, and wrapper represented by mRMR.

To build the classifiers, we chose four methods based on their transparency, speed, and 
capacity to compete with sophisticated methods (e.g., neural networks, ensemble meth-
ods) and degree of relevance in the literature. In terms of transparency, we are referring 
to internal processes used and the various weighted factors that remain unknown, com-
monly known as a ‘black box’ algorithm. Naive Bayes could classify between malignant 
and benign breast cancer using the Breast Cancer Wisconsin Data Set, providing fast 
and accurate results [45]. Linear Discriminant Analysis is widely used in the biomedi-
cal field to separate groups according to disease and response to treatments. It is an effi-
cient approach to dealing with the small sample size problem [46]. Logistic Regression 
was applied to calculate the log-likelihood ratio of radiological response to anti-PD1 
(programmed cell death protein 1) therapy TCR repertoire data of patients with meta-
static melanoma [47]. Decision Tree was the base method used to investigate features 
in 15 patients with NSCLC (non-small cell lung cancer) using a combination of exome, 
transcriptome, and TCR repertoire data [48].

In summary, the feature selection methods and the classifier models can tackle diverse 
issues, perform rapidly, and deliver competitive and accurate results compared to other 
state-of-the-art approaches.

Results and discussion
Data description

To perform a case study workflow, we used a public dataset from the TCRdb that can 
be accessed from the link http://​bioin​fo.​life.​hust.​edu.​cn/​TCRdb/#/​downl​oad (access 
the project PRJNA297261). The website contains seven TCR repertoire projects, but 
only two of them contain at least two conditions: ‘Healthy’ or ‘Breast Cancer’. From 
these two projects, the immunoSEQ20 project is unbalanced, as it contains 60 ‘Breast 
Cancer’ samples and only three ‘Healthy’ samples. Considering that, we decided to 
move forward with the PRJNA297261 project, which was balanced. Notice that the 
dataset here is only used for demonstration purposes and not for its medical/biologi-
cal merit. We did not produce this dataset. This database provides preprocessed data-
frames that require less processing to fit GENTLE’s input. The original project labels 
each sample with the condition of ‘Breast Cancer’ or ‘Healthy’ tissues; the project also 
labels each sample with the cell type of ‘TRegs’ or ‘TConvs’. We made available on 
Github the script in which we processed the data extracted from the website, turn-
ing it into a dataframe that serves as input for GENTLE. This script splits the original 
project (PRJNA297261) into two dataframes; one with only the TRegs samples, and 
the other one with only the TConvs samples. Each dataframe labels its samples as 
‘Healthy’ or ‘Breast Cancer’. The processed data is summarized in Table 3 and is avail-
able on the Github page. The original data comprises TCR beta chain repertoire of 
regulatory and conventional T cells in peripheral blood from breast cancer patients 
and healthy individuals. TRegs are important for the regulation of immune response, 
including TConvs, which can differentiate into effector cells and respond to non-self 
antigens. Although TRegs and TConvs have different functions they can descend 
from common clones [49].

http://bioinfo.life.hust.edu.cn/TCRdb/#/download
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Case study

In this case study, we identified the features that can separate the healthy from the sick 
samples in both datasets, and used them to build classifiers. To avoid overfitting, we 
limited the number of features according to the minimum number of samples found in 
each category minus one [50]. When building the classifiers, we considered two features: 
one less from the three healthy patients from the TRegs and in both categories from the 
TConvs. We trained one model with the TRegs dataset using the TConvs dataset as the 
test/unseen data; we also made a switch by training one model with the TConvs dataset 
and using the TRegs dataset as the holdout/unseen data, thus allowing us to analyze the 
predictive power of each feature for the TCR repertoire.

By analyzing all four dimensions (diversity, network, motif, and dimensionality reduc-
tion) using the TConvs dataset, we could construct scatter plots that portray a separa-
tion between the healthy and the sick samples. The features in the x and y-axis of each 
scatter plot were chosen based on the feature selection method’s choice for the most 
predictive features. Both Simpson and Shannon indices from the diversity features were 
able to separate the healthy and sick samples (Fig.  2A), wherein the sick samples had 
higher values for the Shannon index and lower values for the Simpson index; the oppo-
site was true for the healthy samples. The density and the number of arrows could also 
accurately separate the samples (Fig. 2B), in which the healthy samples had lower density 
values and more arrows from the built networks than the samples with breast cancer. 
The frequencies of the motifs ‘VS’ (valine followed by a serine) and ‘SV’ (serine followed 
by a valine) could likewise separate the samples (Fig. 2C); both frequencies were more 
common in healthy patients than in sick patients. Many dimensional reduction methods 
were also able to separate the samples, but we depicted an interesting scenario in which 
the IC1 feature did not, but the IC2 feature completely separated the samples (Fig. 2D). 
The features generated from these repertoires clearly distinguished the sick and healthy 
samples as seen in the scatter plots in Fig. 2A–D.

The TRegs dataset could not distinguish the healthy from the sick samples as the 
TConvs did. The only feature that perfectly separated the samples was the Shannon 
index (Fig. 2E). Again, density and number of arrows proved to be the most predictive 
features from the built networks (Fig. 2F). Although they did not completely separate all 
the samples, they showed a slight tendency towards separation. The combination of the 
motifs ‘GG’ (two guanines together) and ‘SQ’ (serine followed by a glutamine) shown in 
(Fig. 2G), can be considered to separate the samples. The dimension reduction methods 
had difficulty accomplishing this task; PC1 and PC2 are depicted in (Fig. 2H).

It is important to emphasize that the feature selection algorithms chose the features 
shown in each scatter plot as the ones with the highest predictive power. Many fea-
tures from the diversity dimension (omitted here) could distinguish the ‘Healthy’ and 

Table 3  Description of datasets on TCRs available

Filename Number of different 
TCRs

Number of samples Healthy individuals Breast 
cancer 
patients

TRegs.csv 3387 11 3 8

TConvs.csv 23,779 6 3 3
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‘Breast Cancer’ samples from the TConvs dataset, while even the most predictive fea-
tures from the network, motif, and dimension reduction had difficulty distinguishing 
the samples from the TRegs dataset.

Based on the exploratory analysis we performed (shown in Fig.  2), we decided to 
build and evaluate the classifiers only with the selected features by the feature selec-
tion methods. The Shannon and Simpson indexes were the only features able to build 
classifiers with high scores of the internal validation and which could classify all the 
samples correctly from the holdout dataset (see Fig. 3). For the TConvs dataset, all the 
built models had scores close to 1 with the internal validation, and all of them could 
predict the samples from the TRegs dataset perfectly. The only model trained with the 
TRegs dataset that could classify the TConvs dataset perfectly was the Decision Tree.

Fig. 2  A–D Scatter Plot of each dimension using the TConvs dataset. E–H Scatter Plot of each fdimension 
using the TRegs dataset. It is important to emphasize that we used the most predictive features on each 
scatter plot, according to the feature selection methods
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In sum, this analysis demonstrates the similarity between TRegs and TConvs when 
analyzing their diversity features, and it portrays how these features can be predic-
tive when analyzing TCR repertoires of breast cancer.  Many studies–to cite a few, 
[2, 51, 52], and [53]–have opted to explore TCR repertoires in their diversity dimen-
sion (specifically, the Shannon index). In corroboration with our results, diversity is 
an essential feature for TCR repertoire analyses and should not be omitted from any 
relevant discussion. Although this analysis was performed with only a few samples, 
we believe that it provides an example of the strength of the tool. With the addition 
of new datasets, more analyses can be done to strengthen the underlying hypothe-
sis regarding information in the repertoire. Both cell types (TRegs and TConvs) are 
influenced by the same signaling pathways that dictate their development, differentia-
tion, and function [54]. Therefore, understanding TRegs’ and TConvs’ similarities can 
be a promising pathway to new therapeutic approaches.

Fig. 3  A–C Stratified validation using threefold and 100 repeats of the classifiers trained with the TConvs 
dataset where A is the Gaussian Naive Bayes, B is the Linear Discriminant Analysis and C are Linear Regression 
and Decision Tree classifiers. D Confusion matrix of the model trained with the TConvs dataset (train) and 
validated with the TRegs dataset (test). E Stratified validation using threefold and 100 repeats of the Decision 
Tree classifier trained with the TRegs dataset. F Confusion matrix of the model trained with the TRegs dataset 
(train) and validated with the TConvs dataset (test)
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Conclusion
This paper introduces GENTLE, a platform designed to help researchers easily and 
swiftly analyze their TCR repertoire data. GENTLE provides visualization capabilities 
and a user-friendly interface.It serves as the first graphical web tool to to incorporate 
feature selection methods to identify important features built within the TCR repertoire. 
It also makes available a set of diverse machine learning methods to generate models 
for classification purposes. The platform makes it possible to compare the performance 
of the classifiers through the main evaluation metrics for binary classification and also 
offers metrics for external validation. All data generated by GENTLE can be downloaded 
for further analysis. As an open-source web application, GENTLE provides researchers 
tools to analyze data efficiently and to be able to extract biomarkers and build classifi-
ers that could positively improve treatment prospects across healthcare. Our case study 
showed that diversity features, such as the Shannon and Simpson indices, can be impor-
tant biomarkers for healthy and sick patients with breast cancer when analyzing their 
repertoires of TRegs and Tconvs. For future works, we will add features generated from 
time series data, as some insights can only be gleaned upon analyzing changes in the 
repertoires over time. Moreover, we will add more options for classifiers and metrics of 
feature selection aligned more closely with time series data.

Availability and requirements
Project name: GENTLE. Project home page: https://​github.​com/​dhieg​o22/​gentle & 
https://​share.​strea​mlit.​io/​dhieg​o22/​gentle/​main/​gentle.​py. Operating system(s): Linux, 
Windows, Mac. Programming language: Python 3.9 + . Other requirements: Streamlit, 
Plotly, Pandas, Sckit-learn.   License: MIT License. Any restrictions to use by non-aca-
demics: None.

Abbreviations
GENTLE	� GENerator of T cell receptor repertoire features for machine LEarning
TCR​	� T cell receptor
VDJ	� Variable, diversity, joining genes
GUI	� Graphical user interface
TRegs	� Regulatory T cells
TConvs	� Conventional T cells
NGS	� Next generation sequencing
CDR3	� Complementarity determining region 3
PCA	� Principal component analysis
t-SNE	� T-distributed stochastic neighbor embedding
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ICA	� Independent component analysis
SVD	� Singular value decomposition
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LDA	� Linear discriminant analysis
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